16
Direct Catalytic Aldol Reactions Shibasakiʼs and Trostʼs contributions toward the development of catalytic enolate reactions. ʻThe time has come,ʼ the Walrus said, ʻTo talk of many things: Of shoes–and ships–and sealing wax– Of cabbages–and kings– And why the sea is boiling hot– And whether pigs have wings.ʼ O N N O O Ph Ph Ph Ph Zn Zn Me Me O O O O O O Ln Li Li Li

Direct Catalytic Aldol Reactions...Direct Catalytic Aldol Reactions Shibasakiʼs and Trostʼs contributions toward the development of catalytic enolate reactions. ʻThe time has come,ʼ

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

Direct Catalytic Aldol Reactions

Shibasakiʼs and Trostʼs contributions toward the development of catalytic enolate reactions.

ʻThe time has come,ʼ the Walrus said,ʻTo talk of many things:

Of shoes–and ships–and sealing wax–Of cabbages–and kings–

And why the sea is boiling hot–And whether pigs have wings.ʼ

ON N

O O PhPh

PhPh Zn

Zn

Me

Me

OOO O

OO

LnLi Li

Li

The Definition of a Direct Catalytic Enolate Addition

A large number of enantioselective aldol reactions exist:

Ar

R R

OEt

OTBSOSnBu3

RBINAP•AgOTfO O

OSiMe3

Me Me

CuF2•Tol-Binap

Carriera, 1998 Yamamoto, 1997 Chen, 1997

Preconversion to the ketone is a prerequisite for the reactions.

These are not direct aldol reactions.

Me R1

O

R H

O+

catalystR1

O

R

OH∗

A route to this reaction without stoichiometric amounts of base and/or adjunct reagents was desirable

Aldolases as Inspiration

fructose-1,6-bisphosphate and dihydroxyacetone phosphate (DHAP) aldolases are found in E. coli.

Fessner, W.-D.; Schneider, A.; Held, H.; Sinerius, G.; Walter, C.; Hixon, M.; Schloss, J. V. ACIE 1996, 35, 2219-2221

HOO

OPO32–H

OMe

OH

+enzyme O OPO3

2–

OH

OHHO

Me

L-fuculose

Key Points

• facilitates both electrophilic activation and proton abstraction

• Lewis acid and Brønsted base

• Multifunctional

ZnHis

His HIs

GluCO2

2+

deprotonation

HOO

OPO32–

OOPO3

2–

ZnHOGlu

CO2H

GluCO2H

H

OMe

OHO

OPO32–

ZnHO

HO

Tyr

H

OMe

OH

C-C bondformation

Me

OH

OH

OO

OPO32–

Zn

O OPO32–

OH

OHHO

Me

Professor Masakatsu Shibasaki

• Ph. D, University of Tokyo, 1974 (Yamada)• Post-doc, Harvard, 1974-77, (Corey)• Associate Prof, Teikyo, 1977-83 (Ikegama)• Professor, Hokkaido, 1986-1991• Professor, University of Tokyo, 1991-present

• To date, 465 publications

The 1970ʼs Corey GroupShibasakiNicolauBogerTius

FuchsSeebachNoyori

H. YamamotoB. SniderTakedaLipshutzMulzer

DanheiserKeck

Enders

Professor Masakatsu Shibasaki

The catalyst:

OOO O

OO

LnLi Li

Li

Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. JACS 1992, 114, 4418-4420Sasai, H.; Suzuki, T.; ItoH, N.; Shibasaki, M. Tetrahedron Lett. 1993, 34, 851-854

Sasai, H.; Suzuki, T.; Itoh, N.; Tanaka, K.; Date, T.; Okamura, K.; Shibasaki, M. JACS 1993, 115, 10372-10373

MeNO2 H

O OHNO2catalyst

+ 91% yield90% ee

• The lithium is important, Na gave much lower selectivities and yields• small amounts of H2O are needed• Uncertain of success in aldol reaction due to low basicity of alkoxide

S-U-C-C-E-S-S thatʼs the way you spell Success

H

O

Me

OMe

MeMe

catalyst

THF+ Ph

OH OMe

MeMe

81% yield91% ee

• A variety of ketones are compatible• A variety of aldehydes are compatible• selectivity is generally high

• Long reaction times (up to 253 h)• Large excess of ketone (up to 50 equiv)• High catalyst loading (20 mol %)

Positives Negatives

In this case, the rxn worked better without the addition of water.

Mechanistic Insight:

Yamada, Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. ACIE 1997, 36, 1871-1873

• Employment of the Pr related catalyst resulted upfield shift of the aldehyde proton

• Using dilithium salt of (R)-binapthol resulted in no chemical shift, afforded racemate

Improvement to the Reaction

catalyst

THF+Ph H

O

Me Me Me Ph

O

Ph

OH

Me Me

O

Ph

O

BnO OBn

OO catalystLiHMDS, H2O

+

O

BnO2C

CO2Bn

12 h99% yield

97% ee

Arai, T.; Yamada, Y. M. A.; Yamamoto, N.; Sasai, H.; Shibasaki, M. Chem.–Eur. J. 1996, 2, 1368-1372

trace amount

Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. JACS 1999, 121, 4168-4178

catalyst

THF+Ph H

O

Me Me Me Ph

O

Ph

OH

Me Me

O

Ph

O

BnO OBn

OO catalystLiHMDS, H2O

+

O

BnO2C

CO2Bn

Arai, T.; Yamada, Y. M. A.; Yamamoto, N.; Sasai, H.; Shibasaki, M. Chem.–Eur. J. 1996, 2, 1368-1372

