28
Direct Conversion Pulsed UWB Transceiver Architecture Raul Blazquez, Fred Lee, David Wentzloff, Brian Ginsburg, Johnna Powell, Anantha P. Chandrakasan Massachusetts Institute of Technology

Direct Conversion Pulsed UWB Transceiver Architecture · 2020. 6. 17. · Low probability of interception. Excellent multipath resolution Low interference to preexisting services

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Direct Conversion Pulsed UWB Transceiver Architecture

    Raul Blazquez, Fred Lee, David Wentzloff, Brian Ginsburg, Johnna Powell, Anantha P. Chandrakasan

    Massachusetts Institute of Technology

  • Outline

    IntroductionBaseband TransceiverDirect Conversion TransceiverConclussions

  • Initial Interpretation of UWB

    High data rate.Low probability of interception.Excellent multipath resolutionLow interference to preexisting services.Simplicity of implementation (low power, largely digital).

    Narrowband

    Narrowband

    UWB

    UWB

    1896 1950s 1960s 1980s 1990s 2002 2004

    Marconi’sSpark Gap

    RadarApplications

    First UWBPatents

    First UWBPapers

    First UWBSystems

    FCCReport

    First Commercial

    Chips

    freq

    time

  • Regulation Issues

    0 2 4 6 8 10 12-80

    -75

    -70

    -65

    -60

    -55

    -50

    -45

    -40

    Frequency (GHz)

    UWB

    EIR

    P Em

    issi

    on le

    vel in

    dB

    m/M

    Hz

    Distance1m 10m 100m

    500Mb

    50Mb

    5Mb

    500Kb

    WLAN

    Wireless USB &

    Multimedia

    Locationing/Tagging

    USA7.5GHz of free unlicensed spectrum

    EuropeUnregulated

  • Future UWB Standards

    480Mbps1m

    200Mbps4m

    110Mbps10m

    Bit RateDistance

    IEEE 802.15.3aQoSHigh Data-Rate4 PicoNet in close proximityCost

    IEEE 802.15.4aHigh Precision Location CapabilityLarger RangeRobust multipath performanceScalable Data Rate

    ApplicationsSafety (Public/Military)Smart BuildingsItem Locating/TrackingNetworking

  • UWB Baseband Transceiver

    ADCADC 0

    RECEIVER

    TRANSMITTERBits to TX

    S/P

    Correlator 1Correlator 2

    Correlator 10

    Coarse Acq.Fine Track.Control

    Digital Back-end

    4 Samples

    40 samplesPLL

    ADC 1

    ADC 2

    ADC 3

    Pulse Amplifier

    Pulse Generator

    Frontend

    RetimingBlock

    BW = 300MHz, Duty cycle = 2%, 31 pulses per bit

  • Front-end

    Vin+Vin-

    Vout-Vout+

    Vb2

    Vb1

    Vin Vb3

    VADC+ VADC-

    VDCVb2+ - + - + - + -

    + - + - + - + -

  • Specification of the ADC

    4 bits sufficient for reliable UWB detection

    Noise Limited Case Interference Limited Case

    -30 -25 -20 -15 -1010-4

    10-3

    10-2

    10-1

    100

    SIR (dB)P

    roba

    bilit

    y of

    erro

    r

    1 bit2 bits4 bits∞ bits

    -30 -25 -20 -15 -1010-4

    10-3

    10-2

    10-1

    100

    SNR (dB)

    Pro

    babi

    lity

    of e

    rror

    1 bit2 bits4 bits∞ bits

  • ADC Architecture

    T/H

    Preamp Comp 1 Comp 2

    Single FLASH ADC channel

    Vinp

    Vinm

    PCC 15

    PCC 0

    Preamp Comp 1 Comp 2

    T15

    T15

    T0

    T0

    B0B1B2B3

    Switch + CapacitorBetter dynamic performanceLow resolution

    Fully Differential Preamplifier and Comparators

    Pipelined Decoder

  • ADC (Measurements)

    ADC Channel 1

    0.620.31250

    0.620.31384

    INLave / LSBDNLave / LSBfCLK / MHz

    Dornberg, J., Lee, H.S. and Hodges, D.A., “Full-Speed Testing of A/D Converters”, IEEE JSSC, Dec 1984.

