15
© A.‐F. Miller 2010 page 1 Diffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or if the viscosity is known it can reveal the molecular weight or hydrodynamic radius of molecules in solution. If the solvent is water, it provides a built-in diffusion standard. Other solvents whose diffusion coefficient is known can equally well be used, although this example uses water. This determination is broken into three portions: collecting the NMR data, -2- analyzing the results, -3- calculating the diffusion coefficient. The theory underlying equations used can be found in Stejskal and Tanner's original papers or in Pregosin, Martinez- Viviente and Kumar (2003) Dalton Trans. 2003, 4007-4014. Collecting the data In one workspace, collect a beautiful 1H1D and calibrate a pw90 for your sample. Also. it helps to know the T1 approximately. In a second workspace, load the parameter file wetPGEinvAFM. As shown on Figure 2 , this is set up to run the pulse sequence wetPGEinv_afm, which is a Pulsed Gradient Echo sequence incorporating the possibility of wet solvent suppression (see the handout on that topic). As shown, the experiment is not implementing the wet solvent suppression capability [1] (In Acquire>Wet, WET is turned off). The first pulse [2] is a 90° excitation pulse that brings all magnetization into the XY plane. A field gradient [3] is applied for a short time (2 ms here) causing spins at different heights in the NMR tube to get out of phase from one another (dephasing). Next, there are a pair of 90° pulses applied along the same axis [4]. These can be thought of as two halves of a 180° pulse, for this experiment. Thus, the experiment can be regarded as a spin echo with gradients in the two flanking delays [3] and [5]. However in between the two central pulses, a delay is allowed during which molecules will diffuse within the sample tube [6]. Small molecules that diffuse fast may move substantially during this time and therefore end up at a different height in the sample. The second half‐180° returns magnetization to the XY plane where the second gradient [5] can refocus the dephasing produced by the first gradient. However refocussing will only perfect for molecules that are at the same position in the tube for both gradients, because only they will experience the same field strength. The further a molecule diffuses (on average) the less magnetization is refocussed. Thus, small molecules with high diffusion coefficients will loose more intensity than larger molecules with low diffusion coefficients. Intensity can also be lost due to relaxation. In order to distinguish between losses to relaxation vs. losses due to diffusion, we will repeat the experiment with a series of different gradient pulse strengths. Losses due to relaxation will be constant whereas losses due to diffusion will increase in proportion to the square of the gradient strength.

Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

©A.‐F.Miller2010 page 1

DiffusionmeasurementviatheGradientEcho

Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or if the viscosity is known it can reveal the molecular weight or hydrodynamic radius of molecules in solution. If the solvent is water, it provides a built-in diffusion standard. Other solvents whose diffusion coefficient is known can equally well be used, although this example uses water. This determination is broken into three portions: collecting the NMR data, -2- analyzing the results, -3- calculating the diffusion coefficient. The theory underlying equations used can be found in Stejskal and Tanner's original papers or in Pregosin, Martinez-Viviente and Kumar (2003) Dalton Trans. 2003, 4007-4014.

Collectingthedata

Inoneworkspace,collectabeautiful1H1Dandcalibrateapw90foryoursample.Also.ithelpstoknowtheT1approximately.

Inasecondworkspace,loadtheparameterfilewetPGEinvAFM.

AsshownonFigure2,thisissetuptorunthepulsesequencewetPGEinv_afm,whichisaPulsedGradientEchosequenceincorporatingthepossibilityofwetsolventsuppression(seethehandoutonthattopic).Asshown,theexperimentisnotimplementingthewetsolventsuppressioncapability[1](InAcquire>Wet,WETisturnedoff).

