dip.unit2

Embed Size (px)

Citation preview

  • 8/3/2019 dip.unit2

    1/60

    1

    Unit - IIImage Transforms

  • 8/3/2019 dip.unit2

    2/60

    2

    The Discrete Fourier Transform

    Continuous function f(x) is discretized into a sequence

    N samples x units apart

    Where x = discrete values = 0,1,2, .N-1

    The sequence any N uniformly spaced samples from a correspondingcontinuous function

  • 8/3/2019 dip.unit2

    3/60

    3

    2-D functions and their Fourier spectra

  • 8/3/2019 dip.unit2

    4/60

    4

    Sampling continuous function

  • 8/3/2019 dip.unit2

    5/60

    5

    1D-Discrete Fourier Transform (DFT) pair :

    DFT and Inverse DFT

  • 8/3/2019 dip.unit2

    6/60

    6

    2D-Discrete Fourier Transform pair:

    DFT and Inverse DFT

  • 8/3/2019 dip.unit2

    7/60

    7

    2D-Discrete Fourier Transform pair:

    DFT and Inverse DFT

  • 8/3/2019 dip.unit2

    8/60

    8

    Fast Fourier Transform (FFT)

    1D-Discrete Fourier Transform pair:

    DFT and Inverse DFT

  • 8/3/2019 dip.unit2

    9/60

    9

    2D-Discrete Fourier Transform pair:

    DFT and Inverse DFT

  • 8/3/2019 dip.unit2

    10/60

    10

    2D-Discrete Fourier Transform pair:

    DFT and Inverse DFT

  • 8/3/2019 dip.unit2

    11/60

    11

    The number of complex multiplications and additions in DFT

    N2

    The number of complex multiplications and additions in FFT N log2N.

    Decomposition procedure FFT algorithm

    The reduction in proportionality from N2to N log2N operations.

  • 8/3/2019 dip.unit2

    12/60

    12

    FFT Algorithm

    Discrete Fourier Transform

  • 8/3/2019 dip.unit2

    13/60

    13

  • 8/3/2019 dip.unit2

    14/60

    14

  • 8/3/2019 dip.unit2

    15/60

    15

  • 8/3/2019 dip.unit2

    16/60

    16

    Number of operations

    The number of complex multiplications and additions required toimplement FFT Algorithm:

  • 8/3/2019 dip.unit2

    17/60

    17

  • 8/3/2019 dip.unit2

    18/60

    18

    Inverse FFT

    1-D DFT and Inverse DFT

  • 8/3/2019 dip.unit2

    19/60

    19

    Taking Complex conjugate and dividing both sides by N:

    Similarly for 2-D

  • 8/3/2019 dip.unit2

    20/60

    20

    Implementation

  • 8/3/2019 dip.unit2

    21/60

    21

  • 8/3/2019 dip.unit2

    22/60

    22

    FORTAN implementation of successive doubling algorithm

  • 8/3/2019 dip.unit2

    23/60

    23

    Other Separable Transforms

    1-D Discrete Fourier Transform (DFT)

    T(u) Forward Transformion of f(x)g(x,u)Forward Transform Kernelu = 0,1,.,N-1

    1-D Inverse Discrete Fourier Transform (DFT)

    f(x) Inverse Transformh(x,u)Inverse Transformation Kernel

    x = 0,1,.,N-1

  • 8/3/2019 dip.unit2

    24/60

    24

    2-D Discrete Fourier Transform (DFT)

    T(u,v) Forward Transformion of f(x)

    g(x,y,u,v)Forward Transform Kernelu = 0,1,.,N-1

    v = 0,1,.,N-1

  • 8/3/2019 dip.unit2

    25/60

    25

    2-D Inverse Discrete Fourier Transform (DFT)

    f(x,y) Inverse Transform

    h(x,y,u,v)Inverse Transformation Kernel

    x = 0,1,.,N-1

    y = 0,1,.,N-1

  • 8/3/2019 dip.unit2

    26/60

    26

    Forward kernel is separable

    Forward kernel is symmetric

    g1 = g2

  • 8/3/2019 dip.unit2

    27/60

    27

    Example

    Forward kernel

    Forward kernel is separable and symmetric

    Inverse Fourier kernel is also separable and symmetric

  • 8/3/2019 dip.unit2

    28/60

    28

    Separable kernel computed in two steps

    1.1-D Transform along each row of f(x,y):

    x,v = 0,1,2,,N-1

    2. 1-D Transform along each column of T(x,v):

    u,v = 0,1,2,,N-1

  • 8/3/2019 dip.unit2

    29/60

    29

    Walsh Transform

    N = 2n

    1-D Forward Walsh Transform Kernel:

    1-D Forward Discrete Walsh Transform of f(x):

  • 8/3/2019 dip.unit2

    30/60

    30

    Values of 1-D Walsh Transformation Kernel for N=8

  • 8/3/2019 dip.unit2

    31/60

    31

    1-D Inverse Walsh Transform Kernel:

    1-D Inverse Walsh Transform:

