Differential Equations - Solved Assignments - Semester Spring 2007

Embed Size (px)

Citation preview

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    1/49

    ASSIGNMENT 01

    Question 1:

    Marks=10

    Solve (1 )x ydye x e

    dx

    The equation is not separable

    ( )

    2

    2

    2

    1

    1 ...............................(1)

    1

    . (1)

    int

    2

    0

    2

    ln2

    x y

    x y

    z

    z

    z

    x y

    dy xe e

    dx

    dyxe

    dx

    put z x y then

    dz dy

    dx dx

    Equation no becomes

    dzxe

    dx

    e dz xdx

    egrating we have

    xe c

    r

    xe c where z x y

    x x y c

    Question 2:

    Marks=10

    Solve2 2 2( ) 0 x xy y dx x dy

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    2/49

    2 2 2

    2 2

    2

    2 2 2 2 2 2 2 2

    2 2 2

    2

    2 2

    2

    ( )

    ........................................(1)

    (1)

    ( ) ( ) (1 )

    1

    1 1

    1

    x dy x xy y dx

    dy x xy y

    dx x

    put y vx

    dy dvv xdx dx

    equation becomes

    dv x x vx vx x x v v x x v vv x

    dx x x x

    v v

    dv x v v v v

    dx

    dv v

    dx xd

    2

    2

    1

    1

    1

    int

    1

    tan ln

    tan ln

    v dx

    v x

    egrating we get

    dv dx

    v x

    v x c

    yx c

    x

    is the required general solution

    Question 3:

    Marks=10

    Determine whether the given equation is Exact, if so please

    2 2 2(2 tan ) ( tan ) 0 xy y y dx x x y Sec y dy

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    3/49

    2 2 2

    2 2

    2

    2 2 2

    2

    2 tan

    tan sec

    2 1 sec 2 tan

    2 tan

    ( , )

    2 tan (1)

    tan sec (2)

    int (1) . .

    ( , ) tan

    M xy y y

    N x x y y

    M x y x y

    Y

    N x yX

    the eqis exact thereforethe function f x y is

    f xy y y

    x

    f x x y y

    y

    egrating w r t x

    f x y x y xy x y h

    2 2 / 2 2 2

    ( ) (3)

    ( ) tan int. .

    sec ( ) tan sec

    y

    whereh y isthecons t of egrationdiff the above equation w r t y

    fx x x y h y x x y y

    y

    / 2

    2

    ( ) sec

    ( ) tan

    (3)( , ) tan tan

    h y y

    h y y

    therefore eq becomes f x y x y xy x y y c

    Question 4:

    Marks=10

    Solve (by finding I.F)

    1ydy

    dx e x

    the equation may be written as

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    4/49

    2

    2

    2

    (1)

    .

    . (1)

    2

    2

    y

    y

    dy y

    y y

    y y

    yy

    yy

    dxe x

    dy

    or

    dxx e

    dyIt is a linear in x

    I F e e multiply by eq

    therefore

    d xe e

    dy

    or

    xe e dy c

    e xe c

    or

    e x ce

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    5/49

    ASSIGNMENT 02

    uestion 1: Marks=10

    olve the differential equation and mention the name of type of this D.E

    3dy y xy

    dx

    3

    3 2

    2

    3

    2

    3

    .

    1 1

    1

    . . .

    2

    olution

    dy y xy

    dx

    t is known asa

    dyx

    y dx y

    dyy x

    y d

    bernoulli different

    x

    putting y z

    Diff w r t x

    dy dzy

    dx dx

    ial equation

    3

    3

    2

    1

    2

    2

    2 2

    .

    2, 2

    dy dz

    y dx dx

    dy dz

    y dx dx

    dzz xdx

    dzz x

    dx

    is linera differential equation of the first order

    p q x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    6/49

    2

    2

    2 2

    2

    2 2

    22 2

    22 2

    2

    ,

    .

    ( . ) ( . )

    ( ) ( ) 2

    . ( 2)

    . 1.

    ( )2

    1

    2

    pdx

    dx

    x

    x x

    x

    x x

    x

    x x

    x

    x x

    sweknowthat Integrating factoris e so

    F e

    I F I F q dx

    z e e x dx

    x e dx

    x e e dx

    ez e x e c

    ee x e c

    y

    uestion 2: Marks=10

    nd an equation of orthogonal trajectories of the curve2

    x cy

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    7/49

    2

    2

    2

    2 2

    22

    2 2

    (1)

    2

    (1)

    2 . .