Thefirstpulse[2]isa90°excitationpulsethatbringsallmagnetizationintotheXYplane.Afieldgradient[3]isappliedforashorttime(2mshere)causingspinsatdifferentheightsintheNMRtubetogetoutofphasefromoneanother(dephasing).Next,thereareapairof90°pulsesappliedalongthesameaxis[4].Thesecanbethoughtofastwohalvesofa180°pulse,forthisexperiment.Thus,theexperimentcanberegardedasaspinechowithgradientsinthetwoflankingdelays[3]and[5].Howeverinbetweenthetwocentralpulses,adelayisallowedduringwhichmoleculeswilldiffusewithinthesampletube[6].Smallmoleculesthatdiffusefastmaymovesubstantiallyduringthistimeandthereforeendupatadifferentheightinthesample.Thesecondhalf‐180°returnsmagnetizationtotheXYplanewherethesecondgradient[5]canrefocusthedephasingproducedbythefirstgradient.Howeverrefocussingwillonlyperfectformoleculesthatareatthesamepositioninthetubeforbothgradients,becauseonlytheywillexperiencethesamefieldstrength.Thefurtheramoleculediffuses(onaverage)thelessmagnetizationisrefocussed.Thus,smallmoleculeswithhighdiffusioncoefficientswillloosemoreintensitythanlargermoleculeswithlowdiffusioncoefficients.Intensitycanalsobelostduetorelaxation.Inordertodistinguishbetweenlossestorelaxationvs.lossesduetodiffusion,wewillrepeattheexperimentwithaseriesofdifferentgradientpulsestrengths.Lossesduetorelaxationwillbeconstantwhereaslossesduetodiffusionwillincreaseinproportiontothesquareofthegradientstrength.

Page 2: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

©A.‐F.Miller2010 page 2

InAcquire>Acquisition(Figure3),enteryourvaluesforsw[1],at[2],d1[3]pw90[4]andtpwr[5]basedonyourbeautifulcalibrated1H1D.(Toenter,tofyouwillhavetogotoAcquire>Channels.)Notethatthispulsesequenceresemblesthesimple1Dpulsesequenceinthattheexcitationpulseisnotnecessarilysetto90°.Checkthevalueofthe'firstpulse'[6]andchangeittoyourpw90value.(Youcanalsodothisbytypingpw=pw90tomakeallthepulses90°pulses.Checkthe'Sequence'[7]displayandconfirmthatallthepulselengths[8]havethevalueofyourpw90.Alsorecallthattherelaxationdelayd1shouldbeappropriateforyoursample,(eg.d1≈1.3*T1).

Thediffusiondelayd5[9]shouldbeshorterthanT1,butwilldependprimarilyonthediffusioncoefficient.Wewillchooseitbasedonatestrun(morebelow).

Firstsetgzlvl=0bytypinginthecommandline[1](Figure4).WedonothaveaGUIsetupforthePGE‐specificparametersyet.Toconfirmthatyourvaluehasbeenaccepted,clickon'Sequence'againandseethattheheightofthegradientpulsesisnowzero[2].Also,viewthePGEparametersetbygoingtotheAcquire>Overviewpanel[3],[4].(Ihadd5=.5andgradientpulsedurationsof0.1secondswhenthisscreenshotwastaken.)

Collectaspectrumandcorrectthephase.Set'FutureActions'forwhentheexperimentfinishesto'wftdcds'toweightandFouriertransform(=wft),levelthespectrum(driftcorrect=dc)anddisplay(=ds).

Nowactivatethegradientpulsesagainbytypinginanarrayofvaluesforgzlvl(Figure5).Becausewewillwantthevaluesofgzlvl2tobeevenlyspaced,wewillenterourlistofgzlvlvaluesbyhandinsteadofusingthe'Arrays'button.Type(forexample)gzlvl=100,600,1100,1500,1800,2000[1].Youwillnotbeallowedtouseavaluelargerthan2047,inordersafeguardtheinstrument(2047isthemaximumonGORT,largevaluesapplyforT2JandT1J,whichhaveolderhardware.)

Click'ShowTime'[2],chooseanumberofscansthatwillgiveyousignal‐to‐noiseofatleast20:1(eg.nt=8).Acquire[3].

Fouriertransformallyourspectraanddisplaythemside‐by‐sideeitherusingthebuttonsinthe'ArrayedSpectra'panelontheleft‐hand‐side[4]andarrayinghorizontally[5],orbytypingdssh(displayspectrastackedhorizontally).Youseethatthestrongergradientsresultingreatersignallossforthesameamountofdiffusioninallcases(allcasesusethesamevalueofd5.)

