32
DIESEL STORAGE TANK DESIGN CALCULATION - API 650 1 .0 DESIGN CODE & SPECIFICATION DESIGN CODE : API 650 11th 1 .1 TANK Item number : 1 Roof ( Open/Close ) : Close Type of roof ( Cone-roof / Dome-roof / Flat-roof / NA ) : Cone-roof 1 .2 GEOMETRIC DATA Inside diameter , Di ( corroded 14,000 mm ) = 14,006 Nominal diameter, Dn ( new ) ( based on 1st shell course ) = 14,010 Nominal diameter, Dc ( corroded ) ( based on 1st shell course = 14,013 Tank height (tan/tan), H = 7,353 Specific gravity of operating liquid , S.G. (Actual) = 0.850 Specific gravity of operating liquid , S.G. (Design) = 0.85 Nominal capacity , V = 1133 Maximum design liquid level, HL = 7,353 1 .3 PRESSURE & TEMPERATURE Design pressure : Upper , Pu (Atmospheric) = 0.00 : Lower , Pl = 0.00 Design temperature : Upper , Tu = 70 : Lower , Tl = -17 1 .4 MATERIAL & MECHANICAL PROPERTIES Component Material Tensile Yield Corrosion Stress Stress Allowance St(N/mm²) Sy(N/mm²) c.a.(mm) PLATE Shell Plate ( Mat'l Code # 1 ) A 516 GR. 65N 448.00 241.00 3.000 ( Mat'l Code # 2 ) A 516 GR. 65N 448.00 241.00 3.000 Annular Plate A 516 GR. 65N 448.00 241.00 3.000 Bottom Plate A 516 GR. 65N 448.00 241.00 3.000 Roof Plate A 516 GR. 65N 448.00 241.00 3.000 STRUCTURE MEMBERS Roof structure (rafter,bracing, A 516 GR. 65N 448.00 241.00 3.00 Top Curb Angle A 516 GR. 65N 448.00 241.00 3.00 Intermediate Wind Girder A 516 GR. 65N 448.00 241.00 3.00

Diesel Tank Taluksangay

Embed Size (px)

DESCRIPTION

api 650

Citation preview

Page 1: Diesel Tank Taluksangay

DIESEL STORAGE TANK DESIGN CALCULATION - API 650

1 .0 DESIGN CODE & SPECIFICATIONDESIGN CODE : API 650 11th Edition

1 .1 TANKItem number : 1Roof ( Open/Close ) : CloseType of roof ( Cone-roof / Dome-roof / Flat-roof / NA ) : Cone-roof

1 .2 GEOMETRIC DATAInside diameter , Di ( corroded ) (@ 14,000 mm ) = 14,006Nominal diameter, Dn ( new ) ( based on 1st shell course ) = 14,010Nominal diameter, Dc ( corroded ) ( based on 1st shell course ) = 14,013Tank height (tan/tan), H = 7,353Specific gravity of operating liquid , S.G. (Actual) = 0.850Specific gravity of operating liquid , S.G. (Design) = 0.85Nominal capacity , V = 1133Maximum design liquid level, HL = 7,353

1 .3 PRESSURE & TEMPERATUREDesign pressure : Upper , Pu (Atmospheric) = 0.00

: Lower , Pl = 0.00Design temperature : Upper , Tu = 70

: Lower , Tl = -17

1 .4 MATERIAL & MECHANICAL PROPERTIES

Component Material Tensile Yield CorrosionStress Stress Allowance

St(N/mm²) Sy(N/mm²) c.a.(mm)PLATEShell Plate ( Mat'l Code # 1 ) (bot) A 516 GR. 65N 448.00 241.00 3.000

( Mat'l Code # 2 ) (top) A 516 GR. 65N 448.00 241.00 3.000Annular Plate A 516 GR. 65N 448.00 241.00 3.000Bottom Plate A 516 GR. 65N 448.00 241.00 3.000Roof Plate A 516 GR. 65N 448.00 241.00 3.000STRUCTURE MEMBERSRoof structure (rafter,bracing,etc ) A 516 GR. 65N 448.00 241.00 3.00Top Curb Angle A 516 GR. 65N 448.00 241.00 3.00Intermediate Wind Girder A 516 GR. 65N 448.00 241.00 3.00

Page 2: Diesel Tank Taluksangay

SHELL THICKNESS CALCULATION BY ONE-FOOT METHOD2 .0 SHELL DESIGN 2 .1 GEOMETRIC DATA

Plate size used : 1,220Shell plate min. width as per PTS 34.51.01.31 clause 6.3 : 1,220

2 .2 MATERIAL & MECHANICAL PROPERTIES

No Material Specified Specified Yield stress Max. allow Max. allow Corrosionused min. tensile min. yield reduction fac design hydro.test allowance

stress stress ( App. M ) stress stressSt (N/mm²) Sy (Nmm²) k Sd (N/mm²) St (N/mm²) c.a (mm)

1 A 516 GR. 65N 448.00 241.00 1.000 160.67 180.75 3.002 A 516 GR. 65N 448.00 241.00 1.000 160.67 180.75 3.003 A 516 GR. 65N 448.00 241.00 1.000 160.67 180.75 3.004 A 516 GR. 65N 448.00 241.00 1.000 160.67 180.75 3.005 A 516 GR. 65N 448.00 241.00 1.000 160.67 180.75 3.006 A 516 GR. 65N 448.00 241.00 1.000 160.67 180.75 3.00

7 A 516 GR. 65N 448.00 241.00 1.000 160.67 180.75 3.008 - - - - - - -9 - - - - - - -10 - - - - - - -

2 .3 SPECIFIED MINIMUM SHELL THICKNESSSpecification : API 650 11th EditionMinimum thickness as per API 650 cl 5.6.1.1 = 5.00Minimum thickness as per PTS 34.51.01.31 = 9.00

2 .4 SHELL THICKNESS CALCULATION BY ONE-FOOT METHOD ( CLAUSE 5.6.3.1 )

SI METRIC UNIT :-Design shell thickness, ( in mm )

4.9Dc ( [H+Hi] - 0.3 ).Gtd = + c.a

SdHydrostatic test shell thickness , ( in mm ) t.min = Min. of t.design, t.hydo &

4.9Dn ( H - 0.3 ) min. thickness as per PTS.tt =

St tsc = Thicknes selected & usedGravitational force = 9.81 m/s

2 .5 CALCULATION & RESULTS

No. Mat'l Material Width Height t.design t.hydro. t.min tsc.Code (mm) (mm) (mm) (mm) (mm) (mm)No.

