12
Lecture 4 Laplace Transform: Motivation Differential equations model dynamic systems Control system design requires simple methods for solving these equations! Laplace Transforms allow us to systematically solve linear time invariant (LTI) differential equations for arbitrary inputs. easily combine coupled differential equations into one equation. use with block diagrams to find representations for systems that are made up of smaller subsystems. u x b x m = + & & & Lecture 4 Laplace and Inverse Laplace Dr. Kalyana Veluvolu 1 2 Laplace Transforms: Laplace transform of a time domain function f(t) is (Doubled-sided Laplace transform) where s = σ + jω is the complex variable. In most engineering problems, f(t) is causal, i.e. Thus, single-sided Laplace transform is used, i.e. { } - - = = τ τ τ d e f s F t f s ) ( ) ( ) ( L 0 for 0 ) ( < = t t f { } - = = 0 ) ( ) ( ) ( τ τ τ d e f s F t f s L Lecture 4 Laplace and Inverse Laplace Dr. Kalyana Veluvolu Laplace Transform Example 1 Example: Show that Notation for “unit step” Lecture 4 Laplace and Inverse Laplace Dr. Kalyana Veluvolu 3 Laplace Transform Example 1 contd.. Lecture 4 Laplace and Inverse Laplace Dr. Kalyana Veluvolu 4

Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

Lecture 4

Laplace Transform: Motivation

Differential equations model dynamic systems

Control system design requires simple methods for solving these equations!

Laplace Transforms allow us to

– systematically solve linear time invariant (LTI) differential equations for arbitrary inputs.

– easily combine coupled differential equations into one equation.

– use with block diagrams to find representations for systems that are made up of smaller subsystems.

uxbxm =+⇔ &&&

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

1 2

Laplace Transforms:

Laplace transform of a time domain function f(t) is

(Doubled-sided Laplace transform)

where s = σ + jω is the complex variable.

In most engineering problems, f(t) is causal, i.e.

Thus, single-sided Laplace transform is used, i.e.

{ } ∫∞

∞−

−== ττ τdefsFtf

s)()()(L

0for 0)( <= ttf

{ } ∫∞

−==

0

)()()( ττ τdefsFtf

sL

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

Laplace Transform Example 1

Example:

Show that

Notation for “unit step”

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

3

Laplace Transform Example 1 contd..

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

4

Page 2: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

Laplace Transform of a Unit Step

Find the Laplace Transform for the following function

∞≤≤

=otherwise0

01)(

ttu s

[ ]

s

s

es

dtesFstst

1

101

11)(

00

=

−−

=

−==

−−

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

5

Example 2

Find the Laplace Transform for the following function

≤≤

=otherwise0

103)(

ttf

[ ]

[ ]s

s

stst

es

es

es

dtesF

−−

−=

−−

=

−==

−−

13

13

33)(

1

0

1

0

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

6

The function with the simplest Laplace Transform (1)

A special input (class) has a very simple Laplace Transform

The impulse function:

– Has unit “energy”

– Is zero except at t=0

Think of pulse in the limit

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

( ) ( )( ) 1t

sFtf

δ

7

LT Properties: Scaling and Linearity

Proof: Both properties inherited from linearity of integration and

the Laplace Transform definition

( ) ( )( ) ( )

( ) ( ) ( ) ( )sFsFtftf

saFtaf

sFtf

2121 ++

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

8

Page 3: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

Example 3

Find the following Laplace Transforms

Use Euler’s Formula

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

( )tjtjee

jt

ωωω −−=2

1sin

[ ]

22

11

2

1sin

ω

ω

ωωω

+=

+−

−=

s

jsjsjtL [ ]

22

11

2

1cos

ω

ωωω

+=

++

−=

s

s

jsjstL

( )tjtjeet

ωωω −+=2

1cos

( ) ( )

( )

( )22

22

cos

sin

ωω

ω

ωω

+

+

s

st

st

sFtf

9

LT Properties: Time and Frequency Shift

Proof of frequency shift: Combine exponentials

( ) ( )( ) ( ) ( )

( ) ( )σ

ττσ

τ

+

−−−

sFtfe

sFetutf

sFtf

t

s

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

10

Example 4

[ ]

22

22

)(

cos

ω

ωω

++

+=

+=

+=

as

as

s

ste

ass

atL

[ ]

22

22

)(

sin

ω

ω

ω

ωω

++=

+=

+=

as

ste

ass

atL

( ) ( )

( )( )

( )( ) 22

22

cos

sin

ωω

ω

ωω

++

+++

as

aste

aste

sFtf

at

at

Find the following Laplace Transforms

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

11

LT Properties: Integration & Differentiation

Proof of Differentiation Theorem: Integration by parts

∫∫ −= vduuvudv

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

12

Page 4: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

LT Properties: Integration & Differentiation

( ) ( )

( ) ( ) ( )

( )( )

( )∫∫ ∞−∞−

+

01

0

ττττ dfss

sFdf

fssFtfdt

d

sFtf

t

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

13

Some Examples:

[ ] [ ]2

111)(

ssstdtut === ∫LL

1)0(1)(

=−=

−u

ss

dt

tduL Impulse!

