1
0 2 4 6 8 1 10 Permeability anisotropy k x /k z k y /k z k x /k y 1x10 -19 1x10 -18 1x10 -17 1x10 -16 0 2 4 6 8 0.4 0.5 0.6 Permeability [m 2 ] k x k y k z Initial compaction with an increase in mean stress Friction coefficient ѥ 0 8 6 4 2 Development of permeability anisotropy of antigorite serpentinite gouge during shear deformations Keishi Okazaki 1, Ikuo Katayama 1 , Hiroyuki Noda 2 , Miki Takahashi 3 okazakikeishi@hiroshimau.ac.jp 1 Earth and planetary system science, Hiroshima University, Japan, 2 InsGtute for Research on Earth EvoluGon (IFREE), Japan Agency for MarineEarth Science and Technology (JAMSTEC), Japan 3 Geological Survey of Japan, Advanced Industrial Science and Technology, Japan Serpen&nite in subduc&on zone and earthquake, slow earthquake Experimental apparatus :Antigorite serpentinite from Nomo metamorphic rocks, Japan Pressure vessel Control panel “Gas pressure medium high temperature high pressure triaxial deformaGon apparatus” (Wibberlery and Shimamoto, 2003) Max. Pc: 220MPa, Max. Pp: 200MPa, Temp.800, Advantages1. Accurate measurements of axial load and fluid flow 2. Pore pressure control →DeformaGon experiments under hydrothermal condiGon and with conGnuous permeability measurement during deformaGon are possible. Mineral composiGon: AnGgorite (~98%), Spinel, MagneGte, Diopside and no olivine relict. Crushed and sieved to extract grains less than 100 μm in diameter. Mean grain diameter: 1.51 μm (d50), aspect raGo: 0.74 (measured using Morphologi G3, Malvern Instruments Ltd). Summary : 1. Permeability in three orthogonal direcGons of anGgorite serpenGnite gouge was measured during precut fricGonal experiments. 2. PermeabiliGes in all direcGons decreases by one order of magnitude at iniGal compacGon by increasing mean stress without showing significant anisotropy. 3. At the steady state in terms of shear stress, permeability anisotropies kx/kz and ky/kz stayed at their steady state value as high as nearly one order magnitude. 4. Microstructures of recovered samples suggest that the permeability anisotropy is caused by developments of R, Y and Pshear structures that may prevent fluid flow normal to the fault in serpenGnite gouge. 5. Permeability anisotropies may enhance fluid flow along subducGon plate interface and acGve fault zones. Permeability anisotropy and fluid flow in fault zones Forcing block Forcing block R1 Y P Forcing block Forcing block Epoxy Epoxy a d b c 0 50 100 150 200 Effective normal stress [MPa] 0 20 40 60 80 100 120 Shear stress [MPa] GR606 GR609 GR610 GR611 GR614 GR633 GR623 ~ 0.49 ~ 0.64 H 2 O (wet) - Ar (dry) Normal stress ~ 175 MPa corresponding to 6~7 km depth Increasing Pp Confining pressure 150 Mechanical effect Sample Ar Sample Furnace Internal loadcell Pc generators Pp generator “Effects of fluids on rock deformation=one of the largest uncertainGes in the subducGon zone!! Absorp7on of water on mineral surface SerpenGnizaGon (hydraGon) of ultramafic rock Decreasing in rock fricGon and flow stress (Morrow et al., 2000; Giger et al.,2008 ) AlteraGon of brilleducGle transiGon zone EffecGve pressure low (e.g. Terzaghi, 1923) Thermal pressurizaGon (Sibson, 1973) Faultvalve behavior (Sibson ,1992) Slow earthquakes (Obara, 2002, etc…: occur in high Vp/Vs raGo (~high fluid pressure = low Pe) zone of subducGon zone ↘ Serpen7nized mantle wedge? Lower plane of the double seismic zone : dehydraGon embrillement of serpenGnite? (Kirby et al., 1996; Peacock, 2001) reacGvates outerrise fault?