1 1 A 516 GR. 65N 1,220 7,353 5.56 2.68 9.00 10.002 1 A 516 GR. 65N 1,220 6,133 5.12 2.22 9.00 10.003 1 A 516 GR. 65N 1,220 4,913 4.68 1.75 9.00 10.004 1 A 516 GR. 65N 1,220 3,693 4.23 1.29 9.00 10.005 1 A 516 GR. 65N 1,220 2,473 3.79 0.82 9.00 10.006 1 A 516 GR. 65N 1,220 1,253 3.34 0.36 9.00 10.007 1 A 516 GR. 65N 1,220 33 2.90 -0.10 9.00 10.008 1 - 2,020 -1,187 #VALUE! #VALUE! #VALUE!9 1 - -3,207 -3,207 #VALUE! #VALUE! #VALUE!

Page 3: Diesel Tank Taluksangay

2 .6 MAXIMUM ALLOWABLE STRESS

No. Height t.min tsc. H' H' max P'max(mm) (mm) (mm) (mm) (mm) (mm)

1 7,353 9.00 10.00 7,353 19,574.62 12221.62 119,894.112 6,133 9.00 10.00 6,133 19,574.62 13441.62 131,862.313 4,913 9.00 10.00 4,913 19,574.62 14661.62 143,830.514 3,693 9.00 10.00 3,693 19,574.62 15881.62 155,798.715 2,473 9.00 10.00 2,473 19,574.62 17101.62 167,766.916 1,253 9.00 10.00 1,253 19,574.62 18321.62 179,735.117 33 9.00 10.00 33 19,574.62 19541.62 191,703.318 -1,187 #VALUE! 0.00 -1,187 #VALUE! #VALUE! #VALUE!9 -3,207 #VALUE! 0.00 -3,207 #VALUE! #VALUE! #VALUE!

H' = Effective liquid head at design pressureH' max = Max. liquid head for tsc.P'max = Max. allowable stress for tsc.Pmax = Max. allowable stress at shell course.

∆ HN/m²

Page 4: Diesel Tank Taluksangay

BOTTOM & ANNULAR PLATE DESIGN3 .0 BOTTOM PLATE & ANNULAR PLATE DESIGN

Annular plate used ? ( yes/no ) : yes

BOTTOM PLATE(i) Minimum thickness as per API 650 Clause 5.4.1 = 5.00

Minimum thickness required (@ 3.00 mm c.a ) = 8.00Therefore, use thickness of 8.00 mm (tb) is satisfactory.

(ii) - = -(iii) Min. width of overlapping (cl. 5.1.3.5) = 25(iv) Min. width of plate (cl. 5.4.1) = 1220(v) - = 50

ANNULAR PLATE(i) Nominal thickness of 1st shell course, tsc1 = 10.00

Hydro. test stress in 1st shell course,

St =4.9Dn(H-0.3) = 48.42

whereDn = Nominal diameter, Dn ( new ) ( based on 1st shell course ) = 14.010H = Design liquid level = 7.353

= Nominal thickness of 1st shell course = 10.000

Annular plate thickness ( As per Table 5-1a ) = 6.00Minimum thickness required (@ 3.00 mm c.a. ) = 9.00Therefore , use thickness of 10.00 mm (ta) is satisfactory.

(ii) Min. shell-to-bottom fillet welds size (cl. 5.1.5.7) = 10.00(iii) Min. width projected inside of shell to edge of overlapping (cl. 5.5.2) = 600(iv) Min. radial width of annular plate (cl. 5.5.2)

La =215 ta

= 860.00

whereta = Annular plate thickness = 10.000HL = Maximum design liquid level = 7.35SG = Design specific gravity = 0.85

(v) Min. width projected outside of shell ( cl. 5.5.2) = 50

tsc1

tsc1

(HL. SG )0.5

Page 5: Diesel Tank Taluksangay

API 650 11th Edition

mmmmmmmm

m³mm

mbargmbarg Vac°C°C

Page 6: Diesel Tank Taluksangay

mmmm

API 650 11th Editionmmmm

Min. of t.design, t.hydo &min. thickness as per PTS.

Thicknes selected & used

Result

O.K.O.K.O.K.O.K.O.K.O.K.O.K.

#VALUE!#VALUE!

Page 7: Diesel Tank Taluksangay

Pmax

119,894.11119,894.11131,862.31143,830.51155,798.71167,766.91179,735.11#VALUE!#VALUE!

N/m²

Page 8: Diesel Tank Taluksangay

mmmm

mmmmmmmm

mm

N/mm²

mm

mm

mmmm

mmmm

mm

mmm

mm

Page 9: Diesel Tank Taluksangay

8 .0 DESIGN OF SINGLE DECK FLOATING ROOF FOR A STORAGE TANK

751

64 Top pontoon plt 8Rafter L 75 x 75 x 6

Outer Rim Inner Rim

975 Post

525Btm Angle Deck Plate

Bulkhead

198 2181 3424838610

Shell I.D 39006

( All dimensions in mm unless otherwise stated. )

8 .1 TANK GEOMETRY DATAInside diameter , Di ( corroded ) (@ 39,000 mm ) = 39,006Tank height (tan/tan), H =

Material of Construction : SA 516 Gr 65NSpecific Minimum Yield Stress, Sy = 275Modulus of Elasticity = 209,000

= 7,850

Corrosion Allowance = 3Min. Specific Gravity of product = 0.7Max. Specific Gravity of product = 1

8 .2 GEOMETRY DATAOuter Rim Height, Hor = 975Inner Rim Height, Hir = 525Pontoon width, w = 2181Rim Gap = 198Outer Rim Extend above pontoon, Hext = 75

