Differential Equations - Solved Assignments - Semester Summer 2007

Embed Size (px)

Citation preview

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    1/28

    Assignment No 1 Question #1 :Answer

    Given D.E is(1 ) (1) y x

    dye xe

    dx

    It is not separable.By dividing both sides by ye

    1 (2) x ydy

    xe edx

    1 (2) x ydy

    xedx

    Suppose thatz=x+y Diff w.r.t.x

    1+dz dydx dx

    dzdx

    z xe

    Equation (2) becomes

    . ze dz x dx It is separable eq.

    Taking integrating both side

    . ze dz x dx

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    2/28

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    3/28

    sin( )( , )

    sin( )

    y y x

    x f x y y

    x x

    For homogenous function

    sin( )( , )

    sin( )

    y y x

    x f x y y

    x x

    For substituting

    (3) y vx Eq (1) can be written as

    sin (2)sin

    dy y v xdx x v

    Differentiating Equation (3) with respect to x. we have

    (4)dy dv

    v xdx dx

    From Eq (2) & Eq (4) we have

    sinsin

    dv y v xv x

    dx x v

    sinsin

    dv vx v xv xdx x v

    ( sin 1)sin

    dv x v vv x

    dx x v

    sin 1sin

    dv v vv x

    dx v

    sin 1sin

    dv v v x v

    dx v

    1sin

    dv xdx v

    1sin v dv dx

    x

    By integrating we have1

    sin v dv dx x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    4/28

    By using formula we havesin cos xdx x

    cos lnv x c

    cos( ) ln y y

    x c wherev

    x x

    cos( ) ln y

    x c x

    Which is the required result

    Question #3 :

    2 2(xy -1)dx-(1-xy )dy (1)

    Answer.2 2M=xy -1 & N=-(1-xy )

    2 2(xy -1) & -(1-xy )

    2 & 2

    M N y y y y

    M N xy xy

    y y

    2

    2

    (xy -1)

    -1+xy =N

    f M

    x

    f y

    2

    2 2

    f(x,y)= (xy -1)

    1f(x,y)= y ( )

    2

    dx

    x x h y

    Where h(y) is constant of integration

    2 2

    2

    2 2

    Differentiating w.r.t y

    y( ( ))2

    '( )

    '( ) 1

    f x x h y y y

    x y h y

    x y h y x y N

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    5/28

    2 2

    2 2

    2 2

    2 2

    By comparing sides

    =h'(y) = -1 is independent of x

    or integerating we have h(y)= -y

    yf(x,y)= ( )

    2y

    f(x,y)=2

    Hence the general solution of equation is given by

    f(x.y)=c

    y

    2

    y 2( )

    x x y

    x x y

    x x y c

    or x x y

    c

    Question#04:

    Solve (by finding I.F) ( ) 1dy

    x y ydx

    Solution:

    1

    y ydxdy

    x

    dividing by x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    6/28

    1(1 )

    1

    1 1(1 ) (1)

    .

    .

    . (1)

    1 1(1 ) ( )

    ( . )

    int .

    .

    ( 1)

    dx x

    x

    x x x

    x x

    x x

    x

    dy y y

    dx x xdy

    ydx x x

    It is linear in y

    I F e

    xe

    I F multiplybyeq

    dy xe xe y xe

    dx x xd xe y e dx

    Taking egrate both sides

    xe y e c

    e xy c

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    7/28

    Assignment 2

    Question#01Solve the differential equation and mention the name of type of this D.E

    3 23 (1) 2dy x y x y with ydx

    solution:

    3 2

    2 2

    3

    ' ',

    3

    First order Ordinary differential equation

    dy x y x y

    dx Nowbydividing the equationby x we get

    dy y x y

    dx x

    2

    2 2

    ' .' ',

    3

    It is a Bernoulli s equation By dividing the above equationby y then we get

    dy y x

    dx xy

    1 2

    1

    2

    2

    2

    . . . ' '

    1

    3

    ( 1) .

    3

    Putting t y

    t y

    Diff w r t x

    dt dy y

    dx dxThen equationbecomes

    dt t x

    dx xmultiply by above equation

    dt t x

    dx x

    3

    33ln

    ln

    33

    int

    .

    .

