28
Department of EECS University of California, Berkeley Prof. Ali M. Niknejad Differential Amplifiers

Differential Amplifiersrfic.eecs.berkeley.edu/105/pdf/module4-6_Diffamps_p2.pdf · 2017-04-28 · EE 105 Fall 2016 Prof. A. M. Niknejad 2 Why Differential? zDifferential circuits

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Department of EECS University of California, Berkeley

Prof. Ali M. Niknejad

Differential Amplifiers

EE 105 Fall 2016 Prof. A. M. Niknejad

2

Why Differential?

z Differential circuits are much less sensitive to noises and interferences

z Differential configuration enables us to bias amplifiers and connect multiple stages without using coupling or bypass capacitors

z Differential amplifiers are widely used in IC’s– Excellent matching of transistors, which is critical for

differential circuits– Differential circuits require more transistors Æ not an

issue for IC

EE 105 Fall 2016 Prof. A. M. Niknejad

3

Goal: Differential Gm

z What’s wrong with this circuit?

EE 105 Fall 2016 Prof. A. M. Niknejad

4

Add a buffer to source side…

EE 105 Fall 2016 Prof. A. M. Niknejad

5

A symmetric pair is born…

EE 105 Fall 2016 Prof. A. M. Niknejad

6

MOS Differential-Pair Basic Configuration

EE 105 Fall 2016 Prof. A. M. Niknejad

7

Common Mode InputsDifferential Pair

Rejects Common-Mode Inputs

EE 105 Fall 2016 Prof. A. M. Niknejad

11

Small Signal Operation

EE 105 Fall 2016 Prof. A. M. Niknejad

12

Differential Symmetry

EE 105 Fall 2016 Prof. A. M. Niknejad

13

Differential Half Circuit

Q1 biased at I2

Ad =vod2vid2

= vodvid

= gm RD || ro( )

EE 105 Fall 2016 Prof. A. M. Niknejad

16

CM Symmetry

EE 105 Fall 2016 Prof. A. M. Niknejad

17

CM AC Equivalent Circuit

Non-ideal current source consists of an ideal current source shunted by a large resistance, RSS

EE 105 Fall 2016 Prof. A. M. Niknejad

18

Common Mode “Half Circuit”

EE 105 Fall 2016 Prof. A. M. Niknejad

19

Ideal CM Output Voltage

Common-Source with degeneration

EE 105 Fall 2016 Prof. A. M. Niknejad

20

Common Mode Gain with Mismatched RDHowever, any mismatch in the half circuitswill produce finite output voltage, e.g., RD2 = RD +DRD

vod = vo2 - vo1 =- DRD2RSS

vicm

Common mode gain:

Acm =vodvicm

= - DRD2RSS

= - RD2RSS

æ

èç

ö

ø÷DRDRD

æ

èç

ö

ø÷

Common Mode Rejection Ratio (CMRR):

CMRR ºAdAcm

, in dB: CMRR(dB) º 20 logAdAcm

CMRR should be as large as possible. For the above case,

CMRR = gmRDDRD2RSS

= 2gmRSSDRDRD

æ

èç

ö

ø÷

EE 105 Fall 2016 Prof. A. M. Niknejad

21

Common Mode Gain with Mismatch of gm

Mismatch in gm :

gm1 = gm +12Dgm; gm2 = gm -

12Dgm

gm1 - gm2 =Dgm

(Derivation skipped)

Acm =vodvicm

= RD2RSS

Dgmgm

CMRR = gmRDRD

2RSSDgmgm

= 2gmRSSDgmgm

æ

èç

ö

ø÷

EE 105 Fall 2016 Prof. A. M. Niknejad

22

DC Offset

Due to mismatch in RD, output voltage VO ¹ 0 even both inputsare grounded. To produce zero output, an input offset voltage

VOS =VOAd

, where Ad is differential gain, needs to be applied.

EE 105 Fall 2016 Prof. A. M. Niknejad

23

DC Offset

For example, DC offset caused by mismatch in RD :

RD1 = RD +DRD / 2; RD2 = RD - DRD / 2; VO =VD2 - VD1 =I2DRD

VOS =VOAd= IDRD / 2gmRD

= IDRD / 2

2 I / 2VOV

æ

èç

ö

ø÷RD

= VOV2DRDRD

EE 105 Fall 2016 Prof. A. M. Niknejad

24

Differential Input, Single-End Output

Differential-in, Differential-out Differential input, Single-ended Output

EE 105 Fall 2016 Prof. A. M. Niknejad

25

Current Mirror Load (1)

AC equivalentcircuit for differential input

Current mirror forces small-signal currents through Q3 and Q4 to be the sameÆ output currents = 2x that of half circuit

EE 105 Fall 2016 Prof. A. M. Niknejad

26

Current Mirror Load (2)

Short-circuit transconductance of differntial pair with current mirror load:

Gm =iovid

; io : output current with short-circuit load

io = gm2vid2

æèç

öø÷- gm4vgs4; vgs4 = vgs3 = - gm1

vid2

æèç

öø÷

1gm3

|| ro3 || ro1æèç

öø÷» - gm1

gm3

vid2

gm1 = gm2 = gm; gm3 = gm4 Þ io = gmvid Þ Gm = gm

EE 105 Fall 2016 Prof. A. M. Niknejad

27

Current Mirror Load (3)

Output resistance,Rout = Rop || Ron = ro4 || ro2

Ad =GmRout = gm ro4 || ro2( )RopRon

Rout

EE 105 Fall 2016 Prof. A. M. Niknejad

28

Common Mode Gain

Common mode gain (derivation skipped):

Acm » -1

2gm3RSS

CMRR = AdAcm

= gm ro4 || ro3( )×2gm3RSS

For ro4 = ro3 = ro and gm = gm3

CMRR = gmro( ) gmRSS( )