No. of Pontoons, N = 22

Outer Rim Diameter, Øor = 38610Inner Rim Diameter, Øir = 34248

Bulkhead Outer heigh, Boh = 884Bulkhead Inner heigh, Bih = 509Bulkhead Width, wb = 2157

8 .3 MEMBER SIZE & PROPERTIESOuter Rim Thk, Tor = 9Inner Rim Thk, Tir = 15Top Pontoon Thk, Ttp = 8Btm Pontoon Thk, Tbp = 8Bulkheads Thk, Tb = 8Deck Plate Thickness, Td = 8Circumferential Truss Plates = 8

Rafter 44 Nos. of L 75 x 75 x 6 @ unit weight of 6.85Posts 44 Nos. of L 75 x 75 x 6 @ unit weight of 6.85

Density of Material, r (plate)

Page 10: Diesel Tank Taluksangay

8 .4 ROOF SUPPORT LEG ( Refer to Design of Supporting Legs)8 .4.1 PONTOON LEG

No. of Pontoon Leg, Np = 22Pontoon Leg Size 3" pipe x Sch. 80 @ unit wt 15.27Pontoon Leg Housing 4" pipe x Sch. 80 @ unit wt 22.32Pontoon Leg length = 2940Pontoon Leg Housing length = 1084

8 .4.2 DECK LEGNo. of Deck Leg, Nd (Area od deck / 30m² / leg ) = 30Deck Leg Size 3" pipe x Sch. 80 @ unit wt 15.27Deck Leg Housing 4" pipe x Sch. 80 @ unit wt 22.32Deck Leg length = 2927Deck Leg Housing length = 823

8 .5 WEIGHT CALCULATION

Top Pontoon = = 15,675.18Bottom Pontoon = 15,675.18

Inner Rim = = 6,651.28Outer Rim = = 8,355.38

Bulkheads = = 2,075.65

Deck Plate = = 57,852.21

Pontoon Legs = 987.66Pontoon Legs housing = 532.29Deck Legs = 1340.86Deck Legs housing = 551.08

TOTAL WEIGHTPontoon Components: - = 55,248.45Deck Components: - = 57,852.21Total Weight of Floating Roof, (Wroof) = 113,100.66

9 .0 PONTOON VOLUMEO. Rim Ø 38610mm

I. Rim Ø + 2 x 2/3 w 37156 mmh3 = 0.03

I. Rim Ø 34248 mmh2 = 0.53

h1 = 0.35

2

Volume 1 = 40.70

Volume 2 = 120.17

Volume 3 = 3.85

Total Pontoon Volume, Vol(pontoon) = 164.72

p/4 x( Øor² - Øir²) x Ttp x r(plate)p/4 x( Øor² - Øir²) x Tbp x r(plate)

p x Øir x Hir x Tir x rp x Øor x Hor x Tor x r

1/2 x (Boh - Bih)x wb x Tb x r x N

p/4 x Øir x Td x r

(Wpontoon)(Wdeck)

2

1

3

Page 11: Diesel Tank Taluksangay

9 .0 SETTING DECK LEVEL9 .1 OPERATION FLOATATION LEVEL - DECK

Deck Floatation Depth=

Density of DeckDeck Thk Density of Product

x Td = 89.71

9 .2 OPERATION FLOATATION LEVEL - PONTOON

== W (Pontoon) x g

= 78.93

To find Floatation Depth of Pontoon from Inner Corner of Pontoon,

Vol. Displacement above Inner corner of PontoonPontoon Cross Area in Vol. 2

Vdisplacement - Vbackslope (Vol.1)= 153.15

Freeboard above deck,494.56Product Level

89.71153.15 Deck Level

63.44mm

The Deck is set at the difference of floation depth in Pontoon & Deck,

= 63.44 mm

9 .3 NORMAL OPERATION FLOATATION LEVEL FOR ROOF - PONTOON & DECK

Actual Product

Level 161.57 m³Deck

Level Deck

H, Floatation Height Above Deck

Total Volume Displaced by the roof=

Volume Displaced by the Backslope, V1+

Partial Volume Displaced in Pontoon below the deck level, Va+

Volume Displaced by the Deck, Vb

= 161.57

Floatation Depth, D(deck) =r (deck)

r (product)

Buoyant Force, FB Fpontoon

r x Vdisplacement x g

Product Displacement, Vdisplacement =Pontoon Weight, W(pontoon)

r (product)

D(pontoon) =

D(pontoon) = 1/4 x p x (Øor² - Øir²)

D(deck) - D(pontoon)

Total Volume Displaced by the roof, Vdisplacement (roof):

Vdisplacement (roof) =Roof Total Weight, W(roof)

r (product)

2

1

3

Page 12: Diesel Tank Taluksangay

i) Volume Displaced by the Backslope, Volume 1 = 40.70

ii) Partial Volume Displaced in Pontoon below the deck level:

Deck level Height, hx Vol. 2 = 14.98

Bulk head outer height, Bih

iii) Volume Displaced by the Deck:

Area of Deck Plate x Floatation Height Above Deck

= 921.21

Hence, The Floatation Height Above Deck, H = 0.11114.95

9 4 FLOATATION LEVEL FOR ROOF - PONTOON & DECK FOR 10" (254MM) OF ACCUMULATED RAIN WATER

For deck to support 10" (254mm) of rain water:Volume of rain water collected at the deck, Vrain =

= 233.99

where

Area of deck = = 921,213,536.64

Rain accumulation of 10" = 254.00

W(roof) + Wt(rain)= 495.84

where

W(roof) = Total weight of roof

Wt(rain) = Weight of 10" rain water

Floatation Height above Deck, H(rain) = Vdisplacement (rain) - Vol.1 - partial of Vol.2 (ii) = 0.38

Area of roof = 375.95

10 0 CHECKING THE STRESSES AND DEFLECTION IN THE CENTRE DECK(Ref. to Roark's Formulas For Stress And Strain, 7th Edition)

10 1 CASE 1: NORMAL CASE - NO PONTOON PUNCTURED

( 11.11.1)

( 11.11.2)

Where:t = Plate thickness, Deck (mm) = Td = 8

Outer radius of the deck plate = Øir / 2 = 17124q = Unit lateral pressure (equiv. weight of deck that float on product)

