27
Nab experiment: progress update Dinko Poˇ cani´ c, for the Nab Collaboration University of Virginia FnPB PRAC Review 15 December 2010 D. Poˇ cani´ c (UVa) Nab progress update 15 Dec ’10 1 / 27

Dinko Po cani c, for the Nab Collaborationgalileo.phys.virginia.edu/.../nab_fnpb-prac_2010-12-15.pdf2010/12/15  · Nab experiment: progress update Dinko Po cani c, for the Nab Collaboration

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Nab experiment: progress update

    Dinko Počanić, for the Nab Collaboration

    University of Virginia

    FnPB PRAC Review15 December 2010

    D. Počanić (UVa) Nab progress update 15 Dec ’10 1 / 27

  • n-decay program at FnPB

    The FnPB neutron decay program at SNS

    I Nab: a precise measurement of

    ◦ a, the electron-neutrino correlation in neutron decay, and◦ b, the Fierz interference term, never before measured in n decay.

    I Polarized program (abBA/PANDA): precise measurements of

    ◦ A, the electron asymmetry in neutron decay,◦ B, the neutrino asymmetry in neutron decay,◦ C , the proton asymmetry in neutron decay; also◦ independent measurements of a and b.

    Typical goal uncertainties: δv/v ≤ 10−3, and δb ≤ 3× 10−3.

    D. Počanić (UVa) Nab progress update 15 Dec ’10 2 / 27

  • Motivation, goals

    Neutron Decay Parameters (SM)

    dw

    dEedΩedΩν' keEe(E0 − Ee)2

    ×[

    1 + a~ke ·~kνEeEν

    + bm

    Ee+ 〈~σn〉 ·

    (A~ke

    Ee+ B

    ~kν

    )+ . . .

    ]where:

    a =1− |λ|2

    1 + 3|λ|2A = −2

    |λ|2 + Re(λ)1 + 3|λ|2

    B = 2|λ|2 − Re(λ)

    1 + 3|λ|2λ =

    GA

    GV(with τn ⇒ CKM Vud)

    also:C = κ(A + B) where κ ' 0.275 .

    D. Počanić (UVa) Nab progress update 15 Dec ’10 3 / 27

  • Motivation, goals

    Goals of the Nab experiment

    I Measure the electron-neutrino parameter a in neutron decay

    with accuracy of∆a

    a' 10−3

    current results:−0.1054± 0.0055 Byrne et al ’02−0.1017± 0.0051 Stratowa et al ’78−0.091± 0.039 Grigorev et al ’68

    I Measure the Fierz interference term b in neutron decay

    with accuracy of ∆b ' 3× 10−3

    current results: none

    D. Počanić (UVa) Nab progress update 15 Dec ’10 4 / 27

  • CKM matrix: Vud

    Status of A and λ in n decay

    -0.13 -0.12

    Beta Asymmetry A

    -0.11 -0.10

    Abele-09

    Pattie-09

    Abele-02

    Liaud-97

    Yeroz-97

    Bopp-86

    Average:= -0.1186(9)A

    Uncertainty of the averagescaled up by factor 2.3×

    Global fit χ2/dof = 28/5 !

    Statistical probability for thisχ2 is 5× 10−5.H. Abele, private communication (2009).R.W. Pattie, et al., PRL 102, 012301 (2009).H. Abele et al., PRL 88, 211801 (2002).P. Liaud et al., NP A 612, 53 (1997).B. Yerozolimsky et al., PL B 412, 240 (1997).P. Bopp et al., PRL 56, 919 (1986).

    D. Počanić (UVa) Nab progress update 15 Dec ’10 5 / 27

  • CKM matrix: Vud

    Status of A and λ in n decay (cont’d)

    Nab goal value of ∆a:

    ⇒ ∆λ ' 3.5× 10−4

    i.e., an order of magn.improvement.