10

1

1)sin(22 +

=−+

=

s

s

ss

dt

tdL Cosine!

[ ]( )22

11

asste

ass

at

+==

+=

−L

( ) ( )

( )

( )

( )1

sin

1

1

1

2

2

2

+

+

s

st

dt

d

tudt

d

aste

st

sFtf

at

Derivative of a step?

Derivative of sine?

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

14

15

Properties of the Laplace Transforms

Let F(s) = LLLL {f(t)}.

(1) Time Differentiation

(2) Time Integration

(3) Complex Translation (Shifting in the s-domain)

in

inn

i

in

n

n

dt

fdssFstf

dt

d

−−

−−−

=∑−=

1

11

0

)0()()(L

n

t t t

ns

sFddf

n )()(

1 2

0 0 0

11 =

∫ ∫ ∫ τττ LLL

{ } )()( asFtfe at ±=mL

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

16

(4) Real Translation (Shifting in the time domain)

where u(t – T) is a shifted unit-step function.

(5) Real Convolution (Complex Multiplication)

(6) Initial Value Theorem

{ } )()()( sFeTtuTtfsT−=−−L

∫∫ −=−=∗

tt

dtffdtfftftf0

12

0

2121 )()( )()()()( ττττττ

{ } )()()()( 2121 sFsFtftf =∗L

)(lim)0()(lim0

ssFftfst ∞→→

==

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

Page 5: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

17

(7) Final Value Theorem

provided sF(s) is analytic in the closed right-half of the s–plane

(i.e. the denominator of sF(s) has no roots on the jω−axis or in the

right-half of the s–plane).

Example: Consider

i.e.

and hence So, yss = 1.

Alternatively, by final value theorem, we have

)(lim)(lim0

ssFtfst →∞→

=

ssR

sssT

sR

sY 1)( ;

)2)(1(

2)(

)(

)(=

++==

2( ) 1 2 .

t ty t e e

− −= + −

1)(lim)(lim0

===→∞→

ssYtyyst

ss

2 1 2 1( )

( 1)( 2) 1 2=Y s

s s s s s s= − +

+ + + +

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

18

Example:

In this case, denominator of F(s) has 2 roots on the jω−axis, so the

f.v.t. cannot be used. (If we applied the f.v.t., it gives a final value of

zero which is wrong!)

ttfs

sF ωω

ωsin)( i.e )(

22=

+=

Example:

Clearly, sF(s) is analytic in the closed right-half of the s–plane, so

the f.v.t. can be applied to give

)2(

5)(

2 ++=

ssssF

2

5)(lim)(lim

0===

→∞→ssFtff

stss

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

Basic Laplace Transform Pairs

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

19

Inverse Laplace Transform

1σ• is such that the integral is taken over a line in the region

of convergence

• Very difficult to apply directly

• Instead, we convert X(s) to a form such that we can easily

find the inverse

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

20

Page 6: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

Example

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

21

The differentiation theorem

Higher order derivatives

Laplace Differentiation Theorem

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

22

Differentiation Theorem

Differentiation Theorem when initial conditions are zero

( ) ( ) ( ) ( ) ( )−

−−−−− −−−−↔ 000

1

121 f

dt

df

dt

dsfssFstf

dt

dn

nnnn

n

n

K

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

23

Solving Differential Equations: an Example

Consider0,1 ≥= t

dt

dx

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

24

Page 7: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

Solving Differential Equations: an Example

Solution Summary

– Use differentiation theorem to take Laplace Transform of the

differential equation

– Solve for the unknown Laplace Transform Function

– Find the inverse Laplace Transform

( ) ( ) 0,0 ≥+= − txttx

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

25

Example 5

Find the Laplace Transform for the solution to

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )[ ] ( ) 120300

00...0

2

121

=+−+−−⇒

−−−−=

−−−

sXxssXxsxsXs

fsffssFstfdt

dL

nnnn

n

n

&

Notation:

( ) ( ) 30,100,123 −==≥=++ xxtxxx &&&&

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

26

Partial Fraction Expansions

In general, ODEs can be transformed into a function that is expressed

as a ratio of polynomials

In a partial fraction expansion we try to break it into its parts, so we can

use a table to go back to the time domain:

Three ways of finding coefficients

– Put partial fraction expansion over common denominator and

equate coefficients of s (Example 1)

– Residue formula

– Equate both sides for several values of s (not covered)

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

27

Partial Fraction Expansions

Have to consider that in general we can encounter:

– Real, distinct roots

– Real repeated roots

– Complex conjugate pair roots (2nd order terms)

– Repeated complex conjugate roots

222

2

222

11 ))(()()()(

)()(

bas

GFsEs

bas

DCs

ps

B

ps

AK

sD

sNsX

++

+++

++

++

++

++==

Dr. Kalyana Veluvolu

Page 8: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

Example 6

Given X(s), find x(t).