= = 0.000561y = Maximum deflection

bending stressdiaphragm stress

s = Maximum stress due to flexure and diaphragm tension combinedv = Poisson's ratio = 0.3

p/4 x Øir2 x H

Vrain = Adeck x Hrain

Adeck = p/4 x Øir2

Hrain =

Total Volume Displaced by the roof with the 10" of rain water accumulation, Vdisplacement (rain):

Vdisplacement (rain) = r (product)

a =

Td x ( r(plate) - r(product) )

sb =sd =

sb + sd =

3

214

4

=

t

yK

t

yK

Et

q a

2

432

2

=

t

yK

t

yK

Et

sa

Page 13: Diesel Tank Taluksangay

E = Modulus of Elasticity = 209,000

Page 14: Diesel Tank Taluksangay

The deck plate is fixed and held at its outer edge by the pontoon, hence condition is consider as:Fixed and Held. Uniform pressure q over entire plate (Case 3 in Roark's Formulas)

5.33= 5.86

2.6= 2.86

At the Centre,2

= 2.86

= 0.976

At the edge,4

= 4.40

= 1.73

For= 56,361.13

Andy

= 56,249.31t t

y = 215.81 mm

Solving equation 11.11.2

σα² y y 2t t

= 787.3494954301 (at Deck Center)= 1377.567314837 (at Deck Edge)

At Deck Center,= 35.92= 3.52= 32.40

At Deck Edge,= 62.84= 5.41= 57.43

It is the diaphragm stress at the edge which causes the tension at the outer edge of the Deck.Hence, the radial force on the inner rim,

Rh = σ diaphgram x deck thickness = 459.44

K1 =1 - n2

K2 =1 - n2

K3 = 1 - n

K4

K3 = 1 - n2

K4

q α4

Et4

K1 + K2 y 3 q α4

Et4

= K3 + K4E. t 2

σtotal

σbending

σdiaphgram

σtotal

σbending

σdiaphgram

=

Page 15: Diesel Tank Taluksangay

10 2 PONTOON STRESS DESIGN - CASE 110 .2.1 PONTOON PROPERTIES

Nominal diameter of Inner Rim, Øir = 342482 2160 Pontoon Inside Width = 2160

525 Inner Rim Thickness, Tir = 124 Outer Rim Thickness, Tor = 9900 Top Pontoon Thk, Ttp = 8

Btm Pontoon Thk, Tbp = 82187 3

Top Pontoon slope angle @ 1 : 64 = 0.02= 0.16

A Y AY h A.h² I = (bd³)/12(mm²) (mm) (mm³) (mm) (mm4) (mm4)

1 6300 6 37,800 1,126 7,980,578,762 75,6002 17282 1092 18,872,063 40 26,969,435 6,720,924,5253 17494 1092 19,103,800 40 27,300,602 6,971,562,4624 8100 2176.5 17,629,650 1,045 8,845,340,202 54,675

TOTAL 49,176 55,643,313 16,880,189,001 13,692,617,263Neutral axis of combined section, C1 = 1132

Moment of inertia of section , Ix-x = 30,572,806,264Section modulus available, Za = 27,019,626

10 .2.2 MATERIAL PROPERTIESMaterial Properties : SA 516 Gr. 65NSpecified minimum yield stress, Sy = 275.00Yield strength reduction factor, k ( Table M-1 ) = 1.000Allowable stress reduction factor ( App. M.3.5 ), Ks ( = k.Sy/206.7 ) = 1.00Allowable bending stress, Fb = 183.33Allowable compressive stress, Fc = 165.00

10 .2.3 PONTOON RING DESIGNThe uniform radial force acting on the Inner Rim is modelled as load point at each mm of circumference,with a very small angle between load point approximtaed to uniform distributed load in the circular ring design.

RhNumber of load point @ each mm,

= 107,593.27Mid Point 1/2 x 360/ Nlp = 0.001673

Radial load on rim, Rh = 459.44

(Reference to Roark's Formulas For Stress and Strain, 7th Edition, Table 9.2 Case 7)

At Mid-Point,Bending moment, Circ. tensile force,

Rh.Do 1 1 RhMm = - Tm =

4

At Reaction-Point,Bending moment, Circ. tensile force,

Rh.Do 1 1 RhMr = - - Tr =

4( Do= Qir, nonimial diamter of inner ring)

Backslope angle, a

a° Nlp = p x Øir Angle a° =

( Note : Rh is negative for inward force )

sin a a 2.sin a

a tan a 2 tan a

a

Page 16: Diesel Tank Taluksangay

10 .2.4 RESULT

RING STABILITY CHECK MID-POINT LOAD-POINT

Bending Moment ( Nmm ) 19.14 -38.29Circumferential force ( N ) 7,867,429 7,867,429Bending Stress ( N/mm² ) 0.0000007 -0.000001Circumferential stress ( N/mm² ) 159.98 159.98

Allow. bending stress ( N/mm² ) 183 183.33Allow. axial stress ( N/mm² ) 165 165Unity Check 0.97 0.97Condition OK. OK.

10 .3 CASE 2: INFLUENCE OF 10" (254mm) OF RAIN ACCUMULATED ON CENTER DECK

10" Rain

For deck to support 10" (254mm) of rain water:Volume of rain water collected at the deck,

= 233.99

where

Area of deck = = 921,213,536.64

Rain accumulation of 10" = 254

= 233,988.24

Upward Bouyant Load = Deck Area x Floatation Height x Product density

= 242,429.27

Downward load due to deck steel and rain water,= 291,840.45

Nett downward force acting on deck =

= (Upward bouyant load - Downward Load)

= 53.6475 Deck Area

( 11.11.1)

( 11.11.2)

Where:t = Plate thickness, Deck (mm) = Td = 8

Outer radius of the deck plate = Øir / 2 = 17124q = Unit lateral pressure = 0.000526y = Maximum deflection

bending stressdiaphragm stress

s = Maximum stress due to flexure and diaphragm tension combinedv = Poisson's ratio = 0.3E = Modulus of Elasticity = 200,000

