34
Differential Equations 2 2 2 2 2 2 2 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ x y z dr dx dy dz v i j k iv jv kv dt dt dt dt dv dr dx dy dz a i j k dt dt dt dt dt Newton's Laws Law 1: an object with no force on it does not accelerate Law 2: A body with a force on it accelerates: F ma Law 3: Two bodies exert equal but opposite forces on one another position velocity acceleration r v a 3/25/2018

Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Differential Equations

2 2 2 2

2 2 2 2

ˆ ˆˆ ˆ ˆ ˆ

ˆˆ ˆ

x y zdr dx dy dzv i j k iv jv kvdt dt dt dtdv d r d x d y d za i j kdt dt dt dt dt

Newton's Laws

Law 1:  an object with no force on it does not accelerate

Law 2:  A body with a force on it accelerates: F ma

Law 3:  Two bodies exert equal but opposite forces on one another

positionvelocityacceleration

rva

3/25/2018

Page 2: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Consider a particle moving in the z direction

zz

dva tdt

1 1

2 2

2 1

1 0 0

2 0 0

10 0

0

:

0

0

t tz

z z

z

t t

z

z

t t

z z

dvv t v dt a t dtdt

dz v tdt

dzz t z dt v t dtdt

v a t dt dt

Example:   /00 0, 0 0, t b

z zz v a t a e

Find vz and z as functions of t

/ / /0 0 0 00

/0

/ 2 / 2 / 2 2 /0 0 0 0 0 0 0 0 00

0 1

1

0 1 1

t t b t b t t bz z

t bz

t t b t b t t b t b

v v a e dt a be a b e

v t a b e

z t z a b e dt a bt a b e a bt a b e a b a

t

bt a b e

' ' '

' '' '

Page 3: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Object above the Earth's surface

29.8 / zF mg g m s

Can integrate to get  , zv t z t

Homogeneous ordinary linear differential equations with constant coefficients 

Ordinary:  no partial derivatives

Linear:  function and derivatives only to first power

2

2

d ydx

is possible;2dy

dx

is not

Example:2 3

0 1 2 32 3 0dy d y d ya a a adx dx dx

g = gravitational constant

Homogeneous  = 0

Page 4: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Hooke's law  zF kz km z = 0 = rest

Harmonic oscillator2

2

d zma m kzdt

2

2 0d z k zdt m

assumes Hooke's law is valid; ignores massof spring

position

Try tz e2

2

0

0

t tke em

k k kim m m

General solution

1 1 2

2

i t i tz c e c e

k vm

ω = angular frequency

We know this will work as we are looking for a function, that differentiated twice gives us a constant times the function

Page 5: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

1 2 1 2cos sini t i tz c e c e b t b t

Need initial conditions to determine c1, c2 (or, equivalently, b1 and b2)

Suppose: 00 0, 0 zz v v

10 0 0z b

2 2sin cos zdzz b t v b tdt

00 2 20z

vv v b b

0 sinvz t

Uniform harmonic motion

position and velocity are of opposite phase

The classical equations of motion are deterministic

Page 6: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Vibration of a diatomic molecule

m1 m2

reduced mass 1 2

1 2

m mm m

2 ,k

k is the force constant

212

V kx force constant = curvatureat the potential minimum

HF molecule: 1 141.24 10 secx

0

Page 7: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

sin t

1 2

So 140.8 10 secx

Energy of harmonic oscillator

2 2 2

2

1 1 12 2 2

1,2

z tot z

z

KE mv E KE PE mv kz

dVF PE V kzdz

          

     potential energy 

2

t

time for one oscillation

period

Page 8: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

2

2 2 2 200 0

1 1 1cos sin2 2 2

vE mv t k t mv

KE and V vary in time, but their sum is constant

Energy is conserved

all E is PE

all E is KE

in QM, 1 , 0,1,2,2

   E h v v

v = 2

v = 1

v = o

Energy can only take on discretevalues and cannot be 0 (uncertainty princ.)

