13
design machine group University of Washington Seattle WA USA 98195-5720 http://depts.washington.edu/dmachine Digital Media and the Language of Vision Bennett Neiman and Ellen Yi-Luen Do In 'Media and Design Process': proceedings of ACADIA (Association for Computer Aided Design in Architecture) 1999, Snowbird, Utah Ocober 29-31, 1999 pp70-80

Digital Media and the Language of Vision

Embed Size (px)

Citation preview

Page 1: Digital Media and the Language of Vision

design machine groupUniversity of Washington

Seattle WA USA 98195-5720http://depts.washington.edu/dmachine

Digital Media and the Language ofVision

Bennett Neiman and Ellen Yi-Luen Do

In 'Media and Design Process': proceedings of ACADIA(Association for Computer Aided Design in Architecture)1999, Snowbird, Utah Ocober 29-31, 1999 pp70-80

Page 2: Digital Media and the Language of Vision

Digital Media and the Language of Vision

Bennett R. NeimanRoger Williams Uiversity, USA

Ellen Yi-Luen DoUniversity of Washington, USA

In ACADIA '99 Media and Design Process, pp 70-80, Salt Lake City, Utah

Abstract

Digital media are transforming the practice and teaching of architectural design. Information technologies

provide us not only better production and rendering tools but also the ability to model, manipulate, and to

see design in new ways. This paper outlines a thirteen-step methodology in a design seminar that teaches

design students how to see, think, and form space using both digital and physical media.

1. Introduction– Design in the Digital Age

The development of digital media not only provides new production methods such as computer rendering

and modeling, but also expands our abilities to create, to see, to express and compose architectural space.

We are interested in how digital media and physical material can be used interchangeably as instruments in

a design environment. The question we are asking is: can one develop a rigorous design process as a

systematic approach or interplay between space and light? We view design as a laboratory for experiments,

interpretations and play. Our investigation focuses on developing teaching methods for seeing, thinking and

making of spatial design. Several experimental exercises stimulate students’ intuitions and analytical

observation skills. We use this systematic approach to explore how architectural space can be informed and

perceived by using types of media that are significantly different in their nature.

A previous work, “Between Digital & Analog Civilizations” (Neiman and Bermudez 1997), described a

workshop that employed both analog and digital media1 in a space design exercise. The media used were

tracing paper, ink, and various modeling materials along with scanning, video capture, and image

processing technologies. The workshop comprised a five-stage transformation design process alternating

between making physical artifacts and computer image manipulations. The workshop intentionally did not

use any CAD software as a strategy to break down students’ preconception of computer technologies and to

shift the focus to an alternative digital-analog dialogue depicting architectural space. The present effort

follows this model of design, augmenting it with new devices such as the use of modeling software and

1 We use “analog” to refer to physical artifacts and the physical representation of design, such as drawing, sketching,physical model making. By “digital” we mean using information technologies, such as scanning, video capture, imagemanipulation and 3D modeling in computers.

Page 3: Digital Media and the Language of Vision

physical relief compositions. The result is a thirteen-step design method that uses techniques involving both

digital and analog design media. In the following, Section 2 reviews precedents of systematic approaches

toward design from the Bauhaus teachings. Section 3 describes the thirteen exercises with examples of

student work. Finally, Section 4 summaries our approaches to using computers as a tool for composing

architecture.

2. Bauhaus Precedents – Manipulation and Analysis of Form

Our systematic approach follows the tradition of the Bauhaus principles of craftsmanship and visual

perception. Below we briefly review works exploring the use of light, color and texture in visual arts design

such as Albers’ glass collage assemblage and Moholy-Nagy’s cameraless photogram. We also draw

references from Kandinsky’s diagrammatic analysis of still life drawings and Kepes’ idea of the language

of vision. We review these methods of design thinking, and the background of making physical artifacts, to

teach students how to achieve visual and spatial effects using digital media.

The Bauhaus teaching philosophy centered on the study and use of materials. Focusing particularly on

color, light, texture and materials, Josef Albers explored the assemblage of found materials (e.g., pieces of

glass with sandblasting, paper and color coating) to achieve improvisational dynamic compositions of form

(Albers, Weber and Solomon R. Guggenheim Museum. 1988). Albers used glass and colors to experiment

with a transformation process to make the unexpected. He picked up discarded glass fragments from

dumpsters, arranged and rendered them with color and lighting to make art pieces (Albers, Solomon R.