Vrain = Adeck x Hrain

Adeck = p/4 x Øir2

Hrain =

Weight of 10" accumulated rain water, Wrain = Vol.rain x r rain

= p/4 x (Øir)2 x H(rain) x r

= Wdeck + Wrain

a =

sb =sd =

sb + sd =

3

214

4

=

t

yK

t

yK

Et

q a

2

432

2

=

t

yK

t

yK

Et

sa

Page 17: Diesel Tank Taluksangay

The deck plate is fixed and held at its outer edge by the pontoon, hence condition is consider as:Case 3 - Fixed and Held. Uniform pressure q over entire plate

5.33= 5.86

2.6= 2.86

At the Centre,2

= 2.86

= 0.976

At the edge,4

= 4.40

= 1.73

For= 55,228.70

Andy

= 55,140.73t t

y = 214.3832459 mm

Solving equation 11.11.2

σα² y y 2t t

= 777.4581305786 (at Deck Center)= 1360.154002617 (at Deck Edge)

At Deck Center,= 33.94= 3.34= 30.60

At Deck edge,= 59.37= 5.14= 54.23

It is the diaphragm stress at the edge which causes the tension at the outer edge of the Deck.Hence, the radial force on the inner rim,

Rh = σ diaphgram x deck thickness = 433.85

K1 = 1 - n2

K2 = 1 - n2

K3 = 1 - n

K4

K3 = 1 - n2

K4

q α4

Et4

K1 + K2 y 3 q α4

Et4

= K3 + K4E. t 2

σtotal

σbending

σdiaphgram

σtotal

σbending

σdiaphgram

=

vK

=

1

23

Page 18: Diesel Tank Taluksangay

10 4 PONTOON STRESS DESIGN - CASE 210 .4.1 PONTOON PROPERTIES

Nominal diameter of Inner Rim, Øir = 34248

Section modulus available, Za2 = = 27019626.01Cross sectional area, Aa = 49,176

10 .4.2 MATERIAL PROPERTIESMaterial Properties : SA 516 Gr. 65NSpecified minimum yield stress, Sy = 275.00Yield strength reduction factor, k ( Table M-1 ) = 1.000Allowable stress reduction factor ( App. M.3.5 ), Ks ( = k.Sy/206.7 ) = 1.00Allowable bending stress, Fb = 183.33Allowable compressive stress, Fc = 165.00

10 .4.3 PONTOON RING DESIGN

The uniform radial force acting on the Inner Rim is modelled as load point at each mm of circumference,with a very small angle between load point approximtaed to uniform distributed load in the circular ring design.

RhNumber of load point @ each mm,

= 107593.271/2 x 360/ Nlp = 0.001673

Mid Point Radial load on rim, Rh = 433.85

(Reference to Roark's Formulas For Stress and Strain, 7th Edition, Table 9.2 Case 7)

At Mid-Point,Bending moment, Circ. tensile force,

Rh.Do 1 1 RhMm = - Tm =

4

At Reaction-Point,Bending moment, Circ. tensile force,

Rh.Do 1 1 RhMr = - Tr =

4

10 .4.4 RESULT

RING STABILITY CHECK MID-POINT LOAD-POINT

Bending Moment ( Nmm ) 18.08 -36.15Circumferential force ( N ) 7,429,209 7,429,209Bending Stress ( N/mm² ) 0.0000007 -0.000001Circumferential stress ( N/mm² ) 151.07 151.07

Allow. bending stress ( N/mm² ) 183 183Allow. axial stress ( N/mm² ) 165 165Unity Check 0.92 0.92Condition OK. OK.

10 .4.5 STRESSES SUMMARY

LOAD CASE 1 LOAD CASE 2Deck Center Deck Edge Deck Center Deck Edge

( N/mm² ) 35.92 62.84 33.94 59.37

( N/mm² ) 3.52 5.41 3.34 5.14

( N/mm² ) 32.40 57.43 30.60 54.23

Nlp = p x Øir a° Angle a° =

( Note : Rh is negative for inward force )

sin a a 2.sin a

a tan a 2 tan a

σtotal

σbending

σdiaphgram

Page 19: Diesel Tank Taluksangay

11 .0 ROOF SUPPORT LEG DESIGN

22 Nos. at R4 18541.0015 Nos. at R3 13716.0010 Nos. at R2 8839.00

5 Nos. at R1 4267.00

11 .1 GEOMETRIC DATA

Support leg size = 3" Sch. 80

Pipe outside diameter = 88.9

Pipe Thickness, = 7.62

= 1,945.76Radius of gyration, r = I Do2 - Di2

= 24.894

11 .2 MATERIAL PROPERTIESMaterial of Construction for roof support leg : SA 333 Gr 6Specific Minimum Yield Stress, Sy = 241Modulus of Elasticity = 209,000

= 7,850Leg Material

11 .3 LOADING DATASupport leg length at

i) R1 : Lsp1 = 2927ii) R2 : Lsp2 = 2927

iii) R3 : Lsp3 = 2927iv) R4 : Lsp4 = 2940

Deck O.D = 34231Deck Thickness, td = 8

= 920,299,220.87

= 57,794.79

= 1.2

Effective radius for area of deck supported by leg:

= 15415.75

1/2(R3-R2) = 11277.5

1/2(R2-R1) = 6553

Area of deck supported by legs at

i) R1 = 134,905,671.69

ii) R2 = 264,648,384.82

iii) R3 = 347,030,823.13

iv) R4 = 173,714,341.24

Pipe Area, Aleg

Aleg

Density of Material, r (plate)

Deck Area, Adeck

Center deck weight, Wdeck

Design Live Load, Llive

R3eff = 1/2(Øir/2-R3)

R2eff =

R1eff=

= p(R1eff)2

= p((R2eff)2- (R1eff)2 )

= p((R3eff)2- (R2eff)2 )

= p((Ødeck)2- (R3eff)2 )

Page 20: Diesel Tank Taluksangay

11 .4 SUPPORT LEG AT INNER DECK R1No. of legs at R1 = 5

Area of deck supported by legs at R1, A1 = 134,905,671.69

Deck area on each leg, A1' = 26,981,134.34

Deck load on one leg =A1'

= 1,694.42

= 16.62

Live load on one leg = = 32.38Total load on one leg = Deck load + Live load = 49.00

Stress on support leg at inner deck R1, P1 = = 25.18

11 .4.1 ALLOWABLE STRESSAs per AISC code,Slenderness ratio,l = K.Lsp1 / Rx-x = 118whereK = 1Column slenderness ratio dividing elastic and inelastic buckling,

Cc = = 130.84 Sy

Sc.all = (i) = 75.08

Sc.all = (ii) = 77.80

Smaller of (i) or (ii)Sc.all = = 74.20

In this case, the allowable stress Sc.all is = 75.08

Since P1 < Sc.all, the support leg at inner deck R1 is satisfactory.