(Nakajima et al., 2011) DEPSS DEPSS Department of Earth and Planetary Systems Science Hiroshima University, JAPAN _Hiroshima →How is fluid kept along fault zone? →Permeability anisotropy must act an important role keeping fluid pressure along fault zones!! Alumina precut spacer with Pp hole Antigorite gouge sample Polyolefin jacket Porous alumina WC spacer Alumina spacer Hole for pore pressure 20mm k // k k Riedel shears (R1, Y and P) are developed normal to the plane including the fault normal and slip direcGons. But they are not straight as recognized in a secGon normal to the slip direcGon. Len7cular structure is developed in the direcGon normal to the slip direcGon in the fault. →They prevent fluid flow normal to the fault in serpen7nite gouge. PermeabiliGes in all direcGons decreases by one order of magnitude unGl shear stress reaches steadystate (apparent slip ~ 1 mm) without showing significant anisotropy. Ater the shear stress reaches steadystate, anisotropy of permeability becomes remarkable. Structure development Steady state? Permeability anisotropies kx/kz and ky/kz stayed at their steady state value as high as 8 at γ =3. →Fluids are likely to move parallel to the fault surface and might be kept around fault zone with minimal loss. →This value seems to be not enough to maintain excess pore pressure from previous models (Rice, 1992, Katayama et al., 2012). Fault healing(e.g. Tenthorey et al, 2003) and cap rocks (e.g. Peacock et al., 2011; Katayama et al., 2012) potenGally act important roles to increase permeability gap and to maintain excess pore pressure. Moho Oceanic crust Mantle wedge (Peridotite) Serpentinized mantle wedge Megathrust earthquake Slow earthquakes (SSE, LFE, NVT) Oceanic lithosphere (Philippine Sea plate) Oceanic ridge ? ? Outer-rise earthquake ? ? Inland fault Intra-slab earthquake ? Shear Strain (γ) Serpen&nite in subduc&on zone and its poten&al significance in regular and slow earthquakes: 10 1 0 1 10 2 0 0.5 1 1.5 2 2.5 3 3.5 4 Number Density Normalized by log boxcar Starting material Effective Grain Diameter, μm 1 0.5 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 log10(Effective Grain Diameter), μm Aspect Ratio Starting Material 0 2 4 6 8 10 12 1x10 -19 1x10 -18 1x10 -17 10 -16 Permeability [m ] Permeability [m 2 ] b c GR663 (k // ) GR642 (k // ) GR645 (k - ) GR657 (k - ) GR654 (k ) GR655 (k // ) GR664 (k ) Experimental condi7on: Pc = 150MPa, Pp = 100MPa Slip rate = 0.575 μm/s, Pore fluid: water, Temp. = RT 0 1 2 3 4 5 6 Axial displacement [mm] 0 0.2 0.4 0.6 0.8 "$! !&$ 0 1 2 3 4 5 6 Axial shortening [mm] 0.7 0.9 1.1 1.3 1.5 Gouge thickness [mm] Gouge thickness [mm] Friction coefficient Hit point GR663 (k // ) GR642 (k // ) GR645 (k - ) GR657 (k - ) GR654 (k ) GR655 (k // ) GR664 (k ) L z = 1.184 - 0.325 d a 0.210 displacement [mm] GR663 (k // ) GR642 (k // ) GR645 (k - ) GR657 (k - ) GR654 (k ) GR655 (k // ) GR664 (k ) Permeability measurement on An&gorite serpen&nite gouge during shear deforma&on Microstructures of recovered samples L 2 k //,,= L i 2 k i = i L x 2 k x + L y 2 k y + L z 2 k z * k: permeability, L: length of each component 0 1 0 0.5 1 1.5 2 2.5 3 Number Density Normalized Uniform Distribution Starting material Aspect Ratio Shear Strain (γ)

Development of permeability anisotropy of antigorite ... shortening [mm] 0.7 0.9 1.1 1.3 Gouge thickness [mm] 1.5 0.7 0.9 1.1 1.5 Permeability [m 2] Gouge thickness ... shear)deforma&on)

  • Upload
    phamdan

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Development of permeability anisotropy of antigorite ... shortening [mm] 0.7 0.9 1.1 1.3 Gouge thickness [mm] 1.5 0.7 0.9 1.1 1.5 Permeability [m 2] Gouge thickness ... shear)deforma&on)

0 2 4 6 8Shaer strain

1

10

Per

mea

bilit

y an

isot

ropy

kx/kzky/kzkx/ky

�ќ�1x10-19

1x10-18

1x10-17

1x10-16

Per

mea

bilit

y [m

2]

0 2 4 6 8Shear strain

0.4

0.5

0.6

���

�������

��"�����

Per

mea

bilit

y [m

2 ]

kxky

kzInitial compactionwith an increase inmean stress

�ќ�

Fric

tion

coef

ficie

nt

ѥ

0 86426KHDU�VWUDLQ��ќ�

Development of permeability anisotropy of antigorite serpentinite gouge during shear deformations

   Keishi  Okazaki1※,  Ikuo  Katayama1,  Hiroyuki  Noda2,  Miki  Takahashi3  ※okazakikeishi@hiroshima-­‐u.ac.jp           1Earth  and  planetary  system  science,  Hiroshima  University,  Japan,        2InsGtute  for  Research  on  Earth  EvoluGon  (IFREE),  Japan  Agency  for  Marine-­‐Earth  Science  and  Technology  (JAMSTEC),  Japan          3Geological  Survey  of  Japan,  Advanced  Industrial  Science  and  Technology,  Japan

Serpen&nite  in  subduc&on  zone    and    earthquake,  slow  earthquake  

Experimental  apparatus  

:Antigorite serpentinite from Nomo metamorphic rocks, Japan

Pressure vessel Control panel

“Gas  pressure  medium  high  temperature  high  pressure  triaxial  deformaGon  apparatus”  (Wibberlery  and  Shimamoto,  2003)  

Max.  Pc:  220MPa,  Max.  Pp:  200MPa,  Temp.800℃,  Advantages:  1.  Accurate  measurements  of  axial  load  and  fluid  flow  2.  Pore  pressure  control  →DeformaGon  experiments  under  hydrothermal  condiGon  and  with  conGnuous  permeability  measurement  during  deformaGon  are  possible.      

p Mineral  composiGon:  AnGgorite  (~98%),  Spinel,  MagneGte,  Diopside  and  no  olivine  relict.    

p Crushed  and  sieved  to  extract  grains  less  than  100  μm  in  diameter.  Mean  grain  diameter:  1.51  μm  (d50),  aspect  raGo:  0.74  (measured  using  Morphologi  G3,  Malvern  Instruments  Ltd).  

Summary:    1.  Permeability   in  three  orthogonal  direcGons  of  anGgorite  serpenGnite  gouge  was  measured  during  pre-­‐cut  fricGonal  

experiments.   2.  PermeabiliGes  in  all  direcGons  decreases  by  one  order  of  magnitude  at  iniGal  compacGon  by  increasing  mean  stress  

without  showing  significant  anisotropy.   3.  At   the  steady  state   in   terms  of  shear  stress,  permeability  anisotropies  kx/kz  and  ky/kz   stayed  at   their   steady  state  

value  as  high  as  nearly  one  order  magnitude.   4.  Microstructures  of   recovered  samples   suggest   that   the  permeability  anisotropy   is   caused  by  developments  of  R,  Y  

and  P-­‐shear  structures  that  may  prevent  fluid  flow  normal  to  the  fault  in  serpenGnite  gouge.   5.  Permeability  anisotropies  may  enhance  fluid  flow  along  subducGon  plate  interface  and  acGve  fault  zones.  