Guggenheim Museum., Peggy Guggenheim Collection. and Josef Albers Foundation. 1994). Albers’ idea

of the studio is a laboratory or workshop where people discover and invent artifacts through seeing,

exploring and situated thinking.

Laszlo Moholy-Nagy’s photogram pictures employed a moving light source as a creative agent to record

images of nature (Moholy-Nagy 1969). He used the photogram – a cameraless photo – to record the

temporal movements of light. This technique was derived from a functional and rational attempt to paint

the penetration of lights through planes. The black, white and gray values of the photograms revealed the

spatial quality constructed by traces of light. Moholy-Nagy used these “light-compositions” or “light-

phenomena” to help us see the world with a new vision. His Light-Space-Modulator is a kinetic sculpture

that produces “light chronology” with metal and glass parts. Moholy-Nagy considered his film (Light Play

Black-White-Gray) of the light reflections and projections produced by this light machine more important

than the device itself (Moholy-Nagy 1969) because it captured the motions and rhythm of light. Moholy-

Nagy’s optical synthesis and production of photogram and light display documents space with

superimpositions of objects and interplay between light and shadows.

Page 4: Digital Media and the Language of Vision

Wassily Kandinsky developed a visual language that consists of point, line and plane (Kandinsky 1947). He

considered the spirit of art to lie in the comprehension and “vision” of element movements and silent

melody in the art form (Kandinsky 1947). He developed a style of analytical painting that breaks a still life

into diagrammatic lines to express tension, geometry, balance, and repetition. These analyses illustrate the

concepts of balance, rhythm and motion in graphic forms (Poling 1986). These schematic diagrams provide

a method for people to examine and analyze the implications of element placements in a scene. This

method transforms the viewing of pictures from natural depiction to diagrammatic analysis through a

process of dynamic discoveries.

Gyorgy Kepes’s Language of Vision (Kepes 1944) provides a primer for learning basic design principles.

Kepes argued that the perception of a visual image needs a process of organization. The experience of an

image is “a creative act of integration” (p. 13). He explained that a two-dimensional picture has a spatial

field because the different positions of the elements in the picture plane create a dynamic form of

movement. A photograph, a painting, or a pencil sketch, all represent the manipulation of objects in space.

The play of transparency, superimposition, lines, colors and light all contribute to this sense of space.

Kepes further argued that one can derive visual awareness through the process of examining and making

spatial configurations of objects. He also stressed the value of experimenting with artificial light sources to

model the experience of an environment or a space.

With these precedents, we developed a 13-step methodology that explore the concerns and techniques of

making and exploring form through the use of light, motion, color and transparency.

3. Digital Language of Vision– a 13-step Methodology

Following the Bauhaus teaching philosophy and the “Digital and Analog”example (Neiman and Bermudez

1997), we focus on the question of how one can incorporate the computer and digital media into traditional

design techniques. Our focus is the development of pedagogy for experimentation and a language of

evaluation for the techniques themselves. We extend the conversation between analog and digital to be a

design exercise using different materials. We report our design teaching as an example of how creative

vision can be expanded through digital tools.

This digital language of vision methodology is developed in a process of thirteen sequential stages,

described below in detail. The designer begins by photographing a series of dynamic scenes, and printing

them on transparent films. These semi-transparent planes are strategically combined and captured by means

of video cameras (the analog spatial manipulation device). Video frames are captured and the digital

images are manipulated and diagrammed using graphic software. The resulting images are then

manipulated in a computer modeling program (the digital spatial manipulation device) to represent a

Page 5: Digital Media and the Language of Vision

combination of planes using light, color and transparency to recreate the effect of spatial quality depicted

from the transparent film.

Exercise 01. Analog Space Capture – 35 mm photography

In the first exercise the students form groups to investigate and photograph the spatial nature of two distinct

kinds of places (the subject matter varies) that illustrate the ideas of “space within a space”. Students are

instructed to pay special attention to capture scenes of places that have a contrasting quality of foreground

and background (or inside and outside) separated by a partially or totally opened threshold such as a

window or a door. This exercise requires students to use a traditional 35mm camera and their eyes.

Figure 1. Analog space capture: photographs of space within a space.