11 .5 SUPPORT LEG AT INNER DECK R2No. of legs at R2 = 10

Area of deck supported by legs at R2, A2 = 264,648,384.82

Deck area on each leg, A2' = 26,464,838.48

Deck load on one leg =A2'

= 1,661.99

= 16.30

Live load on one leg = = 31.76Total load on one leg = Deck load + Live load = 48.06

Stresses on support leg at inner deck R2, P2 = = 24.70

11 .5.1 ALLOWABLE STRESSAs per AISC code,Slenderness ratio,l = K.Lsp2 / Rx-x = 118whereK = 1Column slenderness ratio dividing elastic and inelastic buckling,

Cc = = 130.84 Sy

Wdeck xAdeck

Llive x A1'

Total Load / Aleg

2p²E

When l £ Cc, [ 1 - l² / 2Cc² ].Sy

5/3 + 3l /8Cc - l³/8Cc³When Cc £ l £ 120,

12p²E

23 l²When 120 £ l £ 200,

1.6 - l/200

Wdeck xAdeck

Llive x A2'

2p²E

Page 21: Diesel Tank Taluksangay

Sc.all = (i) = 75.08

Sc.all = (ii) = 77.80

Smaller of (i) or (ii)Sc.all = = 74.20

In this case, the allowable stress Sc.all is = 75.08

Since P2 < Sc.all, the support leg at inner deck R2 is satisfactory.

11 .6 SUPPORT LEG AT INNER DECK R3No. of legs at R3 = 15

Area of deck supported by legs at R3, A3 = 347,030,823.13

Deck area on each leg, A3' = 23,135,388.21

Deck load on one leg =A3'

= 1,452.90

= 14.25

Live load on one leg = = 27.76Total load on one leg = Deck load + Live load = 42.02

Stresses on support leg at inner deck R3, P3 = = 21.59

11 .6.1 ALLOWABLE STRESSAs per AISC code,Slenderness ratio,l = K.Lsp3 / Rx-x = 118whereK = 1Column slenderness ratio dividing elastic and inelastic buckling,

Cc = = 130.84 Sy

Sc.all = (i) = 75.08

Sc.all = (ii) = 77.80

Smaller of (i) or (ii)Sc.all = = 74.20

In this case, the allowable stress Sc.all is = 75.08

Since P3 < Sc.all, the support leg at inner deck R3 is satisfactory.

When l £ Cc, [ 1 - l² / 2Cc² ].Sy

5/3 + 3l /8Cc - l³/8Cc³When Cc £ l £ 120,

12p²E

23 l²When 120 £ l £ 200,

1.6 - l/200

Wdeck xAdeck

Llive x A3'

Total Load / Aleg

2p²E

When l £ Cc, [ 1 - l² / 2Cc² ].Sy

5/3 + 3l /8Cc - l³/8Cc³When Cc £ l £ 120,

12p²E

23 l²When 120 £ l £ 200,

1.6 - l/200

Page 22: Diesel Tank Taluksangay

11 .7 SUPPORT LEG AT PONTOONNo. of legs at R4 = 27

Area of deck supported by legs at R4, A4 = 173,714,341.24

Deck area on each leg, A4' = 6,433,864.49

Deck load on one leg =A4'

= 404.05

= 3.96

= 55,248.45

= 5,022.59= 49.27

Live load on one leg = = 7.72Total load on one leg = Deck load + Live load + Pontoon weight = 60.96

Stresses on support leg at Pontoon, P4 = = 31.33

11 .7.1 ALLOWABLE STRESSAs per AISC code,Slenderness ratio,l = K.Lsp4 / Rx-x = 118whereK = 1Column slenderness ratio dividing elastic and inelastic buckling,

Cc = = 130.84 Sy

Sc.all = (i) = 74.62

Sc.all = (ii) = 77.12

Smaller of (i) or (ii)Sc.all = = 73.93

In this case, the allowable stress Sc.all is = 74.62

Since P3 < Sc.all, the support leg at inner deck R3 is satisfactory.

11 .8 STRESSES SUMMARY

Leg at radius No. of leg RESULT

4267.00 5.00 25.18 75.08 OK8839.00 10.00 24.70 75.08 OK13716.00 15.00 21.59 75.08 OK18541.00 22.00 31.33 74.62 OK

Wdeck xAdeck

Pontoon weight, Wpontoon

Pontoon weight on one leg, Wpontoon'

Llive x A4'

Total Load / Aleg

2p²E

When l £ Cc, [ 1 - l² / 2Cc² ].Sy

5/3 + 3l /8Cc - l³/8Cc³When Cc £ l £ 120,

12p²E

23 l²When 120 £ l £ 200,

1.6 - l/200

Actual stress, (N/mm2)

Allowable stress, (N/mm2)

Page 23: Diesel Tank Taluksangay

15

8

mm

N/mm²N/mm²kg/m³

mm

mmmmmmmmmm

mmmm

mmmmmm

mmmmmmmmmmmmmm

kg/mkg/m

Page 24: Diesel Tank Taluksangay

kg/mkg/mmmmm

kg/mkg/mmmmm

kgkg

kgkg

kg

kg

kgkgkgkg

kgkgkg

Page 25: Diesel Tank Taluksangay

mm

mm

Page 26: Diesel Tank Taluksangay

H

mmm

mm

mmm

mm2

N/mm2

Page 27: Diesel Tank Taluksangay

N/mm²

Page 28: Diesel Tank Taluksangay

N/mm

N/mm2

N/mm2

N/mm2

N/mm2

N/mm2

N/mm2

Page 29: Diesel Tank Taluksangay

mmmmmmmm

radrad

mm

mm³

N/mm²

N/mm²N/mm²

°N

mm4

for inward force )

