51
Dictionary learning for atrial fibrillation modelling B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot IRISA - Université de Rennes 1, INRIA, CNRS ITS - EPFL September 12, 2009 B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EP Dictionary learning for atrial fibrillation modelling September 12, 2009 1 / 17

Dictionary learning for atrial fibrillation modelling

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dictionary learning for atrial fibrillation modelling

Dictionary learning for atrial fibrillation modelling

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot

IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL

September 12, 2009

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 1 / 17

Page 2: Dictionary learning for atrial fibrillation modelling

Electrocardiography

Electrodes on the limbs and thorax measure skin potentialRecord potential difference between the feet and the other electrodesMultichannel signal S , sum of atrial and ventricular activities

S = (S1...S8)

= A + V

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 2 / 17

Page 3: Dictionary learning for atrial fibrillation modelling

Sane patient heart beat

Systole:atrial contraction to pumpthe blood in the ventricles(P wave)ventricular contraction topump the blood out ofthe heart (QRS complex)

Diastole: ventricularrelaxation (T wave)

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 3 / 17

Page 4: Dictionary learning for atrial fibrillation modelling

Atrial fibrillation

Atria fibrillate instead ofcontractingThe ventricles have toperform the systole on theirown

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 4 / 17

Page 5: Dictionary learning for atrial fibrillation modelling

AF observation in the ECG

Observed mixture S = A + VMuch lower atrial energy ‖A‖2 � ‖V ‖2 (between -10dB and -20dB)The observation of A could help the dignosis

ProblemVentricular cancellation problem: given S, find an estimate A of A.

Model of V :succession of QRST complexesstrong inter-patient variability, but regular for a given patient

Model of AF :irregular oscillationsfewer a priori knowledge than V or sane A because of the difficulty to observeit

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 5 / 17

Page 6: Dictionary learning for atrial fibrillation modelling

Sparse models

Signal s of length NDictionary Φ with D > N atoms

Definitions is sparse on Φ iff

∃(x , r) ∈ RD × RN ,s = Φx + r‖r‖2 � ‖s‖2‖X‖0 � N

V is sparse on a wavelet dictionaryA is sparse on a time-frequency dictionary

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 6 / 17

Page 7: Dictionary learning for atrial fibrillation modelling

Joint sparsity for multichannel signals

S = (S1 . . . S8)

Each channel Sc is sparse on a dictionary Φc :

∀1 ≤ c ≤ 8,Sc = ΦcXc + Rc

X = (X1 . . .X8)

R = (R1 . . .R8)

One looks for a decomposition X with the same non-zero coefficients on allchannels:

c

d

X‖R‖FRO � ‖S‖FRO

‖X‖2,0 =D∑

d=1

‖Xd,:‖02 � N

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 7 / 17

Page 8: Dictionary learning for atrial fibrillation modelling

Morphological source separation [Starck 2004]

S = A + V

If A is sparse on ΦA and V is sparse on ΦV , then S is sparse on (ΦAΦV ).

S = (ΦAΦV )X + R

If A is not sparse on ΦV and V is not sparse on ΦA, one can estimate thesources from X :

X =

(XAXV

)A = ΦAXA

V = ΦVXV

Application to ventricular cancellation [Divorra 2006]Gabor / Gaussian spike dictionariesOff-the-shelf dictionaries are bad at discriminating the other sourceHow about learnt dictionaries?

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 8 / 17

Page 9: Dictionary learning for atrial fibrillation modelling

Dictionary learning

ProblemGiven a set S of training data, find a couple (Φ, X) such that ∀S ∈ S, S is sparseon Φ

Iterative algorithm:decompose every S ∈ S over Φ

∀S ∈ S, S = ΦXS + RS

optimize Φ given S and the XS to minimize the qudratic errorXS∈S

‖S − ΦXS‖22

Application to ventricular cancellation:learn ΦA and ΦV

no separate training dataHow to learn 2 dictionaries from 1 mixture?