A person’s perception of a physical space comes from experience. Asking students to capture images of

space in their everyday life forces them to examine their experience closely. They learn to use the camera

as a device to capture and flatten a representation of spatial qualities. In this stage, design is the

transcription of a spatial experience by selective framing and interpretation of what one sees.

Exercise 02. Analog Spatial Manipulation – plexiglas and acetate film

Equipped with these photographs of space, each group then created a “spatial manipulation device” using

opaque, translucent, and transparent materials. Photographs (five captures from each space for total of ten)

are developed and printed onto clear acetate films to create transparency and spatial ambiguity. Each group

also fabricates five 1/2” thick plexiglas panels to serve as a playground for the acetate images. This

exercise engages students in material management and photographic craftsmanship.

Page 6: Digital Media and the Language of Vision

Figure 2. Analog spatial manipulation device: composite of transparent material with photographic images.

The thickness of the plexiglas creates a spatial quality that allows students to see images with overlapping

planes. Images with spatial qualities are transferred from photographic captures to transparent surfaces to

create a conceptual space for media experimentation. In this stage, design is the transformation and

construction of instruments prepared for their roles in a digital performance in the next stage.

Exercise 03. Digital Performance – scanner and imaging software

In this stage students scan their experiments and explorations of these transparent, physical architectonic

images. They place acetate films on two sides of plexiglas panels to display the spatial concepts extracted

from the photographs. They juxtapose, move, rotate and superimpose their image transparencies until they

discover interesting and suggestive spatial qualities. This exercise requires students to use a digital scanner

with imaging software to document their experiments.

Figure 3. Digital performance: scanning the model configurations.

With conceptual reference to the original space that was photographed, a new space is created by physical

simulation and documented into digital media. The acetate films act as armatures for the application of

transparent acetate images derived from the photographic captures of spatial qualities. These images

become layers of information that interpret the situations of the physical space. One can access and

evaluate a space by a combination of careful observations and playful discoveries. In this stage, design is

the perceptual manipulation of image composition and arrangement with spatial ambiguity.

Exercise 04. Analog Performance – video camera and dynamic juxtapositions

This exercise employs an analog medium (a video camera) to document the models in various positions and

transformations. While some students move and compose configurations of the plexiglas and acetate films,

other students explore positioning the video camera in various viewpoints and lighting conditions to record

the sequence, transitions and spatial manipulations. This exercise encouraged students to search for

unexpected spatial viewpoints, challenging and provoking their spatial perception abilities.

Page 7: Digital Media and the Language of Vision

Figure 4. Analog performance: video recording of the exploration of model configurations.

The choreography of the analog model compositions is recorded by video and the physical space of the

model reappears in a flattened analog medium, videotape. The camera lens acts as a filter for observers’

intentions and evaluations of the spatial quality in the physical model. In this stage, design is the

documentation of change and movement of different viewpoints in architectural space.

Exercise 05. Digital Space Capture – frames grabbed from videotape

With a digital frame grabber, students examine the interpretive potential of the video image as an

architectural design tool (space, light, shadow, material, and texture). Students perform a frame by frame

analysis of the videotaped analog model performance. They evaluate and select several spatially

provocative still frames and capture them into digital media, saved as image files. They present their

selections of images in class and discuss their discoveries.

Figure 5. Digital space capture: still images of spatial quality from videotapes.

Space is now represented in digital, experiential still frame. In this stage, design is the critical selection of

the captured choreography from the video performance. Each captured image is a new interpretation of

spatial meaning from the model.

Exercise 06. Digital Vocabulary Distillation – Photoshop

Starting from this stage, students are required to develop architectonic vocabularies of their own. Each

student generates a video vocabulary by isolating, selecting, and cataloguing a series of significant

Page 8: Digital Media and the Language of Vision

fragments or parts from the analog space photos, the spatial manipulation device plates or the digital space

captures. Students were required to extract a variety of elements, shapes, textures, and colors by following

the existing contours found in the image. Image processing software (Photoshop) is required for this

exercise.

Figure 6. Architectonic vocabularies (right) are distilled from the video captured images (left).

Students analyze and discover distilled architectural elements through examination of the spatial

performance on the videotape. In this stage, design is a hybrid of analysis and synthesis of available visual

material existed in the spatial documentary.