    2.

    2

    ,

    2

    2

    nt

    2

    22 2

    .

    22 .

    x cy

    dycy

    dx

    xFromequation wehave c

    y x dy

    y y dx

    x dy

    y dx

    dy y

    dx x

    Bythe rule of orthogonal trajectories we get

    dy x

    dx yy dy x dx

    egrating both sides

    y dy x dx

    y xc

    yx c

    y x c

    Question 3: Marks=10

    fossilized bone is found to contain1

    1000of the original amount of C-14. Determine the age of the fissile.

    et A(t)be the amount present at any time tand A0the original amount of C14.herefore, the process is governed by the initial value problem.

    0

    A, (0)

    dtkA A A

    We know that the solution of the problem is

    0( )ktA t A e

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    8/49

    nce half life of the carbon isotope is 5600 years, Therefore

    0A(5600)=2

    A

    o that

    560000

    5600 ln 22

    kA A e or k

    = -0.00012378

    ence(0.00012378)

    0( ) tA t A e

    tdenotes the time when fossilized bone was found then

    0( )1000

    AA t

    (0.00012378)0

    0000

    tAA e

    0.00012378 ln1000t

    herefore

    ln100055,800 .

    0.00012378 years

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    9/49

    ASSIGNMENT 03

    Maximum Marks: 30

    Upload Date: April 11, 2007

    uestion 1: Marks=10olve the initial value problem

    2

    2

    '

    6 9 0

    (0) 2 , (0) 3

    d y dyy

    dx dx

    with y y

    olution:

    iven equation is

    2

    26 9 0

    d y dyy

    dx dx

    xpected solution of this equation is y = emx

    ubstituting it in the differential equation, we get

    2

    26 9 0

    mx mx mxd de e edx dx

    fter differentiation, we get2 6 9 0mx mx mxm e me e

    We factorize it

    2 6 9 0mx m m nce 0

    mxe ,we conclude that

    2 6 9 0m m 23) 0

    3 , 3

    m

    m

    neral solution is3 3

    1 2

    x xy C e C xe

    iven the initial conditions y(0) = 2 and y(0) = -3

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    10/49

    3(0) 3(0)

    1 2

    0 3(0)

    1 2

    1

    (0) 2 (0)

    2 (0)

    2

    y C e C e

    C e C e

    C

    3 3 3

    1 2

    3 3 3

    1 2 2

    3

    1 2 2

    '( ) ( 3) ( 3)

    3 3

    3 3

    x x x

    x x x

    x

    y x C e C xe e

    C e C xe C e

    e C C x C

    3(0)

    1 2 2

    0

    1 2

    1 2

    '(0) 3 3 3 (0)

    3 3

    3 3

    y e C C C

    e C C

    C C

    ut from first initial value of y(0), we got C1 = 2erefore,

    2

    2

    2

    3 3(2)

    3 6

    3

    C

    C

    C

    ubstituting the values of C1 and C2 in3 3

    1 2x x

    y C e C xe , we can get

    3 32 3

    x xy e xe

    uestion 2: Marks=10

    olve

    ' ' ' ' ' '6 3 10 0 y y y y

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    11/49

    olution:

    ' ' ' ' ' '6 3 10 0 ( )

    2 3, ,

    ( )

    3 26 3 10 0

    3 2( 6 3 10) 0

    0

    3 26 3 10 0

    by synth

    y y y y i

    mxPut y e

    mx mx mx y me y m e y m e

    Putting these values in the eq i

    mx mx mx mxm e m e me e

    mxm m m e

    mxSince e

    m m m

    Which can be factorized

    etic division we find

    1 6 3 101

    1 7 10

    ____________________

    1 7 10 0

    -1 is a root.he coefficients of the quotient are-7, 10

    hus we can write the auxiliary equation as:21)( 7 10) 0m m m

    1m or 2 7 10 0m m ( 5)( 2) 0m m

    5m or 2m he roots are -1, 2 and 5.herefore solution of the differential equation is

    2 5

    1 2 2

    x x xy C e C e C e

    uestion 3: Marks=10

    iven that2

    1y x is a solution of2 ' ' '3 4 0 x y xy y

    nd the general solution of the differential equation on the interval (0, ) .olution:he equation can be written as

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    12/49

    2

    3 40

    2

    2

    2

    ( )2 1 2

    1

    32

    2 4

    3ln2

    2 4

    122

    2ln

    2

    (0, )