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 9 / 17

Page 10: Dictionary learning for atrial fibrillation modelling

Alternate ΦV and ΦA learnings

Learn ΦV on S − A, learn ΦA on S − VStart with ΦV as ‖V ‖2 � ‖A‖2Initially, A = V = 0, R = S

dictionary learning

dictionary learning

i

V

A

The number of learnt patterns increases at each iterationΦA post-processing:

residual is concentrated on QRS complexesremove spikes from AF patterns

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 10 / 17

Page 11: Dictionary learning for atrial fibrillation modelling

Evaluation on synthetic data

Data synthesis:A: numerical simulation of a physical heart modelV: manual removal of the P wave from a sane patient’s ECG

4 patients, 21 simulated AF

Error during the QRS

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 11 / 17

Page 12: Dictionary learning for atrial fibrillation modelling

Evaluation on synthetic data

Criterions:SIR: ratio of the other original sources in the estimated oneSAR: ratio of computation artefactsSDR: ratio of all kinds of errors

Comparison with Average Beat Subtraction [Lemay 2007]

Lead VAR dictionaries ABSSDR SIR SAR SDR SIR SAR

VR V 15.6 24.1 16.7 15.1 24.3 16.1A -12.3 1.2 23.0 1.4 -0.5 19.2 0.5

V1 V 16.4 23.3 17.7 16.8 24.6 17.9A -11.7 3.0 28.4 3.1 1.5 27.9 2.5

V4 V 20.3 28.9 21.3 19.8 31.5 20.2A -17.9 -1.4 22.2 -1.3 -1.9 21.1 -0.7

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 12 / 17

Page 13: Dictionary learning for atrial fibrillation modelling

Evaluation on synthetic data

Criterions:SIR: ratio of the other original sources in the estimated oneSAR: ratio of computation artefactsSDR: ratio of all kinds of errors

Comparison with Average Beat Subtraction [Lemay 2007]

Lead VAR dictionaries ABSSDR SIR SAR SDR SIR SAR

VR VA -12.3 1.2 -0.5

V1 VA -11.7 3.0 1.5

V4 VA -17.9 -1.4 -1.9

Atrial SDR = main peformance measureAverage 1dB gain over ABS

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 13 / 17

Page 14: Dictionary learning for atrial fibrillation modelling

Evaluation on synthetic data

Criterions:SIR: ratio of the other original sources in the estimated oneSAR: ratio of computation artefactsSDR: ratio of all kinds of errors

Comparison with Average Beat Subtraction [Lemay 2007]

Lead VAR dictionaries ABSSDR SIR SAR SDR SIR SAR

VR V 24.1 24.3A -12.3

V1 V 23.3 24.6A -11.7

V4 V 28.9 31.5A -17.9

Loss in ventricular SIRVentricular dictionary is still not discriminating enough

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 14 / 17

Page 15: Dictionary learning for atrial fibrillation modelling

Learnt dictionary on one lead

A

V

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 15 / 17

Page 16: Dictionary learning for atrial fibrillation modelling

What’s next?

Application to real dataHow to evaluate the algorithm without the original sources?

Dictionary-based diagnosisDictionary ≈ signal summary, without temporal information

GeneralizationDiscriminating learning instead of post-processing? [Mairal 2008]

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 16 / 17

Page 17: Dictionary learning for atrial fibrillation modelling

Average Beat Subtraction (ABS)

Hypotheses:Except ectopic beats, the VA is quite regular for a given patientAF and VA are uncorrelated

Algorithm:Detect the QRS complexesCompute a typical beat (or template) through PCASubtract it from each occurence

AF and VA are uncorrelated → AF is averaged out of the templateVA energy is much higher than AF → slight errors lead to significantpertubation on estimated AFWhen several templates are learnt, they get corrupted with AF interference

B. Mailhé, M. Lemay, R. Gribonval, J.-M. Vesin, P. Vandergheynst, F. Bimbot (IRISA - Université de Rennes 1, INRIA, CNRSITS - EPFL)Dictionary learning for atrial fibrillation modelling September 12, 2009 17 / 17

Page 18: Dictionary learning for atrial fibrillation modelling

1- ECG analysis

2- L1 minimization for dictionary learning

Rémi Gribonval METISS team (audio signal processing, indexing, source separation)

INRIA, Rennes, France

Karin SchnassLTS2, EPFL, Switzerland

Atelier «Décompositions atomiques en imagerie cérébrale : nouvelles avenues en traitement du signal»

Université de Montréal, 14-19 septembre 2009

Page 19: Dictionary learning for atrial fibrillation modelling

Outline

• Preliminaries: blind source separation, dictionary learning & related problems

• Objectives of theoretical dictionary learning

• L1 minimization for dictionary learning

• Main results! geometric “local” identifiability condition! random model and finite sample size analysis

• Discussion, conclusion & challenges

2

Page 20: Dictionary learning for atrial fibrillation modelling

Sparse signal models

• An image / a signal = sum of few atoms

" Dictionary = collection of atoms = " Representation = coefficient vector =

• Sparsity of ? Only if dictionary is “well chosen”