    1.

    dx x x

    x

    egrating factor will be

    I F e e

    I F e

    I F x x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    8/28

    3 4

    3

    3

    3

    int

    1 3 1

    1

    int ,

    ln

    1 1ln

    Nowmultiplying theequationby egrating factor

    dt t dx x x xd t

    dx x x By egrating the above equation we get

    t x C

    x

    x C where t x y y

    3

    1ln1 ( ln1 0)

    21

    0212

    1 1ln

    2

    Applying initial condition

    C

    C

    C

    Therequired result is

    x yx

    Question#02 : Find an equation of orthogonal trajectory of the curve2( ) y x c

    Solution.

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    9/28

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    10/28

    1 2

    1 2

    1

    2

    sin (0) 0,

    0 cos 0 sin 0

    0 .1 .0

    0

    sin4

    Now u g boundary equation y we get

    c c

    c c

    c

    Hence the solutionbecomes y c x

    2

    2

    2

    sin 1,2

    1 sin 42

    1 sin 2

    1 .0

    1 0

    .

    , .

    Nowu gtheboundarycondition y we get

    c

    c

    c

    This is a clear contradiction

    Therefore theboundary value problemhas no solution

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    11/28

    Assignment 3

    Question#01: Solve by the method of U.C.

    22

    2 3 2 2 2xd y dy

    y x xedx dx

    Solution:For complementary function,

    2

    2

    2

    3 2 0

    the auxiliary equation is

    3 2 0

    2 2 0

    ( 2) 1( 2) 0

    ( 1)( 2) 0

    ( 1) 0 ,( 2) 0

    1, 2

    D D

    m m

    m m m

    m m m

    m m

    m m

    The roots are

    The complementary solution is

    x xc ecec y

    221

    For the particular solution of the given equation, well find the particular solution of :2223 x y y y .(2)

    e x y y y 223 .(3) For (2), we assume P.I. as

    2Cx Bx A y p

    Cx B y p 2

    C y p 2

    Substituting in (2), we get22 2222632 xCx Bx ACx BCx

    Or 22 2232622 x A BC xC BCx Equating the co-efficient

    Therefore,C = 1

    062 C B or 3 B

    0232 A BC or27

    A

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    12/28

    27

    . 32

    P I x x

    For (3) we assume P.I.as:

    2

    x p

    x

    y x D Ex e

    Dx Ex e

    x x p e Ex Dxe Ex D y 22 xe Ex x E D D 22

    x x p e Ex E De Ex x E D D y 222 2 xe Ex x E D E D 2422

    Substituting in (3) we have:

    x x x x

    xee Ex Dxe Ex x E D De Ex x E D E D 2223422222

    Or x x E E D 222

    Therefore:02E D and 22E

    Thus:1 E and 2 D

    P.I. of (3) is: xe x x 22

    The general solution of the given equation is:

    222

    21 2327

    x xe x xecec yx x x

    Question 2:Solve the D.E. by variation of Parameters

    y"' y' cosec x Solution:

    y"' y' cosec x

    The function f(x) can be identified as

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    13/28

    f x cosec x

    To find y c, at first the associated homogenous equation will be solvedmx mx 2 mx 3 mxy e ,y ' m e ,y '' m e ,y "' m e

    Then the associated homogenous equation gives

    3 mxm m e 0

    Therefore, the auxiliary equation is3

    mx

    m m 0

    as

    e 0, x

    Using the quadratic formula, roots of the auxiliary equation are

    2m m 1 0

    m 0, i

    Hence, the complementary function y c is

    c 1 2 3y c c cos x c sin x

    Here

    1

    2

    3

    y 1

    y cos x

    y sinx

    So

    1 2 3

    2 2

    1 cos x sin x

    W y ,y ,y 0 sin x cos x

    0 cos x sinx

    After expanding.

    1 sin x cos x cos x 0 0 sin x 0 0 1

    1

    2 2

    2 2

    2 2

    0 cos x sinx

    W 0 sinx cos x

    cosec x cosx sinx

    0 sin x cos x cosx 0 cosx.cosec x sinx 0 sinx.cosec x

    cos x.cosec x sin x.cosec x

    cosec x cos x. sin x cosec x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    14/28

    2

    1 0 sinx

    W 0 0 cos x

    0 cosec x sinx

    1 0 cosx.cosec x 0 0 0 sinx 0 0

    cosx.cosec x cot x

    3

    1 cos x 0

    W 0 sinx 0

    0 cosx cosec x

    1 sin x.cosec x 0 cos x 0 0 0 0 0

    1

    Integrating

    11

    22

    33

    Wu' cosec x

    W

    Wu' cot xWW

    u' 1W

    Gives

    1

    2

    3

    u cosec x dx

    ln cosec x cot x

    u cot x dx

    cosxdx ln sinx

    sinxu 1dx

    x

    The particular solution y p of non -homogenous equation will be py ln cosec x cotx ln sinx cosx xsinx