Analyzingtheresults

Theintensityofthesignal,I,dependsonthegradientstrengthGanddiffusionconstantDasfollows,

ln IIo

= − γδ( )2G2 Δ −

δ3

D

Page 3: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

©A.‐F.Miller2010 page 3

whereIoisthesignalintensityobtainedfromthesameexperimentwhenthegradientstrengthiszero.γisthegyromagneticratioofthenucleusbeingobserved(for1Hitis4258Hz/G)andδandΔaretimeintervalsinthepulsesequence(Page6).

δ=gt

Δ=gt+d2+2pw+d5+d0

Rearrangingtheequation,weget:

ln(I)‐ln(Io)=‐(γδ)2G2(Δ‐δ/3)D=‐(γδ)2(Δ‐δ/3)DG2

ln(I)=ln(Io)‐(γδ)2(Δ‐δ/3)G2D

Predictsthatln[I]vs.G2shouldbeastraightlinewithaslopeof‐(γδ)2(Δ‐δ/3)D.

Wedon'tyetknowwhatourGvaluesare(seebelow),butweknowtheyareproportionaltogzlvl,sowepropose:G=grad_calxgzlvl,wheregrad_calistheconversionfactorfromVarianunitstoG/cmgradientstrengths.Takingthatintoaccountwepredictthataplotofthenaturallogofsignalintensity,ln[I]vs.gzlvl2shouldbeastraightlinewithaslopeof‐(γδ)2(Δ‐δ/3)grad_cal2D.

Fortheexampleofwater,anactualplotofln(amplitude)vs.gzlvl2isshowninFigure7.Thisshowsthatwedoindeedgetastraightlinewithanegativeslope.

Toexecutethisanalysisonyourowndatayouwillneedtoextractthepeakintensitiesfoeeachpeakineachspectrum.Oncethedatacollectioniscompletedisplaythefirstspectrumbytypingtheds(1)command.(Figure8).GototheProcess>Integrationpanel[1],activateintegraldisplay[2].Select'clearintegrals'[3]andthen'interactiveResets'[4].Nowplaceresetsoneithersideofeachpeakbyclickingwiththeleft‐mousebeginningontheleftsideofeachsignal.

Nowtypebctousetheregionsnotselectedasabasisforbaselinecorrection.Toapplythesamebaselinecorrectiontoeachoftheotherspectrainyourarray,typeds(2)bcthends(3)bc,thends(4)bc,etcuntilallthespectrahavecorrectedbaselines[5].

Toseeallyourspectraoneaboveanother,typedssa(Figure9)

Nowwewanttoextractpeakamplitudesforeachpeakineachspectrum.Displaythefirstspectrumbytypingtheds(1).commandresults.InProcess>Display(Figure10),selectthethresholdicon[1].Thenclickon'findpeaks'[2]toshowthemwiththeirppms.Figure11showstheresult.Makeanoteofwhichpeaksareofinterest.

Page 4: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

©A.‐F.Miller2010 page 4

Togetamplitudesforthese,gotoProcess>Cursors/LineLists(Figure12).ClickonDisplayLineList[1],checkthatyouseethepeaksyousawinfindpeaks.ThenclickonFindPeaksinArray[2].

Scrolldownwiththeright‐handscrollbar[3]torevealahorizontalbottom‐of‐windowscrollbar[4].Scrollthatallthewaytotherighttorevealtwoverticalscrollbars[5],theinneroneofwhichallowsyoutoseethepeakamplitudesforeachofyourlinesineachspectrum.

Usethemousetoselectallthedata,clickCtrl'c'tocopyit.(Figure13)UnderApplications>Office[1]gotoOpenOffice.org>Writer

Inthewindowthatopens,clickCtrl'v'topasteinallyourdata.Savethetextfilewithausefulnameinausefullocation,andcloseit.Transferthisfiletoyourowncomputerandreopenitinaspreadsheetpackagesuchasexcel.Keepthedataforagivenpeaktogether[2],andcopyittoacolumninyourspreadsheet.

Dothisforeachpeakthatinterestsyousothatyouhaveonecolumnforeachpeak[2]nexttocolumnsforgzlvlangzlvl2valuesusedineachspectrum[1](Figure14).