" Pre-chosen atoms: wavelets, Gabor, etc." Learned dictionary = from collection of signals / images

3

b =∑

k

xkak = Ax

Ax

x

bn = Axn, 1 ≤ n ≤ N

ak

A

Page 21: Dictionary learning for atrial fibrillation modelling

• Sparse modeling : choose a dictionary

Dictionary learning for sparse representations

4

Training image database

Page 22: Dictionary learning for atrial fibrillation modelling

• Sparse modeling : choose a dictionary

Dictionary learning for sparse representations

4

Training image database

bn = Axn, 1 ≤ n ≤ Npatch extraction

Training patches

Page 23: Dictionary learning for atrial fibrillation modelling

• Sparse modeling : choose a dictionary

Unknownsparse coefficients

Unknown dictionary

Dictionary learning for sparse representations

4

Training image database

bn = Axn, 1 ≤ n ≤ Npatch extraction

Training patches

Page 24: Dictionary learning for atrial fibrillation modelling

• Sparse modeling : choose a dictionary

Unknownsparse coefficients

Unknown dictionary

Dictionary learning for sparse representations

sparse learning

4

Training image database

bn = Axn, 1 ≤ n ≤ N

A = edge-like atoms[Olshausen & Field 96]

= shifted edge-like motifs[Jost, Vandergheynst, Lesage & Gribonval 2005]

patch extraction

Training patches

Page 25: Dictionary learning for atrial fibrillation modelling

Dictionary learning ?• Problem : estimate a matrix given observed samples

5

bn = Axn, 1 ≤ n ≤ N

A

Page 26: Dictionary learning for atrial fibrillation modelling

Dictionary learning ?• Problem : estimate a matrix given observed samples

5

bn = Axn, 1 ≤ n ≤ N

A

Page 27: Dictionary learning for atrial fibrillation modelling

Dictionary learning ?• Problem : estimate a matrix given observed samples

5

bn = Axn, 1 ≤ n ≤ N

A

B = AX

Page 28: Dictionary learning for atrial fibrillation modelling

Dictionary learning ?• Problem : estimate a matrix given observed samples

5

bn = Axn, 1 ≤ n ≤ N

A

AUnknown mixing matrix (blind source separation)Unknown dictionary (sparse signal approximation)Unknown channel filter (blind channel estimation) ...

{B = AX

Page 29: Dictionary learning for atrial fibrillation modelling

Dictionary learning ?• Problem : estimate a matrix given observed samples

5

bn = Axn, 1 ≤ n ≤ N

A

AUnknown mixing matrix (blind source separation)Unknown dictionary (sparse signal approximation)Unknown channel filter (blind channel estimation) ...

{X Unknown sources / signal representations / ...

B = AX

Page 30: Dictionary learning for atrial fibrillation modelling

Dictionary learning ?• Problem : estimate a matrix given observed samples

5

bn = Axn, 1 ≤ n ≤ N

A

AUnknown mixing matrix (blind source separation)Unknown dictionary (sparse signal approximation)Unknown channel filter (blind channel estimation) ...

• Fundamentally ill-posed factorization problem : need (weak) model on unknown coefficients X and / or matrix

{

A

X Unknown sources / signal representations / ...

B = AX

Page 31: Dictionary learning for atrial fibrillation modelling

Model of ...

Assumption

Identifiability

Identification

Issues

ICA (Independent Component Analysis) SCA (Sparse Component Analysis)

probability density function sample matrix

IndependenceSparsity / geometry

# many zeroes in# and concentrate around union

of low dimensional subspaces

Darmois theorem[Georgiev, Theis & Cichocki 05][Aharon, Elad & Bruckstein 06]

Contrast functions Combinatorial algorithms

In practice : finite training sets

expectation sample average

Identifiability assumes:

# highly sparse coefficients# (combinatorially ?) many training

examples

Theoretical dictionary learning• Problem : estimate a matrix given samples

6

bn = Axn, 1 ≤ n ≤ N B = AXA

p(X)

p(X) =∏

nk

p(xn(k))

A ∼ W−1

X

W := arg minW

EX(f(WAX))

Xbnxn

Page 32: Dictionary learning for atrial fibrillation modelling

Model of ...