Permeability  anisotropy  and  fluid  flow  in  fault  zones  

������

������Forcing block

Forcing block

R1 YP

������

������

Forcing block

Forcing block

Epoxy

Epoxy

a

db

c

0 50 100 150 200Effective normal stress [MPa]

0

20

40

60

80

100

120

Shea

r stre

ss [M

Pa] GR606

GR609GR610GR611GR614GR633GR623 Ar � ~ 0.49

� ~ 0.64H2O (wet)

- Ar (dry)

Normal stress ~ 175 MPacorresponding to 6~7 km depth

Increasing Pp

Confining'pressure 150

Mechanical  effect

Sample  

��� ���������������

��� ����� �������������������������

��������������

����� ����

����������������

���� ��������

Ar

���������

�����������

���������

������������

����������� ��������� ����

���������

����

Sample

Furnace

Internal..loadcell

Pc  generators

Pp  generator

“Effects of fluids on rock deformation“  =one  of  the  largest  uncertainGes  in  the  subducGon  zone!!   ・Absorp7on  of  water  on  mineral  surface  ・SerpenGnizaGon  (hydraGon)  of  ultramafic  rock  ・Decreasing  in  rock  fricGon  and  flow  stress  (Morrow  et  al.,  2000;  Giger  et  al.,2008  )  

・AlteraGon  of  brille-­‐ducGle  transiGon  zone  ・EffecGve  pressure  low  (e.g.  Terzaghi,  1923)  ・Thermal  pressurizaGon  (Sibson,  1973)  ・Fault-­‐valve  behavior  (Sibson  ,1992)  

Slow  earthquakes  (Obara,  2002,  etc…):  occur  in  high  Vp/Vs  raGo  (~high  fluid  pressure  =  low  Pe)  zone  of  subducGon  zone      ↘  Serpen7nized  mantle  wedge?  

Lower  plane  of  the  double  seismic  zone  :  p dehydraGon  embrillement  of  serpenGnite?  

(Kirby  et  al.,  1996;  Peacock,  2001)    

p reacGvates  outer-­‐rise  fault?(Nakajima  et  al.,  2011)  

DEPSSDEPSSDepartment of Earth and Planetary Systems Science Hiroshima University, JAPAN

_Hiroshima

→How  is  fluid  kept  along  fault  zone?  →Permeability  anisotropy  must  act  an  important  role  keeping  fluid  pressure  along  fault  zones!!  

Alumina precut spacer withPp hole

Antigorite gouge sample

Polyolefinjacket

Porousalumina

WCspacer

Aluminaspacer

Hole forporepressure

k// k�k-

20mm

Figure 1. Okazaki et al., 2012

k// k-­‐ k⊥

○Riedel  shears  (R1,  Y  and  P)  are  developed  normal  to  the  plane  including  the  fault  normal  and  slip  direcGons.  But  they  are  not  straight  as  recognized  in  a  secGon  normal  to  the  slip  direcGon.  ○Len7cular  structure  is  developed  in  the  direcGon    normal  to  the  slip  direcGon  in  the  fault.    →They  prevent  fluid  flow  normal  to  the  fault  in  serpen7nite  gouge.  

PermeabiliGes  in  all  direcGons  decreases  by  one  order  of  magnitude  unGl  shear  stress  reaches  steady-­‐state  (apparent  slip  ~  1  mm)  without  showing  significant  anisotropy.  Ater  the  shear  stress  reaches  steady-­‐state,  anisotropy  of  permeability  becomes  remarkable.  

Structure    development Steady  state?

Permeability  anisotropies  kx/kz  and  ky/kz  stayed  at  their  steady  state  value  as  high  as  8  at  γ  =3.    →Fluids  are  likely  to  move  parallel  to  the  fault  surface  and  might  be  kept  around  fault  zone  with  minimal  loss.   →This  value  seems  to  be  not  enough  to  maintain  excess  pore  pressure  from  previous  models  (Rice,  1992,  Katayama  et  al.,  2012).    

Fault  healing(e.g.  Tenthorey  et  al,  2003)  and  cap  rocks  (e.g.  Peacock  et  al.,  2011;  Katayama  et  al.,  2012)  potenGally  act  important  roles  to  increase  permeability  gap  and  to  maintain  excess  pore  pressure.    

Moho Oceanic crust

Mantle wedge(Peridotite)

Serpentinizedmantle wedge

Megathrust earthquake

Slow earthquakes(SSE, LFE, NVT)

Oceanic lithosphere(Philippine Sea plate)

Oceanic ridge

? ?

Outer-rise earthquake

?

?

Inland fault

Intra-slabearthquake

?

Shear Strain (γ)

Serpen&nite  in  subduc&on  zone  and  its  poten&al  significance  in  regular  and  slow  earthquakes:

10 1 100 101 1020

0.5

1

1.5

2

2.5

3

3.5

4

Effective Circle Diameter, +m

Num

ber D

ensi

ty N

orm

aliz

ed b

y lo

gbo

xcar

Starting material

Student Version of MATLAB

Effective Grain Diameter, μm

−1 −0.5 0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

log10(Effective Grain Diameter), µm

Asp

ect R

atio

Starting Material

0

2

4

6

8

10

12

Student Version of MATLAB

0

0.2

0.4

0.6

0.8

�"��$�! ��!��&��� $

0 1 2 3 4 5 6Axial shortening [mm]

0

0.2

0.4

0.6

0.8

GR642 (k//)GR655 (k//)GR645 (k-)GR657 (k-)GR654 (k�)GR664 (k�)GR663 (k//)

1x10-19

1x10-18

1x10-17

1x10-16

Perm

eabi

lity

[m ]

1x10-19

1x10-18

1x10-17

1x10-16GR642 (k//)GR655 (k//)GR645 (k-)GR657 (k-)GR654 (k�)GR664 (k�)GR663 (k//)

0 1 2 3 4 5 6Axial shortening [mm]

0.7

0.9

1.1

1.3

1.5

Gou

ge th

ickn

ess

[mm

]

0.7

0.9

1.1

1.3

1.5

Perm

eabi

lity

[m2 ]

Gou

ge th

ickn

ess

[mm

]Fr

ictio

n co

effic

ient

a

b

cHit pointGR663 (k//)GR642 (k//)GR645 (k-)

GR657 (k-)GR654 (k

�)

GR655 (k//)GR664 (k

�)

Lz = 1.184 - 0.325 da0.210

displacement [mm]

GR663 (k//)GR642 (k//)

GR645 (k-)GR657 (k-)GR654 (k

�)GR655 (k//)

GR664 (k�)

Figure 2. Okazaki et al., 2012

GR663 (k//)GR642 (k//)

GR645 (k-)GR657 (k-)GR654 (k

�)

GR655 (k//) GR664 (k�)

Experimental  condi7on:  Pc  =  150MPa,  Pp  =  100MPa  Slip  rate  =  0.575  μm/s,  Pore  fluid:  water,  Temp.  =  RT  

0 1 2 3 4 5 6"Axial displacement [mm]"

0

0.2

0.4

0.6

0.8

�"��$�! ��!��&��� $

0 1 2 3 4 5 6Axial shortening [mm]

0

0.2

0.4

0.6

0.8

GR642 (k//)GR655 (k//)GR645 (k-)GR657 (k-)GR654 (k�)GR664 (k�)GR663 (k//)

0 1 2 3 4 5 6Axial shortening [mm]

0.7

0.9

1.1

1.3

1.5

Gou

ge th

ickn

ess

[mm

]

0.7

0.9

1.1

1.3

1.5

Gou

ge th

ickn

ess

[mm

]Fr

ictio

n co

effic

ient

Hit pointGR663 (k//)GR642 (k//)GR645 (k-)

GR657 (k-)GR654 (k

�)

GR655 (k//)GR664 (k

�)

Lz = 1.184 - 0.325 da0.210

displacement [mm]

GR663 (k//)GR642 (k//)

GR645 (k-)GR657 (k-)GR654 (k

�)

GR655 (k//) GR664 (k�)

Permeability  measurement  on  An&gorite  serpen&nite                  gouge  during  shear  deforma&on  

Microstructures  of  recovered  samples  

L2

k//,−,⊥=

Li2

ki=

i∑ Lx

2

kx+Ly2

ky+Lz2

kz* k: permeability, L: length of each component

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

Aspect ratioNum

ber D

ensi

ty N

orm

aliz

ed U

nifo

rm D

istri

butio

n

Starting material

Student Version of MATLAB

Aspect Ratio

Shear Strain (γ)