    ∆λ

    λ' 0.27

    ∆a

    a' 0.24

    ∆A

    A

    D. Počanić (UVa) Nab progress update 15 Dec ’10 6 / 27

  • Beyond Vud

    n-decay Correlation Parameters Beyond Vud

    I Beta decay parameters constrain L-R symmetric, SUSY extensions tothe SM. [Reviews: Herczeg, Prog. Part. Nucl. Phys. 46, 413 (2001),N. Severijns, M. Beck, O. Naviliat-Čunčić, Rev. Mod. Phys. 78, 991 (2006),

    Ramsey-Musolf, Su, Phys. Rep. 456, 1 (2008)]

    I Fierz int. term, never measured for the n, along with B, offers asensitive test of non-(V − A) terms in the weak Lagrangian (S ,T ).[S. Profumo, M. J. Ramsey-Musolf, S. Tulin, PRD 75, 075017 (2007)]

    I Measurement of the electron-energy dependence of a and A canseparately confirm CVC and absence of SCC.

    [Gardner, Zhang, PRL 86, 5666 (2001), Gardner, hep-ph/0312124]

    I A connection exists between non-SM (e.g., S ,T ) terms in d → ueν̄and limits on ν masses. [Ito + Prézaeu, PRL 94 (2005)]

    D. Počanić (UVa) Nab progress update 15 Dec ’10 7 / 27

  • Beyond Vud non-V − A interaction terms

    Updated limits for RH S and T currents n decay

    -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15-0.15

    -0.10

    -0.05

    0.00

    0.05

    0.10

    0.15

    RS/L

    V

    RT/L

    A

    neutron and nuclear decays(survey, 95% C.L.)

    “present limits”(68% C.L.)

    Δχ2

    C.L.

    2.30 68.3%

    90%

    95.4%

    4.61

    6.17neutrino

    mass(68% C.L.)

    neutrino mass(68% C.L.)

    muon decay“90% C.L.”

    Present limits (n decay data)(SM values at origin of plot.)

    S V

    -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15-0.15

    -0.10

    -0.,05

    0.00

    0.,05

    0.10

    0.15

    R /L

    RT/L

    A

    neutron and nuclear decays(survey, 95% C.L.)

    Δχ2

    C.L.

    2.30 68.3%

    90%

    95.4%

    4.61

    6.17

    neutrino mass(68% C.L.)

    neutrino mass(68% C.L.)

    “future limits”(68% C.L.)

    muon decay“90% C.L.”

    Projected limits; Grey contours:

    β compilation [Sev-06]

    Improvement from more precise a = −0.1030(1); using b ≡ 0.[G. Konrad, W. Heil, S. Baeßler, D. Počanić, F. Glück, arXiv 1007.3027.]

    D. Počanić (UVa) Nab progress update 15 Dec ’10 8 / 27

  • Beyond Vud non-V − A interaction terms

    Limits for LH S and T currents n decay

    LS/L

    V

    -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3-0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    0.3

    LT/L

    A Δχ2

    C.L.

    2.30 68.3%

    90%

    95.4%

    4.61

    6.17

    neutron andnuclear decays(survey, 68% C.L.)

    superallowed

    0 →0 decays(68% C.L.)

    + +

    “present limits”(68% C.L.)

    muon decay“90% C.L.”

    nuclear decays

    ( ( In), 90% C.L.)P107

    Present limits (n decay data)(SM values at origin of plot.)

    -0.04 -0.02 0.00 0.02 0.04

    -0.04

    -0.02

    0.00

    0.02

    0.04

    LS/L

    VL

    T/L

    A

    Δχ2

    C.L.

    2.30 68.3%

    90%

    95.4%

    4.61

    6.17

    “future limits”(68% C.L.)

    superallowed

    0 →0 decays(68% C.L.)

    + +

    neutron andnuclear decays(survey, 68% C.L.)

    nuclear decays

    ( ( In), 90% C.L.)P107

    0.04

    Projected limits assuming

    a = −0.1030(1) ; b = 0 ± 0.003

    [G. Konrad, W. Heil, S. Baeßler, D. Počanić, F. Glück, arXiv 1007.3027.]

    D. Počanić (UVa) Nab progress update 15 Dec ’10 9 / 27

  • Beyond Vud non-V − A interaction terms

    Right-handed W bosonsAdding RH gives non-zero δ = m21/m

    22, ζ:

    W1 = WL cos ζ + WR sin ζ , and W2 = −WL sin ζ + WR cos ζ .

    Mixing angle ζ

    -0.2 -0.1 0.0 0.10.00

    0.02

    0.04

    0.06

    0.08

    0.10

    Mass

    rati

    oδ 250Δχ

    2C.L.

    2.30 68.3%

    90%

    95.4%

    4.61

    6.17300

    350

    400

    450500550600

    Mas

    s m

    [G

    eV]

    2

    leptonscattering(90% C.L.)