Assumption

Identifiability

Identification

Issues

ICA (Independent Component Analysis) SCA (Sparse Component Analysis)

probability density function sample matrix

IndependenceSparsity / geometry

# many zeroes in# and concentrate around union

of low dimensional subspaces

Darmois theorem[Georgiev, Theis & Cichocki 05][Aharon, Elad & Bruckstein 06]

Contrast functions Combinatorial algorithms

In practice : finite training sets

expectation sample average

Identifiability assumes:

# highly sparse coefficients# (combinatorially ?) many training

examples

Theoretical dictionary learning• Problem : estimate a matrix given samples

6

bn = Axn, 1 ≤ n ≤ N B = AXA

p(X)

p(X) =∏

nk

p(xn(k))

A ∼ W−1

X

W := arg minW

EX(f(WAX))

Xbnxn

Page 33: Dictionary learning for atrial fibrillation modelling

Holy grail: provably good + efficient sparse learning• Sparse representations

! Known matrix

! Data model

! Identifiability theorems:

! Much literature since 2001 (Donoho & Huo, Elad & Bruckstein, Gribonval & Nielsen, Candès & Romberg & Tao, Tropp, Donoho & Tanner, ... and many others)

• Dictionary learning

! Unknown matrix

! Data model

! Identifiability theorem ?

! Most literature on Independent Component Analysis (ICA), density model rather than finite sample size geometric model

7

A A0

B = A0X0b = Ax0

Ax = b AX = Bx0 = arg min ‖x‖1 (A0, X0) ∈ arg min ‖X‖1

A0, X0 ∈?‖x0‖0 ≤ k1(A)

Page 34: Dictionary learning for atrial fibrillation modelling

• Cloud of 2500 training samples in ! ~1000 sparse [= on axes]! ~1500 non-sparse

Numerical example

8

R2

Page 35: Dictionary learning for atrial fibrillation modelling

• Cloud of 2500 training samples in ! ~1000 sparse [= on axes]! ~1500 non-sparse

• Orthonormal basis! Angle

Numerical example

8

R2

θ

θ

a1(θ)a2(θ)

Aθ = [a1(θ),a2(θ)]

Page 36: Dictionary learning for atrial fibrillation modelling

• Cloud of 2500 training samples in ! ~1000 sparse [= on axes]! ~1500 non-sparse

• Orthonormal basis! Angle

• L1 criterion

Numerical example

8

θ

‖A−1θ A0X‖1

R2

θ

θ

a1(θ)a2(θ)

Aθ = [a1(θ),a2(θ)]

Page 37: Dictionary learning for atrial fibrillation modelling

• Cloud of 2500 training samples in ! ~1000 sparse [= on axes]! ~1500 non-sparse

• Orthonormal basis! Angle

• L1 criterion

! global optimum=original! no other local minimum

Numerical example

8

θ

‖A−1θ A0X‖1

R2

θ

θ

a1(θ)a2(θ)

Aθ = [a1(θ),a2(θ)]

Page 38: Dictionary learning for atrial fibrillation modelling

9

‖A−

1θ1,θ

2A

0X‖ 1

θ2 θ1

Aθ1,θ2

θ1

θ2

Numerical example

Non orthogonal bases

Page 39: Dictionary learning for atrial fibrillation modelling

9

‖A−

1θ1,θ

2A

0X‖ 1

θ2 θ1

Aθ1,θ2

θ1

θ2

Numerical example

Non orthogonal bases

a) Global minima match the original basis b) There is no other local minimum.

Empirical observations

Page 40: Dictionary learning for atrial fibrillation modelling

Theoretical results

• “Local identifiability” for (non overcomplete) L1 dictionary learning! algebraic / geometric characterization of local minima

• Probability of identifiability! model on X: random, weakly-sparse! analysis of identifiability for (small) finite sample size

10

Page 41: Dictionary learning for atrial fibrillation modelling

Local identifiability result

• Assumptions: ! : for each row k, up to column

permutation, has decomposition

! = basis of sufficiently incoherent unit atoms

• Conclusion :

! = local minimum of L1 among (not necessarily orthonormal) bases

11

A0

(A′, X ′) ≈ (A0, X)

A′X ′ = A0X

‖X ′‖1 ≥ ‖X‖1

}X

XksTk = Xkdk

dk, ‖dk‖∞ < 1,

0X =

and there exists

A0

∀k‖ak‖2 = 1 maxk !=l

|〈ak, al〉| # 1

Page 42: Dictionary learning for atrial fibrillation modelling

Trivial example

• Assumptions: ! : for each row k, up to column

permutation, has decomposition

! = basis of sufficiently incoherent unit atoms

• If X has at most one nonzero entry per column (at unknown positions)

! Simply choose

• How robust is the condition to weakly-sparse outliers ?