    1 1 2 2

    1

    Dividing by x

    y y yx x

    he nd solution y is given by

    Pdxe

    y y x dxy

    dxde

    y x dxx

    xey x dx

    x

    y x dxx

    y x x

    Hencethe gernal solutionof thedifferential equation

    n is given by

    c y c y

    c

    2 2 ln2

    x c x x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    13/49

    Assignment 4

    Answer# (1):-

    22

    2

    22

    2

    2 3 3

    :

    2 3 3 .................( )

    Associated homogeneous differential equation is:

    2 '' 3 ' 0.....................(i)

    Now solution to the equation (i) is det

    d y dy y x Sinxdx dx

    solution

    d y dy y x Sinx A

    dx dx

    y y y

    2

    2

    1 2

    ermined by the solution

    of associated auxillary equation given by:2 3 1 0.....................(ii)

    2 2 1 0

    2 ( 1) 1( 1) 0

    ( 1)(2 1) 0

    Therefore the roots of the given equation(ii) are

    1,

    m m

    m m m

    m m m

    m m

    m m

    1

    21 2

    1

    2

    Hence, the complimentary solution to the

    associated homogeneous equation (i) is given as

    xx

    cy c e c e

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    14/49

    2

    Now we assume that the particular integral

    cos sin

    . . .' 2 sin cos

    . . .

    '' 2 cos sin

    Substituting the values of , ', '' in the equation (A)we

    will ha

    p

    p

    p

    p p p

    y Ax Bx C D x E x

    Diff w r t x

    y Ax B D x E x

    Again diff w r t x

    y A D x E x

    y y y

    2 2

    2 2

    ve:

    4 2 cos 2 sin 6 3 3 sin 3 cos + x+ + cosx+ sin +3sin

    (6 ) (3 )cos (3 )sin (4 3 ) +3sin .................(iii)

    Equating like coefficient on both sides of equation (

    A D x E x Ax B D x E x Ax B C D E x x x

    Ax A B x E D x D E x A B C x x

    iii), we have:1

    6 0 6

    4 3 0 14

    3 - 0................................( )

    3 3 3 3 .............(v)

    A

    A B B

    A B C C

    E D iv

    and

    E D D E

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    15/49

    2

    Solving equation (iv) and (v) simultaneously we have:

    3E-D=0

    3E+9D=-9

    ......................

    -10D =99

    D=-10

    Now,

    93E+ 0

    10

    93

    10

    9 1 3*

    10 3 10Hence the particular integral :

    9 36 14 cos sin

    10 10

    an

    p

    p

    E

    E

    y is

    y x x x x

    1

    221 2

    d the general solution to the given non-homogeneous differential equation is:

    9 36 14 cos sin .

    10 10

    c p

    xx

    y y y

    y c e c e x x x x

    Answer# (2):-

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    16/49

    ' '

    ' '

    ' '

    2

    4 36 3

    To find the complementary function we solve the associated homogeneous

    differential equation:

    4 36 0

    4

    9 0

    The auxillary equation is

    9 0 3

    roots of the auxillary equ

    y y Csc x

    y y

    Dividing by

    y y

    m m i

    1 2

    1 2

    ation are complex. Therefore, the complementary

    function is

    cos3 sin 3

    From the complementary function, we have

    y cos3 , sin 3cos3 sin3

    (cos3 ,sin 3 ) 3-3sin3 3cos3

    Now by

    c y c x c x

    x y xx x

    W x xx x

    1 2

    dividing with 4, we put the given equation in the following

    standard form:

    1'' 9 csc3

    4

    1So we identify the function ( ) csc3

    4

    We shall now construct the determinants and

    y y x

    f x x

    W W

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    17/49

    1

    2

    1 2

    1 21 2

    0 sin31 1

    csc3 .sin314 4csc3 3cos3

    4

    cos 3 01 cos3

    1 4 sin33sin3 csc34

    Therefore the derivatives ' and ' are given by

    1 1 cos3' , '

    12 12 sin3

    Now i

    x

    W x xx x

    xx

    W xx x

    u u

    W W xu u

    W W x

    1 2

    ntegrating the last two equations . . , we obtain

    1 1' , ' ln sin3

    12 36

    The particular solution of the non-homogeneous equation is:

    1 1cos3 (sin3 ) ln sin 312 36

    Hence the general solution of the

    p

    w r t x

    u ux x

    y x x x x

    1 2

    given differential equation is:

    1 1cos3 sin3 cos3 (sin 3 ) ln sin3

    12 36c py y y c x c x x x x x

    Answer #(3):-

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    18/49

    ' ' ' '

    ' ' '

    3 2

    tan

    To find the complementary function we solve the associated homogeneous

    differential equation

    ' 0The auxillary equation is

    0 ( 1) 0

    0,

    Therefore, the complementary funct

    y y x

    y y

    m m m m

    m m i

    1 2 3

    1 2 3

    1 2 3

    1 2 3

    ion is

    cos3 sin 3

    ,

    1, cos , sin

    Now we compute the wronskian of , ,

    1 cos sin

    ( , , ) 0 - sin cos

    0 -cos - sin

    c y c c x c x

    Therefore

    y y x y x

    y y y

    x x

    W y y y x x

    x x

    1 3

    2 2

    By the elementary row operation , we have

    1 0 0

    0 - sin cos

    0 -cos - sin

    (sin cos ) 1 0

    The given differential equation is alrea

    R R

    x x

    x x

    x x

    st nd rd

    1 2 3

    dy in the required standard form

    ''' 0. '' ' 0. tan

    The determinants , and are found by replacing 1 ,2 ,3 column of by the column

    y y y y x

    W W W W

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    19/49

    2 2

    1

    2

    0 cos sin

    0 -sin cos tan (cos sin ) tan

    tan - cos - sin

    1 0 sin

    0 0 cos 1(0 cos tan ) s

    0 tan -sin

    x x

    W x x x x x x

    x x x

    x

    W x x x

    x x

    3

    1 2 3

    31 21 2 3

    in

    1 cosx 0

    0 sin 0 1( sin tan ) 0 sin tan

    0 cos tan

    Therefore the derivatives ' , ' , ' are given by

    ' tan , ' sin , ' sin tan

    N

    x

    and

    W x x x x x

    x x

    u u u

    WW Wu x u x u x x

    W W W

    1 2 3ow integrating these three derivatives of the function ' , ' , 'u u u

    11

    22

    33

    2

    2 2

    sintan ln cos

    cos

    sin cos

    sin tan

    sinsin sin seccos

    (cos 1)sec (cos sec sec )

    (cos sec ) cos sec

    sin ln sec tan

    W xu dx xdx dx x

    W x

    Wu dx xdx x

    W

    Wu dx x xdx

    W

    x x dx x xdxx

    x xdx x x x dx

    x x dx xdx xdx

    x x x

    2 2

    Thus, the particular solution of the non-homogeneous equation

    ln cos cos cos (sin ln sec tan )(sin )

    ln cos cos sin sin ln sec tan

    ln cos 1 sin ln sec tan

    Hence, the general equation of th

    p y x x x x x x x

    x x x x x x

    x x x x

    1 2 3

    e given differential equation is:

    cos sin - ln cos 1 sin ln sec tan y c c x c x x x x x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    20/49

    ASSIGNMENT 05

    Maximum Marks: 30

    uestion 1: Marks=10

    olve the initial value problem

    2

    2

    /

    2 2 4cos 2 int

    (0) 0 , (0) 3

    d x dx x t S

    dt dt

    x x

    Solution:

    2

    2

    mx 2

    2

    associated homogeneous equation

    2 2 0

    x=e , ,

    the auxiliary equation is

    m 2 2 0.

    2 4 81

    2

    mx mx

    t

    c

    First of all

    d x dxx

    dt dt

    By putting the

    x me x m e

    Then

    mfor finding roots

    m i

    Thus the complementry function is

    x e

    1 2cos sinc t c t

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    21/49

    p

    2

    2 2

    2

    2 2

    the particular integer

    x cos sin

    sin cos

    cos sin

    2 2 cos sin 2 sin 2 cos 2 cos 2 sin

    2 2 2 cos 2 sin

    in the give

    p

    p

    p p

    p

    p p

    p

    For

    A t B t

    x A t B t

    x A t B t

    d x dxx A t B t A t B t A t B t

    dt dt

    OR

    d x dx x A B t A B t

    dt dt

    By substituting

    n differencial equation,we have

    2 cos 2 sin 4cos 2sin

    coefficient,we obtain

    A+2B=42A+B=2

    A B t A B t t t

    The equation

    p

    c

    1 2

    1 2 1

    By solving these two equation,we get

    A=0,B=2

    Thus

    2sin

    of the differencial equation is as given below,

    (t) = x

    cos sin 2sin

    . . .