    μ decays(68% C.L.)

    μ decays(90% C.L.)

    DØ (95% C.L.)

    0 →0decays

    (68% C.L.)

    + +

    “presentlimits”

    (68% C.L.)

    Present limits

    Δχ2

    C.L.

    2.30 68.3%

    90%

    95.4%

    4.61

    6.17

    Mixing angle ζM

    ass

    rati

    400

    500

    600

    900

    700800

    1000

    Mass

    m [G

    eV

    ]2

    -0.10 -0.05 0.00 0.050.00

    0.01

    0.02

    0.03

    0.04

    0.05Δχ

    2C.L.

    2.30 68.3%

    90%

    95.4%

    4.61

    6.17

    0 →0decays

    (68% C.L.)

    + +

    μ decays(90% C.L.)

    DØ (95% C.L.)

    μ decays(68% C.L.)

    leptonscattering(90% C.L.)

    “future limit”(68% C.L.)

    Projected limits

    [G. Konrad, W. Heil, S. Baeßler, D. Počanić, F. Glück, arXiv 1007.3027.]

    D. Počanić (UVa) Nab progress update 15 Dec ’10 10 / 27

  • Beyond Vud Fierz interference term

    The Fierz interference term bb can be estimated from nuclear beta decays:

    bF =CSCV

    |CS |2 + |CV |2bGT =

    CTCA|CT |2 + |CA|2

    These terms vanish for pure ν(R) coupling.b 6= 0 only for S , T coupling to ν(L). (leptoquarks?)From 0+ → 0+ decays [Towner + Hardy ’98]:

    |bF | '|CS ||CV |

    ≤ 0.0077 (90 % c.l.)

    From analysis of GT decays [Deutsch + Quin, ’95]:

    bGT = −0.0056(51) 'CT|CA|

    (small FT from πe2γ!?)

    ⇒ a ∼ 10−3 measurement of bn is very interesting!D. Počanić (UVa) Nab progress update 15 Dec ’10 11 / 27

  • Beyond Vud Second class currents

    Correlation Parameters with Recoil Correction[Gardner, Zhang, PRL 86, 5666 (2001), Gardner, hep-ph/0312124]

    Most general form of hardonic weak current consistent with (V-A):

    〈p(pp)|Jµ|n(pn,P)〉 =

    ūp(pp)

    (f1(q

    2)γµ − if2(q2)

    Mnqµ +

    f3(q2)

    Mnqµ + g1(q

    2)γµγ5

    − ig2(q2)

    Mnσµνγ5qν +

    g3(q2)

    Mnγ5q

    µ

    )un(pn,P)

    a,A,B⇒ λ =g1

    f1while τn ∝ (f1)2 + 3(g1)2

    However, f2 (weak magnetism) and SCC’s (g2, g3), remain unresolved inbeta decays (best tested in A=12 system). With recoil corrections,Gardner and Zhang find:

    a(Ee) = func(f2) while A(Ee) = func(f2, g2)

    D. Počanić (UVa) Nab progress update 15 Dec ’10 12 / 27

  • Beyond Vud Second class currents

    0.4 0.5 0.6 0.7 0.8 0.9

    x

    -0.008

    -0.006

    -0.004

    -0.002

    0

    0.002

    0.004a(

    1) a

    nd A

    (1)

    D. Počanić (UVa) Nab progress update 15 Dec ’10 13 / 27

  • Comparison w/other experiments

    Current experiments aiming to measure a

    1. Nab: goal is to measure ∆a/a ∼ 10−3I Best statistical sensitivity,I Challenging but manageable systematics, esp. in asymm. design.

    2. abBA: goal is to measure ∆a/a ∼ 10−3I Similar to Nab, but with spectrometer configured for A,B/C,I Detection function is very broad, syst. uncert. for a very demanding.

    3. aCORN: goal is to measure ∆a/a ∼ 0.5− 2 %I Funded, under construction,I Uses only part of neutron decays.

    4. aSPECT: aims to measure ∆a/a ∼ 10−3I Funded and running; recently overcame trapping problems,I Stat. sensitivity not as good as Nab due to integration; presently∼ 2 %/day—will likely improve on publ. results, not < 1 % this yr,

    I Easier determination of detection function than in Nab at the presentlevel of accuracy. Singles measurement!