2kk m mm

Comment on classical turning point

Page 9: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Damped classical harmonic oscillator:  a non‐conservative system

Damping adds a friction force proportional to velocity  fdrF vdt

1 2

2

2

2 2

2

2

1 2

1 2

21 2

0

0

1 4 ,2 2

t

t t

ti t i t m

d z dzm kzdt dt

z em k m k

km m

km m m

c e c e

c e c e e

           

                                       

if motion is inthe z direction

if friction small (underdamped),2

im

exponentiallydecays in time

Non‐conservative means that energy is not conserved: How is that possible?  Isn’t energy supposed to be conserved?

e Sin 5

try

Friction constant

Page 10: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

This is the sub‐critical damping case

The text treats this case more rigorously

it defines 

2 2

/2 /21 2

/21 2

'

2 2

cos sin

i t t m i t t m

t m

km m m

z t c e e c e e

b b e

'

'

        't 't

Damped sine/cosine functions

Greater than critical damping

2 4km m

In this case, the trajectory rapidly dies offand does not show oscillatory behavior(think of a pendulum in molasses

Damping causes a frequency shiftas well as attenuation

e . Sin

Page 11: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Critical damping2 4k

m m

1 2

2

2tt m

m

z t ce ce

tz t teActually, there is a second solution

1 2tz t c c t e

similar behavior to greater than criticallydamped oscillator

Page 12: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Consider the harmonic oscillator with an external force

2

2

2

2

d zm kz F tdt

F td z k zdt m m

Strategy for solving such equations

(1) delete inhomogeneous term and solve the DE  complementary equation(2) solve inhomogeneous DE(3) general solution is a sum of solutions (1) + (2)

Variation of parameters method to solve inhomogeneous DE

works if inhomogeneous term is tn, eat, cos(bt), sin(ct) or a combination of such terms

INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS:

3 2

3 2 1 03 2

d z d z dzf t f t f t f t z g tdt dt dt

makes it inhomogeneous

forced HO has a term not proportional to z or any of its derivatives

Example:

Page 13: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Trial Solutions

0 1

1 00n n

nt t

At A At A t

e Ae

                                                                                

                                               

                                                  

0 1

sin cos sin ,

cos cos sin ,

n t t nn

t t

t t

t e e A At A t

e t e A t t

e t e A t

B

B t

                    

                                

            

           

InhomogeneousSystem

TrialSolution

ForbiddenCharacteristic

Root

If the characteristic equation for the complementary DE has a root equalto the forbidden characteristic root, then the trial function won't work

Try multiplying by tk , where k is the multiplicity of the root

Now return to the forced HO with  0 sinF t F t

20

21

sinF td z k zdt m m

Page 14: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

20

2

sinF td z k zdt m m

Complementary equation (from setting right‐hand side = 0)  1 2cos sincz b t b t

Trial function (for full problem) cos sinpz A t B t

Check 02 2 sincos sin cos sin

F tkA t B At tm

B tm

2 cos 0kA A tm

2 0sin sinFkB B t tm m

2

2 0 0

2

0 0

, 0

   or   

  and  

k Am

F FkB B Akm m mm

(1)

(2)

This rules out α2 ‐ k/m = 0 

Page 15: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

General solution:

01 2

2

01 2 2 2

cos sin sin

/cos sin sin

Fz b t b t tkmm

F mz b t b t t

Note:  solution diverges at resonance(The divergence would not happen if we also included damping.)

Suppose

00

1

02 2 2

02 2 2

02 22 2

0 0 0

0

0

0 /sin sin

z

z

z

z bFv b

m

v Fbm

v F F mz t tm

when  close to  one gets "beating"

Page 16: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

0 02 2 2 2

0 02 2 2 2

02 2

0 0

0sin sin

1.1

0 1.1 sin sin 1.11.21 1.21

0 1.1 sin sin 1.10.21 0.21

0 1, 1, 1, 0.1

1.52

z

z

z

v F Fz t t tm m

v F Fz t t tm m

v F Fz t t tm m

v m F

z t

Let 

set             

sin 0.476sin 1.1t t

Page 17: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Separable Differential Equations

f xdy g y dy f x dx

dx g y

g y dy f x dx c The x and y variables are uncoupled

Example:

( ) ,

( ) 0C kt kt

dc kcdt

dc kdtcn c kt C C

c t e e c t c e

      constant of integration

0 Cc e

first‐order kinetics chemical reaction

Page 18: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

2dc kcdt

for a second‐order reaction

2

1dc kdt kt Cc c

1 1

0kt

c c

10

Cc

0t

t

c(0)

0

00 1c

c tc kt

Page 19: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

f k constant

1 1

0 0

1 1 0 0

1 1 0 0 0 1

, ,

, , , ,

cx y

x y

f x y f x y df

f x y f x y M x y dx N x y dy

(x1, y1)

(x0, y0)

Gives algebraic equation for which y can be solved in terms of x

Example: 22 0 2 , 2                  M Nxydx x dy x xy x

exact

1 1

0 0

1 1

0 0

21 1 0 0 0 1

2 2 2 2 2 20 1 1 0 0 0 1 1 1 0

2 21 1 0 0

, , 2x y

x y

x yx y

f x y f x y xy dx x dy

x y x y x y x y x y x y

x y x y k

Note error in text

2

2/x y ky k x

, , 0M x y dx N x y dy

0f df Mdx Ndy  such that   If exact, there exists

Exact differential equations

Page 20: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Inexact differentials and integrating factors

, ,M x y dx N x y dy

we may be able to find an integrating factor G(x,y) to convert this to an exact differential

0GMdx GNdy

0xdy ydx Example: we already know howto solve this by writing

dy dxy x

Even if is not an exact differential equation,

But, for now, we'll "pretend“ we don't know this

Page 21: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

0ydx xdy Not exact

2

1x

is an integrating factor for this differential equation

2 2 2 2

2 2

1;

1 1,

M y N xM Nx x x x x

M Ny x x x

'=     '

' '    so the integrating

factor works

1 1

0 0

11

0 0

01 1 0 0 2

1

0

1

0 0 0 01 1

1 0 1 1 0 1

0

0

1, ,x y

x y

yx

x y

yf x y f x y dx dyx x

y yx x

y y y yy yx x x x x xyy c k

x xy kx

with the integrating factor

Agrees with our earlier solution

Page 22: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Partial differential equations

Example:  vibrations of a string

At equilibrium the stringheight is y = 0 for all x

,y y x t

0x x L

2 2

2 2

2 22

2 2

y T yt x

y yct x

,y x t x t Try

T = tension = mass per unit length

This assumes theproblem is separable

Page 23: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

2 22

2 2

2 22

2 2

2 22

2 2 2

1 1

y yct x

ct x

kc t x

dependsonly on t

dependsonly on x

2 22 2 2

2 2

1 2

1 2

cos sin

cos sin

          d dk c kdx t

x a kx a kx

t b kct b kct

Boundary conditions

1

0 0, 00, , 0,1, 2,3

, 1, 2,3,4,...

La kL n nnk nL

   

       

   

0n nonvibratingstring

2 sinnn xx aL

a constant

The x‐derivative does not impact θ, and the t derivative does not impact ψ

Page 24: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Initial conditions 10 0 0t y b

2 sin

, sin sin

n ctbL

n x n cty x t AL L

n ‐ 1 nodes, not counting end points

2n L 1/2

22 ; ;2 2

n c L nc n TL nc L L

        =

n = 1  fundamentaln = 2  first overtone

Page 25: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

1

, sin cos sinn nn

n x n ct n ctx t a bL L L

y

Principle of superposition

If string is clamped at both ends, The vibrations are standing waves

If it is not clamped at both ends,we can have traveling waves

, siny x t A k x ct does not separate

time dep. Schrödinger Equation

2 2

22d V x i

m dx t

Sin(x‐y)=sin(x)cos(y)‐cos(x)sin(y)