    Hence the general solution of the given equation is

    c p y y y

    1 2 3c c cosx c sinx ln cosec x cotx ln sinx .cosx xsinx

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    15/28

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    16/28

    p

    Substituting in the given differential equation , then

    (A+2B) cos ( 2 ) sin 4 cos 2sin

    quating coefficients , we obtain

    A+2B=4

    2 2these equation

    A=0, B=2

    thus X 2sin

    t A B t t t

    E

    A Bsolving

    1 2

    '1 2 1 2

    1 2

    1

    '1 2

    2

    general solution is

    ( ) ( cos sin ) 2 sin

    ( ) ( cos sin ) ( sin cos ) 2 cos

    (0) 0 .1 .0 0 0

    0

    (0) 3 .1 .1 2 3

    c p

    t

    t t

    t

    hence

    x x x

    x t e c t c t t

    x t e c t c t e c t c t t

    now we apply the boundary conditions x c c

    c

    x c c

    c

    1

    sin 2sin

    sin 0 t 0

    sin , 2sin

    sin 2sin

    t

    t

    t

    t

    Steady StateTransient

    the solution of the initial value problem is

    x e t t

    e t as

    therefore

    e t Transient Term t Steady State

    hence

    x e t t

    the effect ofte transient ter

    :

    2

    m becomes negligible for

    t

    -----------------------------------------------------------------------------------------------------Question#02

    Solve by using Cauchy Euler method3 ' ' ' 2 ' ' ' 44 5 15 x y x y xy y x

    Solution:

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    17/28

    3 3 2 2 4

    t

    2 2 2

    3 3 3 2

    3 2 2 4

    3 2 4

    ( 4 5 15) (1)

    x = e or t = Inx so that

    ( 1)( 1)( 2) 3 2

    in eq(1), then we get

    ( 3 2 4 4 5 15)

    ( 7 15) (2)

    t

    t

    x D x D xD y x

    Let

    xD

    x D x D

    Substituting

    y e

    or

    y e

    T

    3 2

    2

    3 21 2 3

    4 4 4

    3 2

    eq of (2) is

    7 15 0

    ( 3)( 4 5) 0

    3, 2

    ( cos sin ).

    7 15 64 16 28 15 37The general solution of (2)is

    t t c

    t t t

    p

    hecharacteristic

    or

    so i

    The complementry solution is

    y c e e c t c t

    e e e y

    y

    43 2

    1 2 3

    t

    43 2

    1 2 3

    ( cos sin ) 37Where t= Inx or x = e

    [ cos( ) sin( )37

    t t t e

    c e e c t c t

    x y c x x c Inx c Inx

    -----------------------------------------------------------------------------------------------------------

    Question#03Find the first four terms of a power series in x for the function secxSolution:

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    18/28

    2 4 6

    2 4 6 2 4 6

    2 4 6

    2 4 6

    4 6

    1sec , cos 1 ...

    cos 2 24 720using

    1 12 24 720 2 24 720

    _________________

    ...2 24 720

    ...2 4 48

    ______________5 7

    +.24 360

    As we know that

    x x x x where x

    xTherefore long division

    x x x x x x

    x x x

    x x x

    x x

    2 4 6

    4 6

    6

    2 4 6

    5 611 ...2 24 720

    ..

    5 5+...

    24 48__________________

    61...

    720( ) sec

    5 61sec 1 ...2 24 720

    the interval of converge

    x x x

    x x

    x

    hence the power series for the function f x x is

    x x x x

    nce of this series is ( , ).2 2

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    19/28

    Assignment# 05

    Question 1: Marks=10

    The D.E

    '' '3 0 x y y y has regular singular point at x=0. Justify your answer.

    Solution:n

    n = 0

    ' 1

    nn = 0

    '' 2n

    n = 0

    '' ' r 10

    try a solution of the form y = c

    Therefor y = (n + r) c

    y = (n + r)(n + r - 1) c So that

    xy + 3y - y = x r(r + 2)c + (k + r + 1

    n r

    n r

    n r

    We x

    x

    x

    x

    k k + 1 k

    k = 0

    1 2

    k + 1 k

    )(k + r + 3) c c x = 0

    So that the indicial equation and exponent are r(r + 2) = 0 andr = 0, r = -2, respectively.Since (k + r + 1)(k + r + 3)c - c = 0,

    1

    k k + 1

    01

    012

    023

    3 04

    1

    n

    k = 0, 1, 2,...It follows that when r = 0,

    cc =(k + 1)(k + 3)

    cc =

    1.32cc

    c = =2.4 2!4!