    D. Počanić (UVa) Nab progress update 15 Dec ’10 14 / 27

  • Nab measurement principles

    Nab Measurement principles: Proton phase space

    Ee (MeV)

    p p2

    (M

    eV2 /

    c2)

    cos θeν = -1

    cos θeν = 1

    cos θeν = 0

    proton phase spaceprobability (arb. units)

    Ee =

    75 keV

    236 keV

    450 keV

    700 keV

    0

    0.5

    1

    1.5

    0 0.2 0.4 0.6 0.8

    NB: For a given Ee , cos θeν is a function of p2p only. Slope = a

    D. Počanić (UVa) Nab progress update 15 Dec ’10 15 / 27

  • Nab measurement principles

    Nab principle of operation

    I Collect and detectboth electron andproton from neutronbeta decay (magneticfield, detectors at bothends)

    I Measure electronenergy and protonTOF and reconstructdecay kinematics(Magnetic field shape,silicon detectors atboth ends).

    SegmentedSi detector

    SegmentedSi detector

    TOF region(field ∙ )r BB 0

    Uup (upper HV)

    Udown (lower HV)

    magnetic filterregion (field )B0

    decay volume(field ∙ )r BB,DV 0

    Neutronbeam

    D. Počanić (UVa) Nab progress update 15 Dec ’10 16 / 27

  • Nab apparatus and installation

    Nab spectrometer: magnetic field profile

    466.25

    0.03

    5.00

    25.28 43.81

    37.50

    0.50

    481.25

    14.7525.90

    67.09

    0.47

    41.66

    14.7725.90

    4.34

    4.34

    10.5220.5838.16

    3.13

    3.13

    29.94

    16.4130.24

    3.19

    3.28

    4.9312.92

    8.00

    16.77

    c1i

    z

    r

    c6i

    c4i

    c5i

    c3ic2i

    c1o

    c6o

    c4o

    c5o

    c3oc2o

    Mag

    net

    ic f

    ield

    [T]

    B

    z [m]

    z [cm]

    00

    0

    1

    20

    -1 2

    -20

    3

    10

    4

    -10

    5

    -30

    1

    2

    3

    4

    5

    Bz(on axis)

    Bz(on axis)

    Bz(off axis)

    Mag

    net

    ic f

    ield

    [T]

    B

    0

    1

    2

    3

    4

    5

    Decayvolume

    Decayvolume

    Si detector

    Filter

    4 m flight path is omitted here

    D. Počanić (UVa) Nab progress update 15 Dec ’10 17 / 27

  • Nab apparatus and installation

    Si detector prototypes (15 cm diameter)

    LANL group has full-size prototypes from Micron Corp.Full thickness t = 2 mm; dead layer thickness td ≤ 100 nm.Detailed testing currently under way at LANL.

    D. Počanić (UVa) Nab progress update 15 Dec ’10 18 / 27

  • Nab apparatus and installation

    Spectrometerinstallation:

    D. Počanić (UVa) Nab progress update 15 Dec ’10 19 / 27

  • Nab apparatus and installation

    Nab anti-magnetic shield (AMS)

       

    X

    Y 3020

    10010

    5

    30

    50

    20100

    Antimagnetic solenoids

    Inner solenoids

    Top view: Side view:

    Spectrometer magnet

    Nab: Passive AntiMagnetic Screen (WBS 4)

    Staging area for Nab would save FnPB beam time during AMS testing.

    D. Počanić (UVa) Nab progress update 15 Dec ’10 20 / 27

  • Nab apparatus and installation

    Nab:DAQ

    Det

    ecto

    r &

    pre

    amps

    PIX

    IE-

    16

    R5400n

    contr

    oll

    er

    PNChp

    30 kV

    rear

    I/O

    module

    FS725

    Rb freqP

    IXIE

    -

    16

    PXI

    crate

    PX

    I-P

    CI

    8336

    x8

    x16

    x16

    DAQ

    workstation

    Analysis

    workstation

    RAID

    storageD

    etec

    tor

    &

    pre

    amps

    PIX

    IE-

    16

    R5400n

    contr

    oll

    er

    PNChp

    30 kV

    rear

    I/O

    module

    PIX

    IE-

    16

    PXI

    crate

    PX

    I-P

    CI

    8336

    x8

    x16

    x16

    optical

    signal

    Isolation

    transformer

    power

    120 V

    Isolation

    transformer

    D. Počanić (UVa) Nab progress update 15 Dec ’10 21 / 27

  • Schedule, milestones

    Milestone Completion0.a Start of project Jul 20110.b Detector prototype detects protons Sep. 20110. Magnet design ready for bidding Sep. 2011