Step 1:

Factorize the denominator, then use partial fraction expansion:

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

29

Step 2: Finding A, B, and C

To solve, re-combine RHS and equate numerator coefficients (“Equate

coefficients” method)

Example 6 contd..Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

30

Finally,

Since

By inspection,

α

α

+↔≥−

s

KtKe

t 0,

( ) 0,2

52

2

1 2 ≥+−= −−teetx

tt

Example 6 contd..

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

31

Residue Formula (1)

The residue formula allows us to find one coefficient at a time by

multiplying both sides of the equation by the appropriate factor.

Returning to Example 1:

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

32

Page 9: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

Residue Formula (2)

For Laplace Transform with non-repeating roots,

The general residue formula is:

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

33

)2(

1

)1(

2)(

+

−+

+=

sssX 0,2)( 2 ≥−= −− teetx tt

( ) ( ) ( )( )

( ) 0)(21)(3)(

0)(20)(300)(

2

2

=+−+−

=+−+−−

sXssXssXs

sXxssXxsxsXs &

3)()23( 2 +=++ ssXss

)2()1()2)(1(

3)(

++

+=

++

+=

s

B

s

A

ss

ssX

( ) ( ) 221

311

1=

+−

+−=+=

−=ssXsA ( ) ( ) 1

12

322

2−=

+−

+−=+=

−=ssXsB

Example 7: Find the solution to the following differential equation:

0)0( 1(0) 023 ===++ xxxxx &&&&

Solution:

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

34

Inverse Laplace Transform with Repeated Roots

Now we will consider partial fraction expansion rules for functions

with repeated (real) roots:

– # of constants = order of repeated roots

Example:

23223

4

)3()3(3)3(

)1(

s

E

s

D

s

C

s

B

s

A

ss

s++

++

++

+=

+

+

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

35

1)3()3(3)1()3(

)1(23223

4

−+++

++

++

+=

−+

+

s

F

s

E

s

D

s

C

s

B

s

A

sss

s

The easiest way to take an inverse Laplace transform is to use a table

of Laplace transform pairs.

Repeated real roots in Laplace transform table

( )

( )222

222

1

2

)(

)(2)sin(

2)sin(

)(

1

!

)(

1

)()(

ω

ωω

ω

ωω

++

++

+

+

+

as

astte

s

stt

asn

et

aste

sFtf

at

n

atn

at

Repeated Real Roots

Repeated Imaginary Roots

(also use cosine term)

Repeated Complex Roots

(also use cosine term)

}

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

36

Page 10: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

Example with repeated roots

Find x(t)

Take Laplace Transform of both sides:

tef

2−=

21

1x

( ) ( ) 10,00

2 2

==

=++ −

xx

exxx t

&

&&&

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

37

Example with repeated roots

Terms with repeated roots:

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

38

Example with repeated roots

C = 1B = 2

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

39

Example

Find the solution to the following differential equation

0)0(1)0(044 ===++ xxxxx &&&&

( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( )

( )[ ]

( )( ) ( )

( ) ( ) ( )

( )( )( )

( ) tt

ss

teetx

Ass

sA

s

s

ssXsB

s

B

s

A

s

ssX

ssssX

sXssXssXs

sXxssXxsxsXs

22

22

22

2

22

2

2

2

2

1:2

22

2

4

242

222

4

444

04440

040400

−−

−=−=

+=

=⇒+

++=

+

+

=+=+=

++

+=

+

+=

+=++

=+−+−−

=+−+−− &

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

40

Page 11: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

Inverse Laplace Transform with Complex Roots

To simplify your algebra, don’t use first-order denominators such as

Instead, rename variables

So that

21 KKB += ( ) ( )( )21 11 KjKjC −++=

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

41

More Laplace transform pairs (complex roots):

Also, see the table in your textbook and most other control systems

textbooks.

Laplace Transform Pairs for Complex Roots

22

22

)()sin(

)()cos(

)()(

ωσ

ωω

ωσ

σω

σ

σ

++

++

+

ste

s

ste

sFtf

t

t

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

42

Example with complex roots

Example: find x(t)

Laplace Transform

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

43

Example with complex roots (2)

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

44

Page 12: Differential equations model dynamic systems Laplace transform …ncbs.knu.ac.kr/Teaching/ACS_Files/ACS_Week3a.pdf · 2017-03-05 · Laplace Transform of a Unit Step Find the Laplace

Example with complex roots (3)

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

45

Example with complex roots (4)

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

46

Example

Find solution to the following differential equation

0)0(1)0(084 ===++ xxxxx &&&&

( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( )

( )

( )

( ) ( )

( ) ( ) ( )tetetx

ss

s

s

s

ss

ssX

sXssXssXs

sXxssXxsxsXs

tt 2sin2cos

22

2

22

2

42

4

84

4

0844

080400

22

2222

2

2

2

2

−− +=

+++

++

+=

++

+=

++

+=

=+−−−

=+−+−− &

Lecture 4

Laplace and Inverse Laplace

Dr. Kalyana Veluvolu

47