Youwillthenneedcorrespondingcolumnsforthenaturallogsofthepeakamplitudes[3].Plotthesevs.thesquareofgzlvl(Iusedgzlvl/100allsquaredinordertonothavehugenumbers)[4].

Ifyoursampleemployswaterasthesolvent,youcaneasilyuseinternalwaterasyourcalibrationbecauseitsdiffusioncoefficientisknown(below).Ifnot,weassumethatyouareusingapreviously‐determinedvalueforthecalibrationcoefficientgrad_cal.Alternately,youcanlookupthediffusioncoefficientofyoursolventatyourtemperature,anduseitinthesamemanneraswaterisusedbelow.

NowgenerateanXYchartorplotoftheln(amplitudes)vs.gzlvl2values(Figure15),andobtaintheslopesofallthelines.Ifthelinesarenotgenuinestraightlines,thenyourdatadonotfitthemodel.Re‐examineyouranalysis,yoursample,yourpulsesequenceetc,butdonotproceedunlessthelinesreallyarestraightlines.

Usingyourvaluesof‐(γδ)2(Δ‐δ/3)grad_cal2(beloworpriorcalibrationofgrad_cal),usetheslopestocalculateDforeachofthemoleculesinthesample,basedontheslopesobtainedfromsignalsfromeachmolecule(Figure16).(Recallthatslopedividedby‐(γδ)2(Δ‐δ/3)grad_cal2=D.Intheexamplesamplethereweretwospeciesdissolvedinwater.Onewasfoundtohaveadiffusionconstantaround8x10‐10M2s‐1,andalargeronewithaslightlyslowerdiffusionratewithD≈5x10‐10M2s‐1.

Shortcutifyoursolventiswater

Page 5: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

©A.‐F.Miller2010 page 5

Forsamplesdissolvedinwaterthereisnoneedtoactuallydeterminetheindividualconstants,sincewatercanbeaninternalstandardandtheentire‐(γδ)2(Δ‐δ/3)termisconstant.Recallthatslope=‐(γδ)2(Δ‐δ/3)grad_cal2xDandforwaterIhadaslope=.0114x10‐4=‐(γδ)2(Δ‐δ/3)grad_cal2x1.8x10‐9M2s‐1.Therefore,(γδ)2(Δ‐δ/3)grad_cal2=633inthiscase,forthedelaysIused.

However,forsamplesdissolvedinwater,thechallengeistocombinethediffusionmeasurementwithwater‐supression.

Gobacktoyourbeautiful1D,whichwillbedominatedbythesignalofwater.Inthatworkspace,youcanmakeashapedpulseforwatersuppression(seethehandoutonwetsolventsuppressionformoredetail).

Makeashapedpuseusing'Edit>Newpulse'(Figure17).

IntheAcquire>Wetpanel,checkthe'WET'box(Figure2).ThepulsesequencenowdisplaystheWETpre‐sequence(Figure18).

OptimizetheWETpulsepowerifneeded,withgzlvl=0.Thensetupyourgzlvlarrayasabove.

Gradientcalibration

Inordertoobtainnumericalvaluesforthediffusionrateofyourmolecules,youneedtoknowhowstrongthegradientsare.Inotherwords,weneedtoknowwhatgradientstrengthscorrespondtothevaluesofgzlvl.Wedeterminetheconversionfactorbyperformingourexperimentonamoleculewhosediffusioncoefficientisknown.Inthiscase,waterwasused,becauseat25°C,weknowthatthediffusioncoefficientofwaterisD=1.8x10‐9M2/s.

Wewillusetheslopeobtainedforwaterat25°CtocalculateaconversionfactorthatmultipliesourgzlvlvaluestogiveG.

Theslope=‐.0114x10‐4(G/cm)‐2=‐(γδ)2(Δ‐δ/3)Dgrad_cal2andln(Io)=4.65

D=1.8x10‐9M2/s

Inthiscased0=50us,gt=2ms,d2=50us,pw=14.75usandd5=200ms.

Thusδ=.002sandΔ=(.002+.00005+.0000295+.2+.00005)s=.2021295s

Δ‐δ/3=.201463s

slope=(4258Hz/G*.002s)2(.201463s)1.8x10‐9M2s‐1grad_cal2=0.0114x10‐4(takingintoaccountmyhavingdividedgzlvlby100beforesquaring.

Page 6: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

©A.‐F.Miller2010 page 6

72.5G‐2x.201463sx1.8x10‐9M2s‐1grad_cal2=0.0114x10‐4

2.63G‐2M2grad_cal2=114

grad_cal2=43.3G2/M2grad_cal=6.6G/M=.066G/cm

Thus,ourtopvalueforgzlvlof2000correspondsto132G/cmor13,200G/mgradient**soundslow**

Page 7: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

PGE Diffusion Measurement Figure

© A-F Miller 2010

1

PGE:measurement of

diffusion coefficient

PGE Diffusion Measurement Figure

© A-F Miller 2010

2

[1]

[2]

[3]

[4]

[5]

[6]

Page 8: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

PGE Diffusion Measurement Figure

© A-F Miller 2010

3

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

PGE Diffusion Measurement Figure

© A-F Miller 2010

4

[1][2]

[3][4]

gzlvl=0

Page 9: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

PGE Diffusion Measurement Figure

© A-F Miller 2010

5

[1]gzlvl=100, 600, 1100, 1500, 1800, 2000

[2]

[3]

[4][5]

PGE Diffusion Measurement Figure

© A-F Miller 2010

6

! "

Page 10: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

PGE Diffusion Measurement Figure

© A-F Miller 2010

7

!"#"$%&%''()"*"(&+(,-"

./"#"%&,,01'"

%"

'"

0"

2"

("

-"

+"

%" -%" '%%" '-%" 0%%" 0-%" 2%%" 2-%" (%%" (-%"

gzlvl2/10,000

Water signal amplitude v s. gzlvl2

wat

er p

eak

hei

ght

PGE Diffusion Measurement Figure

© A-F Miller 2010

8

[1]

[2]

[3]

[4]

[5]

Page 11: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

PGE Diffusion Measurement Figure

© A-F Miller 2010

9

PGE Diffusion Measurement Figure

© A-F Miller 2010

10

[1]

[2]

Page 12: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

PGE Diffusion Measurement Figure

© A-F Miller 2010

11

PGE Diffusion Measurement Figure

© A-F Miller 2010

12

[1]

[2][3][4]

[5]

Page 13: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

PGE Diffusion Measurement Figure

© A-F Miller 2010

13

[1]

[2]

PGE Diffusion Measurement Figure

© A-F Miller 2010

14

[1][2]

[3]

[4]

Page 14: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

PGE Diffusion Measurement Figure

© A-F Miller 2010

15

!"#"$%&%%'()"*"+&%,-+"

./"#"%&00+1("

!"#"$%&%%'%)"*"(&1,02"

./"#"%&0022"

!"#"$%&%%(2)"*"'&-'''"

./"#"%&030-("

!"#"$%&%%(%)"*",&101-"

./"#"%&01'3"

-"

-&'"

,"

,&'"

("

(&'"

+"

+&'"

'"

'&'"

%" '%" -%%" -'%" ,%%" ,'%" (%%" ('%" +%%"

(&02"445"

(&'+"445"

%&2,"445"

%&,1"445"

6789:;<(&02"445="

6789:;<(&'+"445="

6789:;<%&2,"445="

6789:;<%&,1"445="pea

k hei

ghts

gzlvl2/10,000

Other signal amplitudes v s. gzlvl2

PGE Diffusion Measurement Figure

© A-F Miller 2010

16

Calculation of diffusion constants via calibration on solvent water.

resonance slope x 10,000 D

3.97 ppm -0.0053 8.4 x 10-10 M2s-1

3.54 ppm -0.0050 7.9 x 10-10 M2s-1

0.72 ppm -0.0037 5.8 x 10-10 M2s-1

0.26 ppm -0.0030 4.7 x 10-10 M2s-1

vs. water, slope x 10,000 =-.0114 and D = 1.8 x 10-9 M2s-1

Page 15: Diffusion measurement via the Gradient EchoDiffusion measurement via the Gradient Echo Knowledge of the diffusion coefficient, D, can tell you about the viscosity of a solution, or

PGE Diffusion Measurement Figure

© A-F Miller 2010

17

PGE Diffusion Measurement Figure

© A-F Miller 2010

18