    1.a Order for magnet placed (design & option to build) Dec. 20111.b Acceptance of engineering drawings Dec. 20121.c Delivery of magnet Sep. 20131. Spectrometer magnet accepted Dec. 2013

    2.a Passive Anti-Magnetic screen: magnetic design finished Sep. 20122. Passive Anti-Magnetic screen built Dec. 2013

    3.a Detector test chamber available Mar. 2012[ . . . ]

    3.g Electrode system ready Mar. 20143. Main detectors work in spectrometer Jun. 2014

    4.a Shielding calculation for Nab accepted Jun. 2013[ . . . ]

    4.d Shielding and utilities ready Jun. 20144. Spectrometer ready for data taking Sep. 2014

    5.a Magnetometer calibrated Sep. 20125.b Magnetic field mapping system constructed Dec. 20135. Magnetic field of spectrometer mapped Mar. 2014

    6. Data acquisition Sep. 2015

    7. Data analysis Sep. 2016

    D. Počanić (UVa) Nab progress update 15 Dec ’10 22 / 27

  • Nab collaborators

    R. Alarcon1, L.P. Alonzi2§, S. Baeßler2∗, S. Balascuta1§, J.D. Bowman3†,M.A. Bychkov2, J. Byrne4, J.R. Calarco5, V. Cianciolo3, C. Crawford6,

    E. Frlež2, M.T. Gericke7, F. Glück8, G.L. Greene9, R.K. Grzywacz9,V. Gudkov10, F.W. Hersman5, A. Klein11, M. Lehman2§, J. Martin12,

    S. McGovern2§, S.A. Page6, A. Palladino2§, S.I. Penttilä3‡, D. Počanić2†,R. Rodgers2§, K.P. Rykaczewski3, W.S. Wilburn11, A.R. Young13.

    1Arizona State University 2University of Virginia3Oak Ridge National Lab 4University of Sussex5Univ. of New Hampshire 6University of Kentucky7University of Manitoba 8Uni. Karlsruhe/RMKI Budapest9University of Tennessee 10University of South Carolina11Los Alamos National Lab 12University of Winnipeg13North Carlolina State Univ.†Co-spokesmen ∗Experiment Manager‡On-site Manager §Graduate Students

    Home page: http://nab.phys.virginia.edu/

    D. Počanić (UVa) Nab progress update 15 Dec ’10 23 / 27

    http://nab.phys.virginia.edu

  • Additional slides Detector response

    Additional slides

    D. Počanić (UVa) Nab progress update 15 Dec ’10 24 / 27

  • Additional slides Detector response

    Electron energy response

    histoE_NEntries 85243

    Mean 1.263

    RMS 0.658

    Number of bounces

    1 2 3 4 5 6 7 8

    Yie

    ld

    10

    210

    310

    410

    510

    histoE_NEntries 85243

    Mean 1.263

    RMS 0.658

    Number of bounces

    above threshold(10 keV upper det.)

    (40 keV lower det.)

    all bounces

    histoEe300idealsum

    Entries 85243Mean 298.9RMS 9.131

    detected Ee [keV]0 100 200 300 400 500 600 700 800

    Yie

    ld

    1

    10

    210

    310

    410

    510

    histoEe300idealsum

    Entries 85243Mean 298.9RMS 9.131

    Ee in both detectors

    histoEe300escEntries 85243Mean 1.203RMS 12.1

    non-detected Ee [keV]0 50 100 150 200 250 300

    Yie

    ld

    1

    10

    210

    310

    410

    510

    histoEe300escEntries 85243Mean 1.203RMS 12.1

    Ee loss in escaped particles

    in dead layerescaped particle

    D. Počanić (UVa) Nab progress update 15 Dec ’10 25 / 27

  • Additional slides Detector response

    Detector response:

    Electron energy

    Note that detectors are made so big that radial walk wouldn’t be visible. We have to study the

    edge effect in more detail.