Page 30: Diesel Tank Taluksangay

mm³

mm

kg

kg

kg

N/mm²

kg/m2

N/mm2

Page 31: Diesel Tank Taluksangay

N/mm

N/mm2

N/mm2

N/mm2

N/mm2

N/mm3

N/mm4

Page 32: Diesel Tank Taluksangay

mm

mm²

N/mm²

N/mm²N/mm²

°N/ load pt

mm3

Page 33: Diesel Tank Taluksangay

mm

mm

N/mm²N/mm²kg/m³

mmmmmmmm

mmmm

kg

mm2

mm2

KN/m2

mm2

mm2

mm2

mm2

Page 34: Diesel Tank Taluksangay

kg

KN

KNKN

N/mm²

N/mm²

N/mm²

N/mm²

kg

KN

KNKN

mm2

mm2

N/mm2

mm2

mm2

N/mm2

Page 35: Diesel Tank Taluksangay

N/mm²

N/mm²

N/mm²

N/mm²

kg

KN

KNKN

N/mm²

N/mm²

N/mm²

N/mm²

mm2

mm2

N/mm2

Page 36: Diesel Tank Taluksangay

kg

KNkg

kgKN

KNKN

N/mm²

N/mm²

N/mm²

N/mm²

mm2

mm2

N/mm2

Page 37: Diesel Tank Taluksangay

BLEEDER VENT CALCULATION12 .0 DESIGN OF AIR VENTING SYSTEM12 .1 GEOMETRIC DATA

Design Code : API STD 2000 Inside diameter, Di = 39000Tank height, H = 20700Nominal Capacity 24000Design pressure, Pi = 2.50Flash point (FP)/Normal boiling point (NBP) (@ FP ) = 67Filling rate ( Pumping in/Flow rate to tank ), Vi = 427Emptying rate ( Pumping out/Flow rate from tank ), Vo = 1,100

OPERATING VENTING12 .2 NORMAL VACUUM VENTING12 .2.1 Maximum liquid movement out of a tank

Flow rate of free air, Vv1 ( = Vo/15.9 x 15.89 ) = 1097.23

12 .2.2 Thermal inbreathingTank capacity, V = 155,535From Table 2, column 2 (Thermal Venting Capacity Req't ),Flow rate of free air,Vv2 ( @ 0 ft³/hr ) = 0

Total vacuum flow required, Vv ( = Vv1 + Vv2 ) = 1,097

12 .3 NORMAL PRESSURE VENTING12 .3.1 Maximum liquid movement into a tank

Rate of free air per 0.159m³/hr of product import rate, m = 0.17Flow rate of free air, Vp1 ( = Vi/0.159 x m ) = 457

12 .3.2 Thermal outbreathingFrom Table 2, column 3 (Thermal Venting Capacity Req't),Flow rate of free air,Vp2 ( @ 0 ft³/hr ) = 0

Total pressure flow required, Vp ( = Vp1 + Vp2 ) = 457

OPEN VENT SIZING ( BLEEDER VENT SIZING )12 .4 OPEN VENT SIZING CALCULATION

Maximum flow, Q ( @ Vacuum flow at ( @ 2.50 mbarg. ) = 1,097

Q = K. A. 2. g. H

whereK = Discharge coefficient 0.62A = cross sectional area of ventg = acceleration due to gravityH = Head as measure pressure differential

H = = 21 g

Minimum require cross sectional area of vent,

Q Q g = 0.0241K. 2. g. H K = 24,124

whereQ = Max. Air flow required = 0.3048

g = Specific weight of Air = 11.812r = Air density = 1.204

Differential pressure = 250

12 .5 BLEEDER VENT SELECTEDSelected bleeder vent size : 8" Sch StdNumber of vent, N = 1Outside diameter of the vent, do 219Inside Dia. of one vent , di ( @ vent pipe thickness = 8.18 mm ) = 202.64

= 32,251

Dp

Av_req = 2. g. Dp

= r g

Dp =

Total cross sectional area of vents, Av_actual

=

Page 38: Diesel Tank Taluksangay

> Ar_gnv, therefore the nos. & size of vents is satisfactory.Since Av_actual

Page 39: Diesel Tank Taluksangay

mmmmm³mbarg°Cm³/hrm³/hr

m³/hr

barrels

m³/hr

m³/hr

m³/hrm³/hr

m³/hr

m³/hr

m³/hr

m

m²mm²

mm³/s

kg/m³N/m²

mmmm²

kg/m2s2

Page 40: Diesel Tank Taluksangay

13 .0 ROOF DRAIN DESIGN

Rigid Pipe

1275 Flexible pipe

225Rigid Pipe

13 .1 GEOMETRIC DATATank Nominal Diameter =Tank Height, =Roof lowest height, H =Drain outlet nozzle elevation, z =

Roof Deck Area =

Design Rain Fall =

Design drainage required, Qreq. =

No. of Roof Drain, N =Roof drain pipe size (rigid & fitting) =Dain Pipe Outside Diameter, Do =Drain pipe thickness =

Drain Pipe length :L1 = Rigid 20 m x 2 nos. =L2 = Flexible 23.14 m x 1 nos. =

13 .2 Number of Fitting & Accessories per drain pipe

- =

- =

- Valve =- Rigid pipe =- Flexible pipe =

13 .3 TOTAL HEAD

H = h + 2g

45º elbow N45º

90º elbow N90º

Nv

V2

Page 41: Diesel Tank Taluksangay

13 .4 TOTAL HEAD LOSS OF ROOF DRAIN PIPE

K L'2g D

WhereH = Total head between the lowest position of deck and the =

roof drain nozzleG = Gravity accelerationK = Friction Coefficient

- For rigid pipe : =

- For flexible pipe : =L' = Total equivalent length of drain pipeD = Inside Diameter of drain pipe =

13 .5 EQUIVALENT PIPE LENGTH OF VALVE AND FITTING Accordance to NFPA 15 Table 8.5.2.1,