    cos sin sin

    p

    t

    t t

    t

    Hence general solution

    x

    t e c t c t t

    Diff w r t x

    t e c t c t e c t

    2

    1 2

    1 2

    1

    2

    -t

    cos 2cos

    Now we apply the boundry conditions

    0 0 , .1 .0 0 0 ,

    0 3 , .1 .1 2 3 ,

    solution of the initial value problem is

    =e sin 2

    0

    sin

    1

    c t t

    c c

    c

    c

    cc

    hus

    t t

    uestion 2: Marks=10

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    22/49

    olve by using (tx e )

    22 2

    23 5 sin(ln )

    d y dy x x y x x

    dx dx

    Solution:

    22 2

    2

    22

    2

    2 2

    t

    2 2

    3 5 sin(ln )

    First of all associated homegeneous differential equation is.

    3 5 0

    3 5) 0

    With the substitution of x=e , We have:

    xD= , 1

    So, the homegeneous di

    d y dyx x y x x

    dx dx

    d y dyx x y

    dx dx

    x D xD y

    x D

    fferential equation becomes,

    2

    2

    2

    2

    2

    2

    1 3 5 0

    3 5 0

    4 5 0

    4 5 0

    4 5 0

    y

    y

    y

    OR

    d dy

    dt dt

    d y dyy

    dt dt

    mt

    2 mt mt mt

    2 mt

    mt 2

    22

    By putting the y=e , We get the auxiliary equation as ,

    e 4 e 5e 0

    4 5 e 0

    0 , 4 5 0

    4 4 4 54 4 16 20

    2 2 2

    m m

    m m

    m m

    b b acm

    a

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    23/49

    2

    1 2

    2

    1 2

    2 2

    22

    2

    4 4 4 22

    2 2

    cos sin

    ln

    cos(ln ) sin(ln )

    Now the non-homogeneous equation becomes,

    So equation becomes

    2 5 sin

    By the method

    t

    c

    t

    t

    t

    ii

    y e c t c t

    where t x

    yc x c x c x

    according to condition

    x e

    so

    x e

    d y dy y e t dt dt

    2

    2

    2

    2

    2

    2

    2

    2

    2

    1

    of undetermined coefficient we try a particular

    olution of the form

    1( sin )

    4 5

    1(sin )

    2 4 2 5

    1(sin )

    1

    (sin )2

    cos2

    , ,

    ( cos

    t

    p

    t

    p

    t

    p

    t

    p

    t

    p

    c p

    t

    y e t

    y e t

    y e t

    ty e t

    ty e t

    So the General solution

    y y y

    y e c t c

    2

    2

    22

    1 2

    sin ) cos2

    lncos ln sin ln cos ln , ln2

    ttt e t

    x xy x c x c x x Where t x

    Question 3: Marks=10

    nd the interval of convergence of the power series

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    24/49

    0 (2 )!

    n

    n

    x

    n

    Solution:or finding interval of the series we use ratio test

    1

    1

    1

    1

    1

    2 !lim lim .

    2 1 !

    2 !.lim lim .

    2 1 !

    . 2 !

    lim lim 2 2 !

    2 !lim lim

    2 2 !

    2 !lim

    2 2 (2 1) (2 )!

    1lim 0 1

    2 2 (2 1)

    n

    n

    nn nn

    n

    n

    nn nn

    n

    n nn

    n

    n nn

    n

    n

    na x

    a n x

    na x x

    a xn

    x na

    a n

    nax

    a n

    nx

    n n n

    xn n

    Thus the power series converge

    .s x

    hus the interval of the convergence of the given series is ,

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    25/49

    Assignment 6

    uestion 1: Marks=10

    ind solution of the differential equation

    / /4 0y y

    in the form of a powers series in x.

    Solution:

    We assume that a solution of the given differential equation is

    0

    0 1

    n n

    n n

    n n

    y c x c c x

    Then term by term differentiation

    1 1

    1

    1 2

    n n

    n n

    n n y nc x c nc x

    22

    1n

    n

    n

    y n n c x

    Substituting the expression for/ /

    y and y .

    we get

    2

    2 04 4 1

    n n

    n nn ny y n n c x c x

    Notice that both series start with 0x . If we, respectively, substitute

    k= n - 2, k= n, k= 0,1, 2,K

    In the first series and second series on the right hand side of the last equation.