Exercise 07. Radical Reconstruction – image manipulation in Photoshop

At this stage, students used image manipulation software to explore and enhance spatial qualities of the

digital vocabulary they derived from the video capture. They explore different parameters of color hues,

opacity and various kinds of graphic filters such as blur, mosaic, and sharpening. They edit and transform

these spatial elements. Digital media is used to enhance the captured images so they straighten the inherent

spatial qualities they already convey. Simulation re-forms space.

Figure 7. Radical reconstruction enhances and transforms spatial qualities from the digital vocabulary.

The capability of image manipulation in digital media enables a designer to explore endless possibilities of

concepts and aesthetics. Simple operations such as repetitions, distortions, rotations and inversions help

transform the captured video material into a new, alternate spatial reality. In this stage, design is the

creation of new space by extracting spatial qualities from still images with digital manipulation.

Page 9: Digital Media and the Language of Vision

Exercise 08. Analog Schemas – extracting diagrams

In this exercise students create a series of critical and analytical diagrams from selected “Radial

Reconstruction” images. They overlay tracing paper on top of their source images to study the geometry,

tension, and suggestive schemas of the pictures. They then make diagrammatic compositions of these

geometric variations such as grids and structures, line weights (thin or thick) and line types (solid, dashed,

dotted), line forms (curved, angled or straight) and object features (line, planes, color zones). Pen and paper

is the medium for diagrammatic thinking and analysis.

Figure 8. Analog schemas showing analytical diagrams of the images (top left: source image, bottom left: figure-ground schema; left to right, geometric grid, tension diagram, and interpretive representation)

Geometric analysis transforms space. The seeing and making of schematic diagrams helps facilitating the

understanding and interpretation of the spatial construct embedded in the pictures. The process of

diagramming brings the essence of spatial quality into the foreground of representation. In this stage,

design is the understanding of the line force, object dynamics and the dramatic qualities in the forms.

Exercise 09. Digital Tracings

After the exercise of hand tracing with analog material (paper), students then experiment with digital

tracings in modeling software. They import their radical reconstruction images and schematic diagrams as

underlays in the “draft mode” of Form•Z. They create closed shapes by selectively tracing elements from

the underlay pictures. They draw different diagrams in different layers and line colors to represent different

systems. Finally, they explore composites of these layers (grid, tension, interpretive, schema) to create new

images.

Page 10: Digital Media and the Language of Vision

Figure 9. Underlay picture (left) is traced in a modeling program to create digital tracing (right).

Selective line reinterpretation of the composite and the editing processes create formal ambiguities. At this

stage, design is the selective representation and assimilation of lines to create new digital shapes.

Exercise 10. Digital Templates – Boolean shape operations and vector tracings

Students in this stage explore further vector manipulation of the tracings using Boolean operations (Union,

Difference, and Intersection) in Form•Z. By copying and pasting between layers and employing different

editing operations, students create a series of variations on the previous studies. They use digital modeling

to generate unique template diagrams.

Figure 10. Digital templates are created with vector manipulation and Boolean operations (e.g., union, difference,intersection) and editing (copy, paste, add, subtract).

A template diagram is a collection of vector shapes. Through additive and subtractive processes, formal

possibilities are expanded. In this stage, design is a framed image of shape assortments in a two-

dimensional space.

Exercise 11. Digital Reliefs – adding dimension to the flat diagrams

Based on the digital templates, students then explore making three-dimensional objects from the two-

dimensional shapes. This exercise teaches students to construct a digital relief model by systematically

applying thickness and height to different shapes in the flat templates. Students explore the parameters of

different attributes for objects in the modeling software and generate one-point perspective, hidden line

rendering views of the reliefs.

Page 11: Digital Media and the Language of Vision

Figure 11. Digital 3D reliefs constructed in a modeling program.

A digital projection of the templates transforms the exercise into a beginning three-dimensional study. The

extrusion of linear forms provides a transitional study between the two-dimensional and three-dimensional

worlds. Space is recreated in the digital realm. At this stage, design is the creation of three-dimensional

objects derived from analytical, diagrammatic templates.

Exercise 12. Digital Spatial Manipulation – exploring locations and viewpoints

Once objects are created, their locations can be reconsidered. In this exercise, students use the modeling

software as a digital manipulation device to explore locations of the digital reliefs in space. Students also

apply transparency, opacity, and translucency to these objects. They generate one-point perspectives of

wire frame views and hidden line or texture rendered views. Students explored framing images from

different viewpoints in the space.