  • Clock Generation Subsystem

    x4 x4 x4 x4

    PhaseFreq Det

    ChargePump

    BiasGen

    ChargePump

    Xtal

    Div by 64

    ++-

    -+

    +-

    -+

    +-

    -+

    +-

    -

    Φ1

    Φ3

    Φ2

    Φ4

    Delay Cells

    ClockBuffers

  • Digital Backend Specification

    Correlator 1

    Coarse Acq.Fine Track.Control

    RetimingBlock S/P

    Correlator 2

    Correlator 10FromADCs4x

    300MHzCustom Layout

    30MHzSynthesis

    Whole synchronization in digital domain.Coarse Acquisition < 70µs, Fine Tracking Precision = 1sample

  • Coarse Acquisition

    Time

    Wider integration window?2 samples per pulseNc pulses per bit

    Case 1: 1window ⇒ Width N2NcN multiplications2NcN-1 additions

    Case 2: N windows ⇒ Width 12NcN multiplications2NcN-N additions

    PARALLELIZATION

    Time to Coarse Acq. 70 µs

    50 correlations in parallel

    Loss = 1.7dB

  • Correlators

    R1 R2 R3 R4 R5Shift RegistersSample 1

    Sample 2Sample 3Sample 4

    Correlation 1

    R1 R2 R3 R4 R5Shift RegistersSample 37

    Sample 38Sample 39Sample 40

    Correlation 10

    Gold CodeGenerator

    Code Reset30MHzClock

    1 Correlation:

    200 samp/frame31 frames

    = 6200 FIR coeffs

    50 Correlationsin parallel

  • UWB System on a Chip

    1.8 V - 0.18µm non-epiDemonstrated 193kbps wireless link

    4.3mm

    2.9mm

    Correlators

    ADC

    RF Front EndS/P

    S/P

    ClockGen.

    FineTracking

    CoarseAcquisition

    Transmitter

    Correlators

    86mWADC

    5mWTransmitter

    71mWRF Front-end

    347mWTotal

    75mWBackend

    65mWCLK Buffers

    45mWPLL

    Power Consumption

  • 0 50 100 150 200-1

    -0.5

    0

    0.5

    1

    ns

    The UWB Channel

    BWmin = 500 MHz Limitations:

    In band interferers. (802.11a)Multipath. 580 ps/div

    150 mV

    -150 mV

    Extreme NLOS

    NLOS 4-10m

    NLOS 0-4m

    LOS 0-4m

    Description

    14.3nsCM3

    25nsCM4

    8.0nsCM2

    5.3nsCM1

    RMS Delay

  • Two Proposals for 802.15.3a

    Time Frequency

    Pulsed UWB MB-OFDM

    Prefix removal

    FFT

    Slicers

    S/P

    P/S

    Samples

    BitsIntegrate & Dump SlicerSamples

    Template

    Bits

    Simple TransmitterGood behaviour with non-linearities

    ISI ⇒ Viterbi-like MLSE Equalizer

    Elegant EqualizationSimilar to 802.11a

    Linearity required

    FCC to rule on this dispute next week

  • ADC Impact in UWB Signals

    Pulsed UWB MB-OFDM

    -10 -5 0 5 10 15

    10-4

    10-3

    10-2

    10-1

    100

    SNR (dB)

    Pe

    1 bit2 bits3 bits4 bitsno quantization

    -10 -5 0 5 10 15

    10-4

    10-3

    10-2

    10-1

    100

    SNR (dB)

    Pe

    1 bit2 bits3 bits4 bitsno quantization

    Solution: Coding

    R. Blazquez, F. S. Lee, D. D. Wentzloff, P. P. Newaskar, J. D. Powell, A. P. Chandrakasan, "Digital architecture for an ultra-wideband radio receiver", VTC Fall 2003, Orlando FA, October 2003.

  • Direct Conversion ReceiverB

    ASE

    BA

    ND

    PRO

    CES

    SIN

    G

    PulseGeneration

    ADCI

    ADCQ

    TRASMITTER

    RECEIVER

    Spectral Compliance, Jitter

    Impulse ResponseForm Factor, Wideband

    Matching

    Impulse ResponseForm Factor

    Dynamic Range, NF,Linearity,

    Impulse ResponseNumber of bitsSample Rate

    Narrowband Interferer

    802.11a (30dBm)

  • Power Budget for a UWB Transceiver

    MB-OFDM : Front-end: 117.5 mW (Bergervoet et al. ISSCC’05) (SiGe BiCMOS 0.25)Clock and carrier generation: 73.44 mW (Leenaerts et al. ISSCC’05) (SiGe BiCMOS 0.25)Digital Back-end: 523 mW (Liu et al. ISSCC’05) (CMOS 0.18)Estimated for 90nm CMOS (MBOA White paper): 93mW in transmission, 169mW in reception

    Pulse UWB (DSSS)Total: 280mW (Iida et al. ISSCC’05) (CMOS 0.18)