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    26/49

    Then we after using, in turn, n = k+ 2 and n k, we get

    20 0

    4 4 2 1k k

    k k

    k k

    y y k k c x c x

    20

    4 4 2 1k

    k k

    k

    y y k k c c x

    Substituting in the given differential equation, we obtain

    20

    4 2 1 0k

    k k

    k

    k k c c x

    24 2 1 0

    k kk k c c

    2, k=0,1,2,k

    4 2 1

    kk

    cc

    k k

    From iteration of this recurrence relation it follows that

    0 02 24.2.1 2 .2!

    c cc

    1 13 24.3.2 2 .3!

    c cc

    024 4

    3 15 4

    4.4.3 2 .4!

    4.5.4 2 .5!

    cc

    c c

    046 6

    5 17 6

    4.6.5 2 .6!

    4.7.6 2 .7!

    cc

    c c

    o on

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    27/49

    his iteration leaves both0

    c and1

    c arbitrary.

    We have

    2 3 4 5 6 7

    0 1 2 3 4 5 6 7 c c x c x c x c x c x c x c x L

    2 3 4 5 6 70 0 01 1 10 1 2 2 4 4 6 62 .2! 2 .3! 2 .4! 2 .5! 2 .6! 2 .7!

    c c cc c cy c c x x x x x x x L

    r

    2 4 6 3 5 710 12 4 6 2 4 6

    1 1 1 1 11

    2 .2! 2 .4! 2 .6! 2 .3! 2 .5! 2 .7!

    cy c x x x L c x x x x L

    a general solution.

    When the series are written in summation notation,

    2 2 1

    1 0 2 1

    0 0

    1 1and 2

    2 ! 2 2 1 ! 2

    k kk k

    k k

    x xy x c y x c

    k k

    he ratio test can be applied to show that both series converges for allx.

    Maclaurin series as 1 0 cos / 2 y x c x and 2 12 sin / 2 y x c x

    uestion 2: Marks=10

    Whether 3x are singular points of the equation

    2 2 / / / 9) ( 3) 0x y x y y

    Solution:

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    28/49

    2 2 / / / ( 9) ( 3) 0 x y x y y

    Dividing the equation by 2 2( 9)x = 2 2( 3) ( 3)x x

    / / /

    2 2 2 2

    / / /

    2 2 2

    2 2 2

    ( 3) 10

    ( 3) ( 3) ( 3) ( 3)

    1 10

    ( 3)( 3) ( 3) ( 3)

    1 1and q x

    ( 3)( 3) ( 3) ( 3)

    x y y y

    x x x x

    y y y x x x x

    Where

    p x x x x x

    X=3 is regular singular points because power of x-3 in P (x) is 1 and in Q (x) is 2

    X= -3 is an irregular singular point because power of x+3 in P (x) is 2.

    Question 3(a) : Marks=5

    ind the general solution of the equation

    2 / / / 2 1( ) 016

    x y x y x y

    Solution:

    The Bessel differential equation is

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    29/49

    2 / / / 2 2

    2 / / / 2

    ( ) 0 1

    1( ) 0 2

    16

    x y x y x v y

    x y x y x y

    Comparing 1 and 2 we get

    2 1 1, therefore v=16 4

    v

    So, the general solution of 1 is

    1 1/ 4 2 1/ 4y C J x C J x

    Question 3(b) : Marks=10

    erive the expression of3

    ( )2

    n J x for n

    Solution:

    Consider

    1 12

    v v vv

    J x J x J xx

    For1

    2v

    1 1 11 12 2 2

    122

    J x J x J xx

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    30/49

    3 1 12 22

    3 1 12 22

    1

    1

    J x J x J xx

    J x J x J xx

    we know that

    1/ 2 1/ 22 2

    ( ) sin , ( ) cos J x x J x xx x

    3

    2

    32

    1 2 2sin cos

    2 sincos

    J x x x x x x

    x J x x

    x x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    31/49

    Assignment 7

    Q No.1Solve the system of equation by systematic elimination

    1 1 2

    3 2 1

    D x D y

    x D y

    Solution:

    1 1 2 (1)

    3 2 1 (2)

    D x D y

    x D y

    From equation (2)

    1 2

    3

    D yx

    Putting in equation (1), then we have

    1 2

    1 1 23

    D y D D y

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    32/49

    2 5 7D y

    The associated homogenous equation is

    2 5 0D y

    The auxiliary equation is

    2 5 0m

    Roots are 5m i

    1 2cos 5 sin 5

    c y c t c t

    Now to determine the particular solutionp

    y

    '

    ''

    0

    0

    p

    p

    p

    y A

    y

    y

    Thus substituting in the given D.E, we have

    '' 5 7p py y

    Equating the coefficients and constants terms gives.