  • 8/3/2019 dip.unit2

    32/60

    32

    2-D Forward Walsh Transform Kernel:

    2-D Forward Discrete Walsh Transform of f(x):

  • 8/3/2019 dip.unit2

    33/60

    33

    2-D Inverse Walsh Transform Kernel:

    2-D Inverse Walsh Transform:

  • 8/3/2019 dip.unit2

    34/60

    34

    Walsh Transform kernel are separable and symmetric:

    M difi ti f th i d bli FFT l ith f

  • 8/3/2019 dip.unit2

    35/60

    35

    Modification of the successive doubling FFT algorithm forcomputing the fast Walsh transform

  • 8/3/2019 dip.unit2

    36/60

    36

  • 8/3/2019 dip.unit2

    37/60

    37

    Hadamard Transform

    1-D Forward Hadamard Transform Kernel:

    1-D Forward Hadamard Transform:

    where N = 2n

    foru= 0,1,2,.,N-1

  • 8/3/2019 dip.unit2

    38/60

    38

    1-D Inverse Hadamard Transform Kernel:

    1-D Inverse Hadamard Transform

    forx= 0,1,2,.,N-1

  • 8/3/2019 dip.unit2

    39/60

    39

    2-D Forward Hadamard Transform Kernel:

    2-D Forward Hadamard Transform:

    foru= 0,1,2,.,N-1v= 0,1,2,.,N-1

    2 D I H d d T f K l

  • 8/3/2019 dip.unit2

    40/60

    40

    2-D Inverse Hadamard Transform Kernel:

    2-D Inverse Hadamard Transform:

    forx= 0,1,2,.,N-1

    y= 0,1,2,.,N-1

  • 8/3/2019 dip.unit2

    41/60

    41

    Hadamard Transform kernel are separable and symmetric:

  • 8/3/2019 dip.unit2

    42/60

    42

  • 8/3/2019 dip.unit2

    43/60

    43

  • 8/3/2019 dip.unit2

    44/60

    44

  • 8/3/2019 dip.unit2

    45/60

    45

  • 8/3/2019 dip.unit2

    46/60

    46

    Discrete Cosine Transform (DCT)

    1-D Forward Discrete Cosine Transform (DCT) Kernel:

    1-D Forward DCT :

    foru= 0,1,2,.,N-1

  • 8/3/2019 dip.unit2

    47/60

    47

    1-D Inverse DCT Kernel:

    1-D Inverse DCT

    forx= 0,1,2,.,N-1

  • 8/3/2019 dip.unit2

    48/60

    48

    2-D Forward Discrete Cosine Transform (DCT) Kernel:

    2-D Forward DCT :

    where N = 2n

    foru= 0,1,2,.,N-1

    v= 0,1,2,.,N-1

  • 8/3/2019 dip.unit2

    49/60

    49

    2-D Inverse DCT Kernel:

    2-D Inverse DCT

    forx= 0,1,2,.,N-1

    y= 0,1,2,.,N-1

  • 8/3/2019 dip.unit2

    50/60

    50

  • 8/3/2019 dip.unit2

    51/60

    51

    Haar Transform

  • 8/3/2019 dip.unit2

    52/60

    52

    Haar Transform

    Haar Transform based on Haar functions hk(z)

    Continuous and closed interval z[0, 1]

    for k = 0,1,2,,N-1 where N = 2n

    First step in generating Haar Transform, integer k decomposed

    uniquelyk = 2p+ q 1 where N = 2n

    Where 0 p n-1

    q= 0or 1 for p = 01 q 2

    p for p 0

    if N=4,

  • 8/3/2019 dip.unit2

    53/60

    53

    k, p and q values:

    Haar Functions:

    and

  • 8/3/2019 dip.unit2

    54/60

    54

  • 8/3/2019 dip.unit2

    55/60

    55

    Slant Transform

    Slant Transform matrix of order N x N is the recursive expression

    SN:

    IM Identity matrix of order M x M

  • 8/3/2019 dip.unit2

    56/60

    56

    The coefficients are

    and

    For N>1

    Example

  • 8/3/2019 dip.unit2

    57/60

    57

    Slant matrix S4:

    Hotelling Transform

  • 8/3/2019 dip.unit2

    58/60

    58

    Developed based on stastical properties of vector representations

    Tool for Image processing (H.T. has several useful properties)

    Population of random vectors of the form:

    The mean vector of the population:

    E{arg} expected value of the argument

    Subscript m associated with the populationof x vectors

    The Covariance matrix of the vector population:

    Wh T V t T iti

  • 8/3/2019 dip.unit2

    59/60

    59

    Where T Vector Transposition

    x is n dimensional

    Cx & (x-mx) (x-mx)T matrices of order n x n

    Element cii of Cx variance of xi

    ith componeny of the x vectors in the population

    Element cij of Cx covariance between elements xi and xj

    Matrix Cx real & symmetric

    If elements xi and xj are correlated,

    the covariance = 0 & cij = cji = 0

  • 8/3/2019 dip.unit2

    60/60

    60

    For M vector samples from the random population,

    The mean vector & covariance from the samples: