57
1/30 Peter Fierlinger FERMILAB 13.10.05 Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger

Diamond-like Carbon for Ultra-cold Neutrons

  • Upload
    ervin

  • View
    40

  • Download
    0

Embed Size (px)

DESCRIPTION

Diamond-like Carbon for Ultra-cold Neutrons. Peter Fierlinger. E. W. Paul Scherrer Institut, Switzerland. neutron source SINQ. p-Accelerator. Synchrotron SLS. Contents. Ultra-cold neutrons (UCN) Motivation: Electric dipole moment of the neutron (nEDM) - PowerPoint PPT Presentation

Citation preview

Page 1: Diamond-like Carbon for                             Ultra-cold Neutrons

1/30Peter Fierlinger FERMILAB 13.10.05

Diamond-like Carbon for Ultra-cold Neutrons

Peter Fierlinger

Page 2: Diamond-like Carbon for                             Ultra-cold Neutrons

2/30Peter Fierlinger FERMILAB 13.10.05

W E

p-Accelerator

Synchrotron SLS

neutron source SINQ

Paul Scherrer Institut, Switzerland

Page 3: Diamond-like Carbon for                             Ultra-cold Neutrons

3/30Peter Fierlinger FERMILAB 13.10.05

Contents

• Ultra-cold neutrons (UCN)

• Motivation:

Electric dipole moment of the neutron (nEDM)

Life time of the free neutron

• The new UCN source at the PSI accelerator

• UCN related R&D: DLC

• DLC test experiment @ ILL

Page 4: Diamond-like Carbon for                             Ultra-cold Neutrons

4/30Peter Fierlinger FERMILAB 13.10.05

E < 300 neV, T < 3 mK, v < 7 ms-1, > 50 nm

- Gravity ~ 100 neV / m

- Magnetic field ~ 60 neV / T

- Strong interaction:

„Fermi potential“

Ultra-cold neutrons

cF bNU

UCN can be stored in traps for ~ 1000 s

V┴

m/U2vv Fcrit

Page 5: Diamond-like Carbon for                             Ultra-cold Neutrons

5/30Peter Fierlinger FERMILAB 13.10.05

spin 1/2

nEDM

Magnetic moment µ

AXIAL VECTOR

Electric dipole moment d

POLAR VECTOR

T transformation P transformation

Purcell and Ramsey, PR78(1950)807, Lee and Yang, Landau

A nonzero particle EDM violates P, T and, assuming CPT conservation, also CP

Predicted:

d ~ 10-26 - 10-28 e.cm (MSSM)

d < 10-31 e.cm (SM)

Experimental Limit: ILL-Sussex-RAL (1999):

( -1.0 ± 3.6 ) ·10-26 e·cm

STATISTICAL LIMIT

Page 6: Diamond-like Carbon for                             Ultra-cold Neutrons

6/30Peter Fierlinger FERMILAB 13.10.05

n & CKM matrix

V

A

G

G

PERKEO II

without PERKEO II

Universality:

udV VGG

C)1(G1 2

Vn

(885.7±1 s)

STATISTICAL LIMIT

Page 7: Diamond-like Carbon for                             Ultra-cold Neutrons

7/30Peter Fierlinger FERMILAB 13.10.05

Pulsed operation:8 sec on

800 sec off

nEDM

Cockroft-Walton: 800keV, 40mAInjector II: 72MeV, 2mARing cyclotron: 600MeV, 2mA,

p-accelerator @ PSI

UCN Source

Page 8: Diamond-like Carbon for                             Ultra-cold Neutrons

8/30Peter Fierlinger FERMILAB 13.10.05

Spallation target

Shutter

n-Guide

Cold sD2 moderator

UCN storage volume, 2m3

UCN tank system (~6m high)

D2O moderator

Coated walls To experiments

p beam

4000 UCN/cm3

Page 9: Diamond-like Carbon for                             Ultra-cold Neutrons

9/30Peter Fierlinger FERMILAB 13.10.05

Storage materials

low loss probability per wall collision µ

long storage time

µ(E) ~

high Fermi potential

more UCN

low spin flip probability per wall collision

polarized UCN

(e.g. in nEDM)E

Inte

nsity

typical UCN spectrum

Page 10: Diamond-like Carbon for                             Ultra-cold Neutrons

10/30Peter Fierlinger FERMILAB 13.10.05

Storage materials

50 100 150 200 250 300 35010-8

10-7

10-6

10-5

10-4

10-3

L

oss

Co

eff

icie

nt

Fermi potential [neV]

Al

Pb

Ni

C

Diamond

BeOBe 300 K

Be 70 K

58Ni

65Cu

Cu Fe

DLC

Page 11: Diamond-like Carbon for                             Ultra-cold Neutrons

11/30Peter Fierlinger FERMILAB 13.10.05

Diamond-like Carbon„sp2“

„sp3“

Production: e.g. pulsed laser deposition (PLD)

Laser

Target

SubstrateLayer

DENSITY

Page 12: Diamond-like Carbon for                             Ultra-cold Neutrons

12/30Peter Fierlinger FERMILAB 13.10.05

Reflectometry

φφv┴

Detector

V┴ ~ < 7 m/s ~ UCN

cF bNU

Ohter methods used: XPS, NEXAFS, Raman, LaWAVE

Page 13: Diamond-like Carbon for                             Ultra-cold Neutrons

13/30Peter Fierlinger FERMILAB 13.10.05

Adiabatic condition

Gravity: 1 m = 100 neV

Magnetic field: 60 neV/T

DLC test experiment

• No mechanical slits

• Depolarization probability • Loss probability µ

measured simultaneously:

Most common storage material: Beryllium

• μ(E,,T) ~ 4.10-5 (at 70 K)

• β ~ 5.10-6

μ, β of DLC = ?

• Monte Carlo program (E)

• Experimental setup

• Samples

• Method I: µ(T,E) and (T,E)

• Method II: (T,E)

Page 14: Diamond-like Carbon for                             Ultra-cold Neutrons

14/30Peter Fierlinger FERMILAB 13.10.05

Monte Carlo program

Geant4: CERN particle tracking simulation toolkit

• Fermi potential, wall reflections• Wall losses & spin flips• Absorption, scattering

• Gravity & magnetic fields (space-, time-dependent)

• Spin tracking

Adapted for UCN:

Page 15: Diamond-like Carbon for                             Ultra-cold Neutrons

15/30Peter Fierlinger FERMILAB 13.10.05

Setup:

n+3Het+p+780keV

Page 16: Diamond-like Carbon for                             Ultra-cold Neutrons

16/30Peter Fierlinger FERMILAB 13.10.05

Substrates: Al tubes Quartz tubes Al foils PET foils

Coatings: DLC, laser arc, Dresden DLC, PLD, VT Be, sputtered, PNPI & TUM

Film thickness > 100 nm

( ~ 10 x penetration depth)

Samples

70 m

m

Page 17: Diamond-like Carbon for                             Ultra-cold Neutrons

17/30Peter Fierlinger FERMILAB 13.10.05

Method I

Detector count rate:

B

Sample

Magnet

UCN from ILL-turbine

Detector

B

105

1100 %

00 100 200 300 400 time [s]

Page 18: Diamond-like Carbon for                             Ultra-cold Neutrons

18/30Peter Fierlinger FERMILAB 13.10.05

Method I: cleaning

100

Lo

st n

eutr

on

s

magnet

spin- flipped

B f

ield 90%

100 %time (s)

Magnetic field

60

Losses from the storage volume

Simulated !

wall loss

decay

top

100

Lo

st n

eutr

on

s

Fall through magnet

spin- flipped

B f

ield

90%100 %

Storagetime (s)

Magnetic field

60

Losses from the storage volume

Simulated !

0 20 40 60 80 100

1x100

1x101

1x102

1x103

1x104

1x105

C

ou

nts

Time [s]

simulated

measured

Co

unt

ra

te

Page 19: Diamond-like Carbon for                             Ultra-cold Neutrons

19/30Peter Fierlinger FERMILAB 13.10.05

Method I: storage

-35 0 350

200

400

600

800

1000

r [mm]

He

igh

t [m

m]

10.00

30.00

50.00

70.00

90.00

110.0

Potential energy Wall collisions (E)

1 / (

s.cm

_hei

ght)

[neV]

1000

800

600

400

200

0

1000

800

600

400

200

0

Page 20: Diamond-like Carbon for                             Ultra-cold Neutrons

20/30Peter Fierlinger FERMILAB 13.10.05

Method I: spectrum

20 30 40 50 60 70 80 9020

40

60

80

100

120

140

160

180

C

ou

nts

Energy [neV]

120 s storage

320 s storage

simulated

measured

Typical # of UCN stored ~ 600

Page 21: Diamond-like Carbon for                             Ultra-cold Neutrons

21/30Peter Fierlinger FERMILAB 13.10.05

Method I: analysis

1.

2.

Detector count rate

log10

100 %

0

100 %

0

Magnetic field

up to 450 s

Page 22: Diamond-like Carbon for                             Ultra-cold Neutrons

22/30Peter Fierlinger FERMILAB 13.10.05

Method I: loss probability

i

)tt(

spi2

*2

tot

i2

eNNN

111

)N/Nln(

tt1

n21

12

tot

01

tot*

Measurement:

with

Compare to simulation )E()E(11

nst

Page 23: Diamond-like Carbon for                             Ultra-cold Neutrons

23/30Peter Fierlinger FERMILAB 13.10.05

2

4

6

8

DLC -VT300 K

Be -TUM300 KBe -

PNPIQuartz300 K

Be - PNPI380 K

Be - PNPI300 K

DLCPET 2300 K

DLCPET 270 K

DLCPET 1may

DLCAl-Foil300 K

DLCPET 1juneDLC

Al-Foil70 K

Method I: results

Wall loss coefficient [1 / wall collision]

x 10-4

DLC is a good choice

Page 24: Diamond-like Carbon for                             Ultra-cold Neutrons

24/30Peter Fierlinger FERMILAB 13.10.05

Method I: analysis

1.

2.

log10

1.

2.

Detector count rate

100 %

0

100 %

0

Magnetic field

Page 25: Diamond-like Carbon for                             Ultra-cold Neutrons

25/30Peter Fierlinger FERMILAB 13.10.05

Method I: depolarization

<Nbg> ~ 1 in 200 s:

Poisson Statistics

1.68 x 10-51.7 x 10-5

Level 4Level 3

DLC PET-foil 70 K

Page 26: Diamond-like Carbon for                             Ultra-cold Neutrons

26/30Peter Fierlinger FERMILAB 13.10.05

Method II

Detector Count rate:

time [s]

Sample

Magnet

0 100 200 300 400

100 %

0

B

105

1

UCN

Detector

Page 27: Diamond-like Carbon for                             Ultra-cold Neutrons

27/30Peter Fierlinger FERMILAB 13.10.05

Method II: analysis

1 /

(s.c

m_h

eigh

t)

Wall collision distribution par

Accumulating neutrons

Production Loss

Energy [neV]

Hei

ght [

mm

]

Page 28: Diamond-like Carbon for                             Ultra-cold Neutrons

28/30Peter Fierlinger FERMILAB 13.10.05

0.0

0.5

1.0

1.5

2.0

2.5

x 10-5

DLCAl VT

BeTUM

BePNPI Quartz

BePNPI 380 K

BePNPI 300 K

DLC PET 2300 K

DLC PET 270 K

DLC PET 1May

DLC PET 1JuneDLC

Al foil300 K

DLC Al foil70 K

Method I & II: results

Spin flip probability [1 / wall collision]

…Method I

…Method II

Page 29: Diamond-like Carbon for                             Ultra-cold Neutrons

29/30Peter Fierlinger FERMILAB 13.10.05

Interpretation

So-called „anomalous losses“:

(0 K) ~ 2.10-7 theor.

but: ~ 10-5 exp.

Hydrogen: = C + H

NH ~ 0.3 NC

Explains also spin flips

Page 30: Diamond-like Carbon for                             Ultra-cold Neutrons

30/30Peter Fierlinger FERMILAB 13.10.05

Conclusions

- Monte Carlo package for UCN included in GEANT4

- Loss and depolarization measured simultaneously for the first time

- Hydrogen is a good candidate for the explanation of the losses

- DLC is top candidate for the UCN source at PSI

Page 31: Diamond-like Carbon for                             Ultra-cold Neutrons

31/30Peter Fierlinger FERMILAB 13.10.05

BACKUP

Page 32: Diamond-like Carbon for                             Ultra-cold Neutrons

32/30Peter Fierlinger FERMILAB 13.10.05

Motivation: nEDM

ILL-Sussex-RAL (1999):

( -1.0 ± 3.6 ) ·10-26 e·cm

Theoretical predictions: SUSY : 10-25-10-28 e·cm

Imagine the neutron were the size of the Earth...

x 1m

Page 33: Diamond-like Carbon for                             Ultra-cold Neutrons

33/30Peter Fierlinger FERMILAB 13.10.05

nEDM measurement

B0

B0

B0 B1

B0 B1

Free Precession

/2 Pulse

Polarized UCNin a trap

/2 Pulse

BdE

L

100 s

+

+

±E

Page 34: Diamond-like Carbon for                             Ultra-cold Neutrons

34/30Peter Fierlinger FERMILAB 13.10.05

UCN Transmission

0 2 4 6 8 10 12 14 16 180.0

0.2

0.4

0.6

0.8

1.0

Tra

nsm

issi

on

Velocity [ms-1]

EDM-UCN beam at ILL:• TOF• Foil coated with- Be (black)- DLC (red)

UCN

Chopper Sample

Detector

2 m

Page 35: Diamond-like Carbon for                             Ultra-cold Neutrons

35/30Peter Fierlinger FERMILAB 13.10.05

UCN Physics in Geant4

• Fermi potential, wall reflections• Wall losses & spin-flips• Absorption, scattering

• gravitational & magnetic fields (space-, time-dependent)

• Numerical solution of the Bloch equation

L/

from NIM A 457 (2001), 338-346

components of P after /2 flip at |B| = 1g

Page 36: Diamond-like Carbon for                             Ultra-cold Neutrons

36/30Peter Fierlinger FERMILAB 13.10.05

Filling

B

UCN v

Simulated spectrum shift (1 spin component)

Energy [neV]90300

Rel

. In

ten

sity

Page 37: Diamond-like Carbon for                             Ultra-cold Neutrons

37/30Peter Fierlinger FERMILAB 13.10.05

RK4

Page 38: Diamond-like Carbon for                             Ultra-cold Neutrons

38/30Peter Fierlinger FERMILAB 13.10.05

Low field transitions

B0Bearth

Page 39: Diamond-like Carbon for                             Ultra-cold Neutrons

39/30Peter Fierlinger FERMILAB 13.10.05

Spin trackingCoupled equations:

„Bloch“-equation

Treated classically

Page 40: Diamond-like Carbon for                             Ultra-cold Neutrons

40/30Peter Fierlinger FERMILAB 13.10.05

Penetration depth

VEm2

k22

k

1…. „Penetration depth“

Energy inside the barrier

Page 41: Diamond-like Carbon for                             Ultra-cold Neutrons

41/30Peter Fierlinger FERMILAB 13.10.05

The Magnet

Page 42: Diamond-like Carbon for                             Ultra-cold Neutrons

42/30Peter Fierlinger FERMILAB 13.10.05

Neutron life time

CKM (quark mixing) matrix is unitary:

1|V||V||V| 2ub

2us

2ud

Vud (neutr) = 0.9725±0.0013 PDG 2004 Vud (nucl) = 0.9740±0.0005

C)1(G1 2

Vn

Coupling for Leptons = Coupling for Quarks

udV VGG

V

A

G

G

(885.7±1 s) PDG 2004

STATISTICAL LIMIT

Page 43: Diamond-like Carbon for                             Ultra-cold Neutrons

43/30Peter Fierlinger FERMILAB 13.10.05

Superthermal converters• Superfluid He – zero absorption cross section but needs very low

temperatures ( ~ 0.5 K) (NIST, ILL, SNS)

• Solid D2 – absorption lifetime 150 ms, 2 orders of magnitude higher production rate as compared with He, temperature of ~ 8K sufficient (Munich, Los Alamos, PSI)

• Solid CD4 – compared with D2 more low lying rotational states – investigations at the very beginning

• Solid O2 – phonons and magnons excitation but temperatures below 2K needed

Page 44: Diamond-like Carbon for                             Ultra-cold Neutrons

44/30Peter Fierlinger FERMILAB 13.10.05

Deuterium

• D2 nuclear spin : S = 0,2 (ortho) and S = 1(para)

• Ortho-D2 : J = 0,2,4 …(rotational quantum number)

• Para-D2 : J = 1,3,5…

• Energy of the lowest rotational state:

– Para-D2 J =1 E = 7.5 meV

– Ortho-D2 J = 0 E = 0 meV

• Importance of high ortho-D2 concentration

Additional up-scattering channel !

Page 45: Diamond-like Carbon for                             Ultra-cold Neutrons

45/30Peter Fierlinger FERMILAB 13.10.05

Maxwell spectrum

vvUCN < 7m/s

vth ~ 2 km/s

vc ~ 1 km/s

Page 46: Diamond-like Carbon for                             Ultra-cold Neutrons

46/30Peter Fierlinger FERMILAB 13.10.05

4He

Page 47: Diamond-like Carbon for                             Ultra-cold Neutrons

47/30Peter Fierlinger FERMILAB 13.10.05

Maxwell Distribution

Neutron density between v and v+dv at thermal equilibrium

(average velocity)

Page 48: Diamond-like Carbon for                             Ultra-cold Neutrons

48/30Peter Fierlinger FERMILAB 13.10.05

Raman spectra

Page 49: Diamond-like Carbon for                             Ultra-cold Neutrons

49/30Peter Fierlinger FERMILAB 13.10.05

A oder und B A mit den elektronen

B mit neutrino

Page 50: Diamond-like Carbon for                             Ultra-cold Neutrons

50/30Peter Fierlinger FERMILAB 13.10.05

Maxwell Distribution

Neutron density between v and v+dv at thermal equilibrium

(average velocity)

Page 51: Diamond-like Carbon for                             Ultra-cold Neutrons

51/30Peter Fierlinger FERMILAB 13.10.05

- decay

1 ...e eee

e e e e

e en

e

a A B Dm

dWE E E E

p p ppE E

ppE

RPp

b PE

Correlation coefficients:A – parity violation, coupling constant ratio GA/GV

D – time-reversal violationR – parity and time-reversal violation

Page 52: Diamond-like Carbon for                             Ultra-cold Neutrons

52/30Peter Fierlinger FERMILAB 13.10.05

Superallowed β-decays

Ft = ft(1 + δR)(1 – δC) = K/[2GV

2(1 + ΔR)]

Universality: GV = Gμ•cosθ = Gμ• Vud

Vud2 = K/[2Gμ

2 (1 + ΔR) Ft]

Vud = 0.9740 0.0005(10) (unitarity value: ~0.9756)

Courtesy H.K. Walter

New measurements?

Page 53: Diamond-like Carbon for                             Ultra-cold Neutrons

53/30Peter Fierlinger FERMILAB 13.10.05

UCN turbine

Maxwellian distribution2000 UCN/cm3

extracted UCN40 UCN/cm3

1~10UCN/cm3

at experiment

Page 54: Diamond-like Carbon for                             Ultra-cold Neutrons

54/30Peter Fierlinger FERMILAB 13.10.05

Page 55: Diamond-like Carbon for                             Ultra-cold Neutrons

55/30Peter Fierlinger FERMILAB 13.10.05

Inelastic scattering

Page 56: Diamond-like Carbon for                             Ultra-cold Neutrons

56/30Peter Fierlinger FERMILAB 13.10.05

Fermipot

i

ir'ik

i

)rr('ik

ir'ik e

rr

eae

i

)rr('ik

iiir'ik

rr

ea)r(e

i

…range

must be small for f()f

r

e)(fe

r'ikr'ik 0)VE(

m22

2

302if2

U3

2k|U|k

2)(f

)rr(4|rr|

e)k( i

i

)rr(ik

22i

Many scatterers:

)r()r( iii

dr)r(narr

e)r(e

i

)rr('ikr'ik

i

Page 57: Diamond-like Carbon for                             Ultra-cold Neutrons

57/30Peter Fierlinger FERMILAB 13.10.05

Reflectivity

ikxikx Ree x'ikTe

'ikR1

)R1(ikcontinuous

dx

d1

At boundary:

Outside Inside