• How many samples N does it then typically require ?

12

A0

X

XksTk = Xkdk

dk, ‖dk‖∞ < 1,

0X =

and there exists

∀k‖ak‖2 = 1 maxk !=l

|〈ak, al〉| # 1

Page 43: Dictionary learning for atrial fibrillation modelling

Trivial example

• Assumptions: ! : for each row k, up to column

permutation, has decomposition

! = basis of sufficiently incoherent unit atoms

• If X has at most one nonzero entry per column (at unknown positions)

! Simply choose

• How robust is the condition to weakly-sparse outliers ?

• How many samples N does it then typically require ?

12

A0

X

XksTk = Xkdk

dk, ‖dk‖∞ < 1,

0X =

and there exists

∀k‖ak‖2 = 1 maxk !=l

|〈ak, al〉| # 1

=0

0=

Page 44: Dictionary learning for atrial fibrillation modelling

Trivial example

• Assumptions: ! : for each row k, up to column

permutation, has decomposition

! = basis of sufficiently incoherent unit atoms

• If X has at most one nonzero entry per column (at unknown positions)

! Simply choose

12

A0

X

XksTk = Xkdk

dk, ‖dk‖∞ < 1,

0X =

and there exists

∀k‖ak‖2 = 1 maxk !=l

|〈ak, al〉| # 1

=0

0=

dk = 0

Page 45: Dictionary learning for atrial fibrillation modelling

Trivial example

• Assumptions: ! : for each row k, up to column

permutation, has decomposition

! = basis of sufficiently incoherent unit atoms

• If X has at most one nonzero entry per column (at unknown positions)

! Simply choose

• How robust is the condition to weakly-sparse outliers ?

12

A0

X

XksTk = Xkdk

dk, ‖dk‖∞ < 1,

0X =

and there exists

∀k‖ak‖2 = 1 maxk !=l

|〈ak, al〉| # 1

=0

0=

dk = 0

Page 46: Dictionary learning for atrial fibrillation modelling

Trivial example

• Assumptions: ! : for each row k, up to column

permutation, has decomposition

! = basis of sufficiently incoherent unit atoms

• If X has at most one nonzero entry per column (at unknown positions)

! Simply choose

• How robust is the condition to weakly-sparse outliers ?

• How many samples N does it then typically require ?

12

A0

X

XksTk = Xkdk

dk, ‖dk‖∞ < 1,

0X =

and there exists

∀k‖ak‖2 = 1 maxk !=l

|〈ak, al〉| # 1

=0

0=

dk = 0

Page 47: Dictionary learning for atrial fibrillation modelling

• Dimension of the problem

• General dictionary , basis

• Required number of training samples: " With , maximum sparsity achieved for

" Identifiability from samples for all “nice” ?" Identifiability with weakly-sparse X?

How many training samples ?

17

XK

N training samples

atoms

A

K

signal dimension

d

K ≥ d K = d

N = K

N ≤ CK log K

A = B != Abnak

B = AX =

X = Id1 atom = 1 training sample

A

Page 48: Dictionary learning for atrial fibrillation modelling

X

Second result : probability of identifiability

• Random model

! i.i.d. (sub)Gaussian entries in ! a fraction set to zero at random

• Using concentration of measure :

18

X = (xkn)

0

0

0

0

0

0

0

0

0

0

0

0

p

K

N

ConclusionLocal identifiability guaranteed with high probability from only “few” training samples:

(almost linear in dimension K, even for small p)

RKProbability of failure ...

training samples

atoms

p(x)

p

N ≥ C(p) · K log K

P ( ) ≤ C exp(aK log K − bN)

Page 49: Dictionary learning for atrial fibrillation modelling

• L1-minimization for dictionary learning:! Sufficient condition for local identifiability of bases! Condition typically valid

" even if only weakly-sparse training samples" even with relatively few training samples (non combinatorial training set)

• Consequence : ! ideal convergence of descent algorithms conditionally on

good initialization! conjecture : with high probability, no spurious local minima

Summary

19

Page 50: Dictionary learning for atrial fibrillation modelling

Perspectives & challenges

• Main open questions:" Probability of spurious local minima" Optimization algorithm (L1 criterion is nonconvex ...)" Stability/robustness to noise / compressible X ?

• Extensions:! other learning paradigms: efficiency? equivalence?

" greedy approaches (“deflation”, ongoing work)" alternate optimization (MOD, K-SVD, ...)

! blind sparse deconvolution ! learning general subspace arrangments / manifolds [cf Yi Ma]

20