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    33/49

    5 7

    7

    5

    A

    A

    Hence the solution of variable y is given by

    c p y y y

    1 2

    7cos 5 sin 5

    5 y c t c t

    From equation (1) we have

    1 3

    2

    xy

    D

    Putting in equation (2)

    2 1 1 1 3 2 2 D D x D x D

    2 1 1 3 1 2 2 D D x D x D D

    2 5 3D x

    The auxiliary equation of the differential equation for x is

    2 5 0m

    Roots are 5m i

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    34/49

    The roots of the auxiliary equation are complex. Therefore

    3 4cos 5 sin 5

    c x c t c t

    We assume that

    px A

    '

    ''

    0

    0

    p

    p

    x

    x

    Substituting in the differential equation we have.

    '' 5 3p p

    x x

    Equating the coefficients we have

    5 3A 3

    5A

    so that

    c p x x x

    3 4

    3

    cos 5 sin 5 5 x c t c t

    Thus

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    35/49

    3 43

    ( ) cos 5 sin 55

    x t c t c t

    1 2

    7( ) cos 5 sin 5

    5 y t c t c t

    Q No. 2: If possible rewrite the following equations in the canonical form

    '' '

    '' '

    2

    3

    x y

    x y

    SOLUTION:

    Writing the system in the operator form

    2

    2

    2

    3

    D x Dy

    D x Dy

    2

    2

    2

    3

    0 1

    D x Dy

    D x Dy

    This is absurd. Thus the given system cannot be reduced to a canonical form.Hence the system is a degenerate system.

    Q No. 3: Solve the following system of linear equations by Gaussian elimination method

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    36/49

    1 3

    1 2 3

    1 2 3

    2 1

    2 4 2

    8 3 2

    x x

    x x x

    x x x

    Solution

    2 0 1 1

    2 4 1 2

    1 8 3 2

    Theaugmented matrixof the systemis

    By interchanging 13R

    1 8 3 2

    2 4 1 2

    2 0 1 1

    1 2

    1 8 3 2

    0 20 5 6 2

    2 0 1 1

    R R

    1 3

    1 8 3 2

    0 20 5 6 2

    0 16 7 3

    R R

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    37/49

    2

    1 8 3 2

    5 60 1

    20 20 20

    0 16 7 3

    R

    2 3

    1 8 3 2

    5 60 1 16

    20 20

    90 0 3

    5

    R R

    3

    1 8 3 2

    5 60 1

    20 20 3

    30 0 1

    5

    R

    1 8 3 2

    5 60 1

    20 20

    30 0 1

    5

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    38/49

    1 2 3

    2 3

    3

    8 3 2

    5 6

    20 203

    5

    Thelast matrix is in row echelon form and representsthe system

    x x x

    x x

    x

    2

    2

    1

    1

    1 2 3

    5 3 6

    20 5 20

    9

    20

    9 38 3 2

    20 5

    1

    5

    lg

    1 9 3, ,

    5 20 5

    x

    x

    x

    x

    Solution set of given system of linear a ebraic equation

    x x x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    39/49

    Assignment 8

    Question # 1:- Find the Eigen values and Eigen vectors of the following matrix

    7 2 1

    2 15 2

    1 2 7

    A

    Solution:

    For Eigenvalues

    det 0

    7 2 1 1 0 0

    2 15 2 0 1 0 0

    1 2 7 0 0 1

    A I

    7 2 1

    det 2 15 2 0

    1 2 7

    A I

    Expanding the determinant

    det 1( 2( 2) 1 15 ) 2 2 7 2

    7 15 7 2 2

    A I

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    40/49

    We have

    27 ( 22 96) 0

    7 16 6 0

    Thus the Eigen values of the matrix are

    1 2 37, 16, 6

    For Eigenvectors are:

    For 1 7 we have

    =>

    0

    0

    0

    =>By row reducing the augmented matrix

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    41/49

    1 3

    2 1

    2

    2 3 1 2

    2

    &

    0

    0

    0

    2

    0

    0

    0

    2

    0

    0

    0

    &

    0

    0

    0

    2

    0

    0

    0

    ExchangingR R

    R R

    R

    R R R R

    R

    Thus we have the following equations in k1, k2, and k3. The number k3 can be chosen

    arbitrarily.