  • Discrete Prototype

    Splitter

    5.335GHz PLL

    Splitter

    Tuned TX lineFor Quadrature

    PGM board

    X 1GSPSADC

    1GSPSADCX

    X5.335GHz

    PLL

    PGM board

    PulseGenerator

    100MHz TektronixPattern Generator

    Mat

    lab/

    FPG

    A

    6GHzLNA

    6GHzLNA

    DigitallyControlledVGA

    DigitallyControlledVGA

    LPF250MHz

    LPF250MHz

    Demonstrated 100Mbps wireless link

  • -40 -30 -20 -10 0 10

    0

    30

    60

    90

    120

    150

    180

    -150

    -120

    -90

    -60

    -30 30

    60

    90

    120

    150180

    -150

    -120

    90

    -60

    -30

    0

    Max Gain 2.11 dB

    Lincoln Laboratory Measured Azimuth Pattern

    4 GHz

    Antenna

    5cm

    2.5cm

    VSWR < 2 for 3.1- 10.6 GHzNear Omnidirectional PatternHigh Radiation EfficiencyPhysically Small SizeShort impulse response

    Johnna Powell, Anantha P. Chandrakasan, "Differential and Single Ended Elliptical Antennas for 3.1-10.6 GHz UWB Communication", IEEE Antennas and Propagation Society International Symposium, June 2004.

  • RF Front-end

    802.11aNotch Control

    UWB S2D

    UWB LNA

    Freq ControlUWBFilter

    Gain & Switch

    LO I IN

    Out Q

    I

    Q

    VCO/EXT LO switch

    VCO/EXT LO switch

    RFIN

    Out I BasebandGain

    BasebandGain

    Adjustable

    500Msps5-Bit ADC

    500Msps5-Bit ADC

    Digital Back-end

    Adjustable

    DataOut

    LPF

    LPF

    Gain & Switch

    LO Q IN

    Divider OutputUWB TunableQ-VCO PLL

  • Programmable Baseband

    Ret

    imin

    g B

    lock

    Freq

    . Cor

    rect

    ion

    Correlators/RAKES

    erie

    s to

    par

    alle

    l

    Correlator 1

    Coarse Acquisition

    Initialization

    Threshold

    Sam

    ples

    from

    AD

    C Correlator 2

    Correlator P

    Channel Estimator Impulse response

    Interference Detection

    Interference PowerSamples from ADC

    Bits

    ProgrammableFeatures

    TI/TS ↓MLSE Viterbi

    Equalizer

    Automatic Gain Control

    To RF Front-end

    PLL/DLL

    Length of impulse response

    Tracking

  • 0 5 10 15 20 25 300

    10

    20

    30

    40

    50

    60

    70

    Number of pulses integrated

    Tim

    e to

    pac

    ket s

    ynch

    roni

    zatio

    n ( µ

    s)

    0 5 10 15 20 25 300

    5

    10

    15

    Pro

    cess

    ing

    gain

    (dB

    )

    Parallellization

    Faster acquisition.Slower clock. Lower Vdd.

    Correlators ArchitectureCoarse Acquisition Trade-off

    R1 R2 RqShift Registers

    x1[n]

    Correlation 1

    Serie

    s to

    Par

    alle

    l

    R1 R2 RqShift Registers

    xP[n]

    Correlation P

    GoldCode(-1/+1) Reset(0/1) Clock

    x[m]

    xi[n]=x[Pn+i]

  • 0 5 10 15 20-0.5

    0

    0.5

    1

    1.5

    Impu

    lse

    resp

    onse

    Rake Receiver

    Channel Impulse Response (with multipath effects)

    6 finger RAKE Method implementedVariable number of fingers based on relative amplitude of response.

    Number of fingers fixed

    0 5 10 15 20-0.5

    0

    0.5

    1

    1.5

    Impu

    lse

    resp

    onse

    0 5 10 15 20-0.5

    0

    0.5

    1

    1.5

    Impu

    lse

    resp

    onse

  • Adapting to the Channel

    1 1.5 2 2.5 3 3.5 40

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    L

    Loss

    (dB)

    CM1CM2CM3CM4

    NUMBER OF STATES OF MLSE EQ.

    KNOBS AVAILABLE TO ADAPT THE COMPLEXITY TO THE CHANNEL QUALITY

    Digital baseband estimates channel properties:

    Interference (ISR)Multipath (Impulse Response)Signal power

    Controls over signal processing:

    Number of states of equalizer.Number of bits of ADC.Threshold of the channel.

  • Conclusions

    SoC implementation is difficult.

    Higher data rate implies complexity.

    Parallellization allows power reduction.

    Adapt the complexity of the transceiver to channel quality.