Equivalent length for 4" =

=

=

=

=

13 .6 TOTAL HEAD LOSS OF ROOF DRAIN PIPE

2g D D

+ 12g D D

13 .7 FLOW VELOCITY2 g H

V = + 1

= D D

13 .8 DRAINAGE FLOW RATE PER DRAIN PIPEQ = AREA x Velocity

= =

13 .9 MINIMUM ROOF DRAIN REQUIRED

Nreq =Drainage flow rate required

=Actual flow rate per drain

MINIMUM REQUIRED =

V2

K1

K2

45º elbow, L45º

90º elbow, L90º

Valve, Lv

Total equivalent pipe length for RIGID PIPE:

L1' = L1 + N45º x L45º + N90º x L90º + Nv x Lv

Total equivalent pipe length for Flexible PIPE:

L2' = L2

V2 K1 L1' K2 L2'

V2 K1 L1' K2 L2'

K1 L1' K2 L2'

p/4 x D2 x V x 3600 (s/hr)

h = x

h = x +

H =

H = +

+

Page 42: Diesel Tank Taluksangay

39,000 mm20,100 mm

1500 mm225 mm

920.30

50 mm/hr

46.01

24" Sch 80

101.6 mm8.56 mm

40 m23.14 m

2

1

121

m2

m3/ hr

Page 43: Diesel Tank Taluksangay

1.275 m

0.0168

0.03

0.08448 m

3.1

1.2

0.6

48 m

23.14 m

1.15 m/s

23.30

1.97

2

m3 / hr

Page 44: Diesel Tank Taluksangay

Page

document.xlsx

14 WEIGHT ANALYSIS

ITEM NO : 1

1 GENERALDesign Type of roof support : Type of roofcode : API 650 11th Edition NA : Cone-roofInside Tank heightdiameter : 14,000 mm : 7,353 mmSteel density Roof plates lapping Annular/Bottom plates lappingShell / Btm : 7,850 kg/m³ factor : 7.35 factor : 1Roof : 8,027 kg/m³

2 SHELL COURSES

ONE - FOOT METHOD (OUTER TANK) YCourse No. Material Thickness Width Weight

(mm) (mm) (kg)1 A 516 GR. 65N 10.00 1,220 4,2152 A 516 GR. 65N 10.00 1,220 4,2153 A 516 GR. 65N 10.00 1,220 4,2154 A 516 GR. 65N 10.00 1,220 4,2155 A 516 GR. 65N 10.00 1,220 4,2156 A 516 GR. 65N 10.00 1,220 4,2157 A 516 GR. 65N 10.00 1,220 4,2158 - 0.00 2,020 -9 - 0.00 -3,207 -10 - - - -

Total weight of shell plates = 29,506 kg

3 BOTTOM PLATES YMaterial Thickness Outside Dia. Weight

(mm) (mm) (kg)A 516 GR. 65N 8.00 14,130 9,848 = 9,848 kg

4 TOP CURB ANGLE YMaterial Size Qty Length Unit Weight Weight

(mm) (kg/m) (kg)A 516 GR. 65N 76 x 76 x 6.4 1 44,218 10.33 457 = 457 kg

5 TOP WIND GIRDERS YMaterial Size Qty Length Unit Weight Weight

(mm) (kg/m) (kg)A 516 GR. 65N T 825 x 250 x 8 x 10 1 46,574 83.74 3,900 = 3,900 kg

6 INTERMEDIATE WIND GIRDERS YMaterial Size Qty Length Unit Weight Weight

(mm) (kg/m) (kg)A 516 GR. 65N T 405 x 150 1 45,867 49.99 2,293 = 2,293 kg

7 NOZZLES YTotal weight of nozzles 1,500 = 1,500 kg

8 MISCELLANEOUS YAssuming 5.00 % of total weight 2,375 = 2,375 kg

9 STAIRWAY & PERIMETER PLATFORM YPlatform Weight 165.00 KN 16,820 = 16,820 kg

10 OPERATING LIQUID WEIGHTOperating liquid height (@ = 7,353 mm & sg @= 0.85 ) = 962,120 kg

11 HYDROSTATIC WATER WEIGHTHydrostatic water height (@ 7,353 mm ) = 1,131,906 kg

ERECTION WEIGHT (Exclude roof) = 66,699 kgOPERATING WEIGHT = 1,028,819 kgFIELD HYDROSTATIC TEST WEIGHT = 1,198,605 kg

Page 45: Diesel Tank Taluksangay

Page

document.xlsx

Page 46: Diesel Tank Taluksangay

Tank Capacity

C=

Input Data:D= 14 m.H= 6.5 m.

C= 1,000.00 cu.m.

0.785*D2H

Page 47: Diesel Tank Taluksangay

RAPTER DATA

Rafter Material = ASTM A-36Allowable Design Strees (Sd) = 160 MpaRafter Selection

Ring Name Type of RafterZ R Weight Area

m kg/m1 C 75x40x5 20080 0.0292 6.922 C 75x40x5 20080 0.0292 6.923 C 75x40x5 20080 0.0292 6.92

RAFTER DESIGN

Nominal Roof Thickness = 6 mm

Roof Plate Weight = 47.2

Added Dead Load = 20

= 100

Specific Snow Load (S) = 0

= 0 Kpa

= 0

Insulation+ Plate Weight+Added Dead Load

67.2

ROOF LOAD PER API-650 APPENDIX RLOAD COMBINATION (L1)

L1 =

167.2

LOAD COMBINATION (L2)L2 = DL+Pe+0.4*MAX (S,Lr)

107.2

BALANCE ROOF DESIGN LOAD (T)

T =use L1

T= 167.21.64 Kpa

MAXIMUM RAFTER SPACING PER API 650 5.10.4.4Maximum Rafter Spacing (b)

b = (t-c)* sqrt (1.5*Fy/T)b = 2391 mm

SPACING OF RAFTERSFor outer Shell Ring

Ring Radius = 7 m

b = 2391 mm

mm3 m2

kg/m2

kg/m2

Minimum Roof Live Load (Lr) kg/m2

kg/m2

Specified external pressure (Pe)

kg/m2

Dead Load (DL) =

kg/m2

DL+MAX(S,Lr)+0.4*Pe

kg/m2

kg/m2

MAX(L1,L2)

kg/m2