    2ccc = =

    3.5 3!5!c 2c

    c = =4.6 4!6!

    cc = , n = 1, 2 ,...

    n!(n + 2)!

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    20/28

    01 0

    n = 1

    0= 0

    2

    k + 1 k

    one series solution is

    2y = c x 1 +n! (n + 2)!

    2= cn!(n + 2)!when r = -2, Eq.(1) becomes.

    (k - 1)(k + 1)c - c = 0 (2)But not here that we don't divi

    n

    n

    n

    Thus

    x

    x

    Now

    1 0 2 1

    ded by (k -1)(k +1) immediatelysince this term is zero for k = 1. However, we use the recurrencerelation (2) for the cases k = 0 and k =1-1.1c - c = 0 and 0.2c - c = 0The latter equa 1

    0

    k k + 1

    23

    3 24

    4 25

    n

    tion implies that c = 0 and so the former equationimplies that c = 0. We find,

    cc = k = 2, 3, ...(k - 1)(k + 1)

    cc =

    1.3c 2c

    c = =2.4 2!4!c 2c

    c = =3.5 3!5!

    2cIn general c = 2

    -2 22 2

    n = 3

    , n = 3,4,5...n!(n - 2)!

    2Thus y = c x x + (3)n!(n - 2)!

    n x

    2

    1

    , close inspection of (3) reveals that y is simplyconstant multiple of y . To see this, let k = n - 2 in (3). Weconclude that the method of Forbenius gives only one seriessolution of the gi

    However

    ven differential equation.

    Question 2: Marks=5Find the general solution of the equation

    2 '' ' 2 1( ) 0 (0, )25

    x y xy x y on

    Solution:

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    21/28

    2 '' ' 2 2

    2 '' ' 2

    2

    Bessel Differential Equation isx + xy + (x - v )y = 0 (1)

    1x + xy + (x - )y = 0 (2)25

    Comparing eq (1) and (2), then we get1 1

    v = , therefore v = 525So the general solution of eq

    The y

    y

    1 1 2 15 5

    (2) isy = C J (x) + C J (x)

    Question 3: Marks=10

    Solve the Bessel function in terms of 32

    sin x of the J

    Solution:

    1 1

    12

    1 1 11 12 2 2

    1 3 12 22

    3 1 12 22

    1/ 2 1/ 2

    32

    32

    C o ns id er t ha t2

    12 2

    1

    1

    2 2( ) s in , ( ) cos

    1 2 2s in cos

    2 s incos

    v v v

    t ak in g v

    v J x J x J x

    x A s f o r

    J x J x J x x

    J x J x J x x

    J x J x J x x

    w e k n o w

    J x x J x x x x

    J x x x x x x

    x J x x x x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    22/28

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    23/28

    Assignment 6

    Question#01:(2 1) 2 4

    t

    D x Dy

    Dx Dy e

    Solution.

    The given differential equation is

    2 2 4

    -

    To solve the highest derivative Dy, we eliminate the highest

    derivative Dx.

    Therefore, multiply the second equation with 2and then

    su

    t

    Dx x Dy

    Dx Dy e

    btract from the first equation to have

    2 2 4

    2 2 2

    ----------------------------------

    = 4 2

    t

    t

    Dx x Dy

    Dx Dy e

    x e

    Therefore, it is impossible to solve the system for the highest derivatives

    of each variable.

    Thus the system cannot be reduced to the linear normal form.

    Hence, the system is a degenerate formation.

    Question#02:Use the Gauss Jordan elimination method to solve the following system of linearalgebraic equations

    1 3 4

    1 2 3 4

    1 2 3

    1 2 3 4

    5x 4x 2x 3

    x x 2x x 1

    4x x 2x 1

    x x x x 0

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    24/28

    Solution:The augmented matrix of given system of linear algebraic equation is

    5 0 4 2 3

    1 1 2 1 1

    4 1 2 0 1

    1 1 1 1 0

    We shall perform row operations on augmented matrix.Interchanging 1 st and 2 nd row, then we have