Improvement to the Reaction

with KHMDS and H2O as an additivewith only 8 mol % catalyst

5 h74% yield

84% ee

12 h99% yield

97% ee

Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. JACS 1999, 121, 4168-4178

catalyst

THF+Ph H

O

Me Me Me Ph

O

Ph

OH

Me Me

O

Ph

Improvement to the Reaction

5 h74% yield

84% eewith KHMDS and H2O as an additive

with only 8 mol % catalyst

OHMe

MeMe

O

Ph

75%, 88% ee

OHMe

Me

ONO2

68%, 70% ee

OH O

PhMe Me

BnO

70%, 93% ee

OH O

Me MePh

Me

72%, 88% ee

OHMe

OTBS

ONO2

48 h73% yield

99% ee

no racemization of pre-existing stereocenter

Self-condensation of the aldehyde was not observed.Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. JACS 1999, 121, 4168-4178

New Player in the Game

•This catalyst uses Zn, which mimics aldolases.

• It is easily prepared from 2,6-(bromomethyl)-p-cresol.

•Similarly, phenoxide should assist in both deprotonation and then protonation of alkoxide in product.

•One Zn is used for formation of enolate, the other for aldehyde coordination

ON N

O O PhPh

PhPh Zn

Zn

Me

Me

Professor Barry M. Trost

Ph.D- MIT, 1965 (House)Assistant Prof.- University of Wisconsin, 1965-68Associate Prof.- University of Wisconsin, 1968-69

Professor- University of Wisconsin, 1969-87Professor- Stanford, 1987-present

Over 720 publications

Best known for p-allyl palladium chemistry.

CurranFerreiraFrontier

MolanderToste

Krische

StambuliTaber

LautensMcIntoshParquette

Former Students/Post-docs:

Substrate Scope

R

O

H Me

O

Ar

5 mol % ligand10 mol % ZnEt2

15 mol % Ph3PS4Å MS

R

O

Ar

OH+ ON N

O O PhPh

PhPh Zn

Zn

Me

MeNotice two equiv of ZnEt2 and use of triphenylphosphine sulfide

O

Ph

OHMe

Me

49%, 68% ee

O

Ph

OH

60%, 98% ee

O

Ph

OH

Ph

Ph

79%, 99% ee

O

Ph

OH

Me

Ph

67%, 2:1 dr, 94% ee

O

Ph

OH

Me MeTBSO

61%, 93% ee

OOH

Me

Me O

66%, 97% ee

OOH

Me

MeOMe

48%, 97% ee

Trost, B. M.; Ito, H. JACS 2000, 122, 12003-12004

Trostʼs Explanation of Pathway

• 3 active Hʼs suggest that 2 Zn atoms may be involved• 2 equiv of ZnEt2 per 1 equiv of ligand liberates 3 equiv of ethane• Addition of H2O, liberates 4 equiv of ethane

ON N

O O PhPh

PhPh Zn Zn

O

Me

Ar

O

RH

ON N ��

O O PhPh

PhPh Zn Zn

O

Me

Ar

O

R

H

ON N

O O PhPh

PhPh Zn Zn

Me

O

R O

ArO

Ar

R

O

Ar

OH

Application to Other Manifolds

Henry Reaction:

R

O

H

catalyst+

OHNO2

MeNO2 Me

Me

90% yield92% ee

Trost, B. M.; Yeh, V. S. C. ACIE 2002, 41, 861-863

Mannich Reaction:

catalystHO

O

Ph

N

EtO2C H

MeO

+O

PhOH

NH

EtO2C

Ar70% yield

15:1 dr99% ee

Trost, B. M.; Terrell, L. R. JACS 2003, 125, 338-339

Diol Desymmetrization:

catalyst

OH

OH

MeOO

O

Ph+

OCOPh

OH

MeO

H93% yield

99% ee

Trost, B. M.; Mino, T. JACS 2003, 125, 2410-2411

Incorporation of Methyl Vinyl Ketone

Trost, B. M.; Shin, S.; Sclafani. JACS 2005, 127, 8602-86-3

R

O

H Me

O catalyst+

R

OH O

OH O OH O

Me

MeMe

OH O

Me MeBnO

OH OMe

MeMe

53%, 92% ee 74%, 86% ee 64%, 83% ee 49%, 98% ee

• MVK is extremely unstable in both acidic and basic conditions

• Main problems associated with elimination of b-hydroxy ketone product

• There is a profound negative nonlinear effect

Recent Advances

Me Me

OH

O

NO2

Me

O OH

NO2

(S)-proline+ 68% yield

76% ee

List, B.; Lerner, R. A.; Barbas, C. F. III. J. Am. Chem. Soc. 2000, 122, 2395

Secondary Amine Catalysis:

Palladium Catalysis:

Me

O O

Me

ArO

Me

PdOH2

OH2

PP

2+2 OTf

Me

O OAr

+ MeO

Me

84% yield90% ee

Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 11240

Nickel Catalysis:

N

OMe

S

S

(MeO)3CHNi(II)•tol-BINAP

BF3•OEt2+ N

O

S

S

OMe

OMe

Me

73% yield97% ee

Evans, D. A.; Thomson, R. J. J. Am. Chem. Soc. 2005, 127, 10506