Page 26: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

2 2

2

2 2

2

2

,

1 12

x t x t

V im x t

V im x t

Note typo in text

These two equations are equal to a constant, which we set = E

2 2

22d V E

m dx

  H E

/

1

iEt

d Edt i

d i E t edt

Also

or

stationary statesystem prepared in one eigenstate

Page 27: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

2 2

22d V E

m dx

free particle, V = 0particle in boxharmonic oscillator 21

2V kx V = 

0 a

0

Solving Differential Equations using Laplace transforms

Example

22 1

2

2 12

1

0

0 0

0

d z dz k kz z z zdt m dt m m m

z s z sz z

z s z z

L L

L L

z(2) and z(1) are short handexpressions for the derivatives

Examples

Page 28: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

2 1

12 0 0 0 0

kz z zm m

ks z sz z s z z zm m

L

L L L

z ZLLet

12

12

1

2

0 0 0 0

0 0 0

0 0

ks Z sz z sZ z Zm m

ks s Z s z zm m m

sz z zmZ ks s

m m

Page 29: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Now need to do the inverse Laplace transform of Z

1

2 2

2

0 0

42

z s zmZ

ksm m m

2

2 22

2

4

amk k am m m

2 2 22

120 0z s zZ

s a s aa

1

2 22 2

0 0 0z s a z azs a s a

12 2

12 2

1

cos( )

sin( )

0 00 cos sin( )

at

at

s ts

ts

e f t F s a

z zz t z t t

ae

L

L

L

typo in treatmentin text

Page 30: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Numerical solution of differential equations

In general, there is not an analytical solution,and we have to adopt numerical methods

Euler's Method

0

0 0

, , 0

,t

dx f x t x xdt

x t x f x t dt

Can’t simply integrate since f depends on x, which, in turn, depends on t

1 0t t t is a small time stepwith t0 = 0

1

1 0 0 0 00,0 ,0

tx t x f x dt x f x t

0 0 0dxx t x t t tdt

Taylor series

1 ,i i i ix x tf x t

0

1

2

0

2

tt tt t

Generalize x4,t4x3,t3

x2,t2x1,t1

x0,t0

Page 31: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Example

10, 1, 1 , 2 , 0.1final

dc kc c k s t s t sdt

 with        and 

0 10.1 0.90.2 0.810.3 0.729

2.0 0.1215

t c

                                           

                    the exact answer is 0.1353

if we use                   instead of 0.10, we get  0.05t 2 0.1258c

So, to get a very accurate result, we need a very small time step with Euler method

Page 32: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

One can obtain well‐converged results with reasonable timesteps with methods based on higher order Taylor series

Runge – Kutta Method

1 1 2 3 4

,

1 2 2 26i i

dx f x tdt

x x F F F F

1

2 1

3 2

4 3

,

1 ,2 21 ,2 21 ,2

i i

i i

i i

i i

F tf x t

tF tf x F t

tF tf x F t

F tf x F t t

Fourth‐order method 5O hError

Euler is a first‐order method

2O hError

First step

1 0 0

2 0 1 0

3 0 2 0

4 0 3 0

,

1 ,2 21 ,2 21 ,2

F tf x t

tF tf x F t

tF tf x F t

F tf x F t t

F1 = slope at beginning of intervalF2 = increment using slope at midpoint of intervalF3 = increment using slope at midpoint of intervalF4 = increment using slope at endpoint of intervalh t

Page 33: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

Solving by use of Mathematica

DSolve finds symbolic solution, if possible

Example

, , 1ax

dy ay xdx

DSolve y x ay x y x x y x e c

'

Given initial condition 0 2y

, 0 2 , , 2 axDSolve y x ay x y y x x y x e '

Numerical solution: NDSolve

Example 2sindy xdx

These algorithms can be used to solve systems of equations

11 2

21 2

, ,

, ,

dx f x x tdtdx g x x tdt

Page 34: Differential Equations - University of Pittsburghjordan/chem1000-s18/diffeq.pdf · ma m kz dt 2 2 0 dz k z dt m assumes Hooke's law is valid; ignores mass of spring position Try ze

2sin , 0 1 , , ,0,'s NDSolve y x x y y x Pi

2 / .y s

/ . ,0, .y x s x Pi Plot

0

0

0 2 sin

1 2cos 5

y y x dx

x