    1 1 2 1 1

    5 0 4 2 3~

    4 1 2 0 1

    1 1 1 1 0

    2 1

    1 1 2 1 10 5 6 3 2

    ~ R 5R4 1 2 0 1

    1 1 1 1 0

    3 1

    1 1 2 1 1

    0 5 6 3 2~ R 4R

    0 5 6 4 3

    1 1 1 1 0

    4 1

    1 1 2 1 1

    0 5 6 3 2

    ~ R R 0 5 6 4 30 2 1 0 1

    2

    1 1 2 1 1

    6 3 20 11

    ~ R 5 5 55 0 5 6 4 3

    0 2 1 0 1

    3 2

    1 1 2 1 1

    6 3 20 1

    ~ R 5R 5 5 50 0 0 1 1

    0 2 1 0 1

    Interchanging 3 rd and 4 th row

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    25/28

    1 1 2 1 1

    6 3 20 1

    ~ 5 5 50 2 1 0 1

    0 0 0 1 1

    3 2

    1 1 2 1 1

    6 3 20 1

    5 5 5~ R 2R7 6 1

    0 05 5 5

    0 0 0 1 1

    3

    1 1 2 1 1

    6 3 20 1

    5 5 5 5~ R6 17 0 0 17 7

    0 0 0 1 1

    4

    1 1 2 1 1

    6 3 20 1

    5 5 5~ R6 1

    0 0 17 7

    0 0 0 1 1

    3 4

    1 1 2 1 1

    6 3 20 16

    ~ R R 5 5 57 0 0 1 0 1

    0 0 0 1 1

    2 3

    1 1 2 1 1

    3 80 1 06

    ~ R R 5 55 0 0 1 0 1

    0 0 0 1 1

    2 4

    1 1 2 1 1

    0 1 0 0 13~ R R

    0 0 1 0 150 0 0 1 1

    1 2

    1 0 2 1 0

    0 1 0 0 1~ R R

    0 0 1 0 1

    0 0 0 1 1

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    26/28

    1 3

    1 0 0 1 2

    0 1 0 0 1~ R 2R

    0 0 1 0 1

    0 0 0 1 1

    1 4

    1 0 0 0 1

    0 1 0 0 1~ R R

    0 0 1 0 1

    0 0 0 1 1

    solution becomes

    1

    2

    3

    4

    x 1x 1x 1x 1

    Question#03:Find the general solution of the given system of D.E

    dxx 2y

    dtdy

    2x ydt

    Solution:

    The given homogenous system of differential equations is

    dx dt 1 2 xdy dt 2 1 y

    So, the coefficient matrix will be

    1 2A

    2 1

    Then, we shall find the eigenvalues and eigenvectors of the coefficient A. For that, thecharacteristics equation will be

    2

    2

    1 2det A I 2 1

    1 1 2 2

    1 2 4

    2 3

    The characteristic equation is

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    27/28

    2

    det A I 0

    2 3 0

    And for the roots of characteristic equation

    2

    22 3 0

    3 3

    1 3 0

    1,3

    For 1

    1 1 2

    2 1 2

    1 1 2 k 2k 2kA I K

    2 1 1 k 2k 2k

    1 2 1 2

    1 2 1 2

    2k 2k 2k 2k 0A I K 0 0

    2k 2k 2k 2k 0

    As both equations represents the same equation, so

    1 2

    1 2

    k k 0

    k k

    or

    If we select an arbitrary value for k 2 as k 2 = -1 and subsequently k 1 = 1, then the correspondingeigenvector is

    11

    2

    k 1K

    k 1

    For 3

    1 1 2

    2 1 2

    1 3 2 k 2k 2kA I K

    2 1 3 k 2k 2k

    1 2 1 2

    1 2 1 2

    2k 2k 2k 2k 0A I K 0 0

    2k 2k 2k 2k 0

    Now too, as both equations represents the same equation, so 1 2

    1 2

    k k 0

    k kor

    If we select an arbitrary value for K2 as K2 = 1 and subsequently k 1 = 1, then the correspondingeigenvector is

    1

    22

    k 1K

    k 1

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Summer 2007

    28/28

    Hence weve obtained 2 linearly independent solution vectors of the given homog enous systemas

    t 3t

    1 21 1

    X e ,X e1 1

    Thus the general solution of the system is

    1 1 2 2

    t 3t1 2

    t 3t1 2

    t 3t1 2

    X c X c X

    1 1X c e c e

    1 1

    c e c ex t

    y t c e c e

    The solution of the system is

    t 3t1 2

    t 3t

    1 2

    x t c e c e

    y t c e c e