Figure 12. Spatial quality and views are explored in the 3D digital manipulation environment (Form•Z).

Reliefs from the previous study are arranged in three-dimensional space to generate perspective views

whose configuration is based on the interpretive transformation of the relief studies. Space is accessed and

Page 12: Digital Media and the Language of Vision

re-evaluated through the intentional screen of a computer. At this stage, design is the arrangement and

composition of objects in virtual space.

Exercise 13. Analog Extrapolation

The final exercise brings students back to the physical world. Students make physical models to reconstruct

the space they created using digital media. With materiality, students infer and invent new architectural

space by varying the projection, extension or expansion of the image into physical construct.

Figure 13. Analog extrapolation – physical relief models of the 3D digital space.

From the views generated by the digital spatial manipulation device, an analog model is constructed to

reinterpret the spatial nature of the digital model, and attempt to re-create the spatial effect generated by the

computer. Space is interpreted from a digital representation and manifested into physical space. At this

stage, design is the happy marriage of both analog and digital media re-integrated and represented back to

the real world.

4. Discussion and Conclusion

The projects and methods described above are not intended as a completed work, but serves as sketches for

the development of a teaching method. Most importantly, the studies act as vehicles for testing the sketch

design possibilities of digital combined with analog media. The student projects shown investigate the

manipulation of form and space with an iterative use of digital and analog media. Our methodology of a

studio is a laboratory, a workshop of design where students can discover and invent architectural space.

Ultimately, the pedagogy is about how student can learn to see, to project, to manipulate, and to design.

The experiments involve photographic capture and physical craftsmanship, digital manipulation of two-

dimensional images and construction of three-dimensional geometry.

We argue that for digital media to be useful and effective in design teaching, it should converse with

tradition, analog design media. The conversation should be interactive, reciprocal, deliberate (controlled

and based on an established pedagogy), cyclical, recordable, and reproducible. The experiment needs to be

Page 13: Digital Media and the Language of Vision

explorative, in which play is followed by interpretation. We found that by using these elements in the

process of design, students become engaged and enthusiastic.

This method has been applied in undergraduate courses conducted over several semesters including a

digital design seminar and an upper level design studio. Each of the thirteen exercises roughly corresponds

to a one-week workload. The curriculum is an example of integrating the computer into studio in an

effective manner, in aiding design without dominating or ignoring successful analog methods. Students

explored the poetic potential of using computers in a spatial form making exercise, and the digital media

became a design instrument. Photographic images, collage, and assemblage became the potential sites for

architecture and design. Students learned that computers can be used for more than just drafting and

modeling, but as a vehicle for developing and expressing architectural ideas. The design strategies, tactics

and techniques stimulate their intuition and reasoning abilities. Furthermore, our 13-step methodology

provides a platform to guide students through a process that they can learn to see, to appreciate and to

create spatial qualities by manipulating different media. Our methodology is a carefully thought out

exercise with digital and analog media as a vehicle for teaching the language of vision.

5. References

Albers, J., Solomon R. Guggenheim Museum., Peggy Guggenheim Collection. and Josef Albers

Foundation. (1994). Josef Albers glass, color, and light. New York, N.Y., Guggenheim Museum.

Albers, J., N. F. Weber and Solomon R. Guggenheim Museum. (1988). Josef Albers : a retrospective. New

York, Solomon R. Guggenheim Foundation.

Kandinsky, W. (1947). Concerning the spiritual in art, and painting in particular 1912. New York,

Wittenborn.

Kandinsky, W. (1947). Point and Line to Plane. New York, Solomon R. Guggenheim Foundation for the

Museum of Non-Objective Painting, Dover Publications (1979).

Kepes, G. (1944). Language of vision. [Chicago], P. Theobald.

Moholy-Nagy, L. (1969). Painting, photography, film. Cambridge, Mass. M.I.T. Press.

Moholy-Nagy, S. (1969). Moholy-Nagy: experiment in totality. Cambridge, Mass.,, M.I.T. Press.

Neiman, B. and J. Bermudez (1997). Between Digital and Analog Civilizations: The Spatial Manipulation

Media Workshop. ACADIA 97, Representation and Design, Cincinnati, Association of Computer Aided

Design in Architecture.

Poling, C. V. (1986). Kandinsky's Teaching at the Bauhaus. New York, Rizzoli.