    I am quite embarrassed to admit that nothing of what I found is new. E.g, in [Abe93] the power

    of the backscattering suppression for electrons on silicon detectors, as well as the remaining tails,

    are shown well.

    Energy Green off Green ok Red off Red ok

    150 keV 1807 78082 5762 74127

    300 keV 2103 83140 3999 81244

    450 keV 2025 59592 2809 58808

    600 keV 1112 24865 1301 24676

    750 keV 71 989 83 977

    Tab. 1: Errors in electron energy

    reconstruction for different

    algorithms. “Off” is defined as

    being farther away than 5 keV

    from the nominal energy.

    I summarize the results for other electron energies in the Table 1. The electron response spectra

    look similar (see Fig. 4) and can be described analytically with a fit which assumes that some

    electrons (a relative amount of about 1 %) are detected with an energy too high by 30 keV, and

    some electrons (a relative amount of 7·10-5

    ·Ee·keV-1

    , so 2.1% at 300 keV) are in an exponential

    tail with a “growth constant” of 0.13·Ee). The analytical function describes the detector response

    sufficiently good for a further study of the sensitivity of Nab to the non-perfect detector response

    for electrons.

    Fig. 4: Detector response functions for electrons with energies which are multiples of 150 keV. The “data points”

    are from the simulation, and the lines show our analytical model.

    A consequence for Nab is that the determination of a (and b) is affected by the knowledge of the

    low energy tail. To study the effect on the a determination, I used the analytic model for Nab, in

    which the magnetic field is simplified so that the proton TOF can be given as an analytical

    function. The model includes the neutron beam width, but computes protons only on axis and

    omits the electrostatic acceleration. Fig. 5 shows the 1/TOF2 response for protons with different

    energies.

    Proton TOF

    10

    100

    1000

    10000

    100000

    0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

    1/TOF^2 [us^-2]

    Yie

    ld

    Ee = 75 keVEe = 75 keV, Ee responseEe = 225 keVEe = 225 keV, Ee responseEe = 375 keVEe = 375 keV, Ee responseEe = 525 keVEe = 525 keV, Ee responseEe = 675 keVEe = 675 keV, Ee response

    Fig. 5: 1/TOF

    2 spectra for protons. The solid lines show the 1/TOF

    2 spectra for perfect electron detection. The

    dashed lines show the modification due to the low energy tail in the electron energy response. The ideal shape (sharp edges, slope of top line proportional to a) is modified by the TOF

    response function, and the neutron beam width. In particular, the TOF response leads to a tail at

    the low energy (low 1/TOF2) side. The electron energy response leads to tails at the other side,

    too. The high energy tail could serve to verify the detection function, this is not studied.

    There is some structure in the tails which are probably due to the rather coarse binning for the

    electron energies. The main result is that the fitted value for a is sensitive to the size of the tail,

    and an uncertainty the in the relative amount of electrons in the tail of 2% (out of the couple of

    percent of electrons which are in the tail) would lead to ∆a/a ~ 10-3

    .

    Fig. 6: Camel hump curve, showing

    the time difference (defined as the

    impact time on the upper minus the

    impact time on the lower detector)

    between hits in different detectors.

    Furthermore, the event reconstruction goes wrong if our timing resolution is not good enough to

    determine the earlier detector. This is only important for observables for which the detector

    being hit first is significant. In Fig. 6, we show the time difference between different hits in the

    detectors. The black line shows cases in which the lower detector is hit first and the upper

    D. Počanić (UVa) Nab progress update 15 Dec ’10 26 / 27

  • Additional slides Detector response

    histoETOF300du

    Entries 5134Mean 33

    RMS 6.017

    TOF [ns]-200 -150 -100 -50 0 50 100 150 200

    Yie

    ld

    1

    10

    210

    310

    histoETOF300du

    Entries 5134Mean 33

    RMS 6.017

    Camel hump curve

    lower det hit first upper det hit first

    TOF = time of upper det. hit − time of lower det. hit

    D. Počanić (UVa) Nab progress update 15 Dec ’10 27 / 27

    n-decay program at FnPBOverall motivation and goalsCKM matrix: VudBeyond Vudnon-V-A interaction termsFierz interference termSecond class currents

    Comparison w/other experimentsNab measurement principlesNab apparatus and installationSchedule, milestonesNab collaboratorsAdditional slidesDetector response