    1 3, 2 3

    1

    2k k k k

    Choosing 3K = 1, we get k1=1 and k2 = , hence the eigenvector corresponding 1 7 is

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    42/49

    1

    1

    4

    1

    K

    1

    1

    1

    2

    1

    K

    For2

    16 we have

    0

    16 0 0

    0

    A

    ]

    By the row reducing the augmented matrix

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    43/49

    1 3

    2 1 3 1

    2

    3 2

    0

    0

    0

    &

    0

    0

    0

    2 & 9

    0

    0

    0

    50

    0

    0

    20

    0

    0

    0

    Exchanging R R

    R R R R

    R

    R R

    1 22

    0

    0

    0

    R R

    Thus we have the following equations in k1, k2, and k3. The number k3 can be

    chosen arbitrarily.

    1 3, 2 34k k k k

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    44/49

    Choosing k3 = 1, we have 1K =1 and k2 = -4, hence the eigenvector corresponding

    216 is

    2

    1

    41

    K

    For2

    6 we have

    0

    6 0 0

    0

    A

    2 1 3 1

    2

    1 2

    0

    0

    0

    2 &

    0

    0

    0

    5

    0

    0

    0

    2

    0

    0

    0

    R R R R

    R

    R R

    Now, we have the following equations in k1, k2, and k3. The number k3 can be chosen

    arbitrarily.

    => 1 3, 2 0k k k

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    45/49

    26

    Choosing k3 = 1, we get k1= -1 and k2 = 0,

    Hence the eigenvector corresponding

    2 6

    3

    1

    0

    1

    K

    Question # 2:

    Solve the homogeneous system of differential equations

    2 3

    2

    dxx y

    dt

    dyx y

    dt

    Solution:

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    46/49

    The given system can be written in the matrix form as

    2 32 1

    dx

    xdtdy y

    dt

    Therefore, the coefficient matrix

    2 3

    2 1A

    Now se find the eigenvalues and eigenvectors of the coefficient A. The characteristics equation

    is

    2

    det 0

    2 30

    2 1

    3 4 0

    A I

    Therefore, the characteristic equations

    1 4 0 1,4

    Therefore roots of the characteristic equation are real and distinct and so ate the eigenvalues,

    For 1 , we have

    1

    2

    1 2

    1 2

    1 2

    1 2

    2 1 3

    2 1 1

    3 3

    2

    0

    3 3 0

    2 0

    k A I K

    k

    k k A I K

    k k

    A I K

    k k

    k k

    These two equations are nod different and represent the equation.

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    47/49

    Thus we can choose value of the constant k2 arbitrarily, If we choose2

    K = -1 then

    1K = 1.

    Thus the corresponding eigenvector is

    1

    1

    1K

    For =4 we have

    1

    2

    1 2

    1 2

    1 2

    1 2

    2 4 3

    2 1 4

    2 3

    2 3

    0

    2 3 0

    2 3 0

    k A I K

    k

    k k A I K

    k k

    A I K

    k k

    k k

    Again the above two equations are not different and represent the equation

    21 2

    32 3 0

    2

    kk k

    Again m the constant k2 can be chosen arbitrarily. Let us choose k2 = 2 then k1 = 3.

    Thus the corresponding eigenvector is

    4

    1 2

    1 3,

    1 2

    t t X e X e

    Hence the general solution of the system is the following

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    48/49

    1 1 2 2

    4

    1 2

    4

    1 2

    41 2

    1 3,

    1 2

    ( ) 3

    ( ) 2

    t t

    t t

    t t

    X c X c X

    X c e c e

    x t c e c e

    y t c e c e

    4

    1 2

    4

    1 2

    ( ) 3

    ( ) 2

    t t

    t t

    x t c e c e

    y t c e c e

    Question # 3: Write the given system in matrix form

    2

    2

    1

    2 3

    2

    dxx y z t

    dt

    dy x y z t

    dt

    dzx y z t t

    dt

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2007

    49/49

    Solution:-

    In the matrix notation

    ' 2

    1 1 1 0 1 1

    2 1 1 3 0 0

    1 1 1 1 1 2

    X X t t

    '

    2

    1 1 1

    2 1 1

    1 1 1

    0 1 1

    3 0 0

    1 1 2

    X X g t

    Where g t

    t t