30
Development of Multi-GNSS Orbit and Clock Determination Software "MADOCA" December 1 - 3, 2013 @Hanoi Univ. of Science and Technology Tokyo Univ. of Marine Science and Technology Tomoji TAKASU The 5th Asia Oceania Regional Workshop on GNSS

Development of Multi-GNSS Orbit and Clock Determination ...gpspp.sakura.ne.jp/paper2005/aorws_ttaka_20131202.pdf · Offline GPS/GLONASS Orbit 2011/01/01 - 2011/12/31 (365 days), wrt

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Development of Multi-GNSS Orbit and Clock

    Determination Software "MADOCA"

    December 1 - 3, 2013 @Hanoi Univ. of Science and Technology

    Tokyo Univ. of Marine Science and TechnologyTomoji TAKASU

    The 5th Asia Oceania Regional Workshop on GNSS

  • Contents

    • Overview of MADOCA

    • Models and Algorithms

    • Test and Evaluation

    • Status and Future Plan

    2

  • Overview of MADOCA

    3

  • MADOCA

    • For real-time PPP via QZSS LEX– Many promising applications over global area by PPP

    • Precise orbit/clock for GPS, GLONASS, QZSS and Galileo– Key-technology for sub-dm to cm PPP

    • 2-years project in cooperation with and

    • Brand-new codes implemented from scratch– Multi-threading optimized for recent CPUs

    – Modular design for future model improvement

    4

    Multi-GNSS Advanced Demonstration toolfor Orbit and Clock Analysis

  • PPP Applications

    5

    Automated Farming

    OffshoreConstruction

    AutonomousDriving

    Weather Forecast

    Tsunami Warning Mining MachineControl

  • Real-Time PPP via QZSS LEX

    6

    GPS GLONASS Galileo QZSS

    MGM-Net

    MADOCA

    PPP Users

    LEX Signal

    Precise Orbit/Clock Estimation

    ~ 1.7 Kbit/sReferenceStations

  • MADOCA Architecture

    7

    MGM-Net EKF

    RDS

    Parameter Estimator

    IGSetc

    QZSSMCS

    LSQ

    MGPLOT MADOCA API

    MGRTE

    MGEST

    RTCM,BINEX, Javad

    LEXMT 12

    RINEX,SP3, ERP

    Data Interfaces Data Interfaces

    LMG

    OfflineDL

  • Models and Algorithms

    8

  • Models

    • Satellite Orbit Models– EGM 2008+solid earth tide+FES2004

    – Sun, Moon, Venus and Jupiter with JPL DE421

    – Empirical SRP model, ...

    • Measurement Models– ZD Iono-free phase+ pseudorange, 2nd-order-iono

    – ZTD+gradient estimation with GPT+GMF/VMF1

    – IERS DEHANTIDEINEL+FES2004 OTL+pole tide+CMC

    • ECI-ECEF Coordinates Transformation– IAU 2000A/2006 by IAU SOFA

    9

  • Empirical SRP Model

    10

    satellite

    orbitplane

    midnight

    noon

    beta

    fZ

    eY

    X

    eD

    eB

    GPS Block IIR GLONASS QZSS

    asrp = S ((D0 + DC cos f + DS sin f) eD + (B0 + BC cos f + BS sin f) eB+ (Y0 + YC cos f + YS sin f) eY) x 10

    -9 (m/s2)

    Ec YsYs

    Y

  • Parameter Adjustment

    11

    Offline Real-Time

    Algorithm Iterated Weighted LSQ Dual-Cycle-EKF

    Estimated Parameters

    Orbit, SRP/Emp-Acc, Clock, Position, ZTD/Grad,Ambiguity, Bias, EOP

    Measurements ZD Carrier-Phase and Peudorange

    NumericalSolver

    NEQ by CholeskyFactorization

    Numerical StableEKF

    Clock EstimationParameter Elimination

    in NEQState as White-Noise

    or Random-Walk

    Integer AmbiguityResolution

    Network AR(Ge., 2005)

    Real-TimeNetwork AR

  • Iterated LSQ for Offline

    12

    InitialParameters

    Orbit Generation

    Solve NEQ by Cholesky

    Measurement Eq.

    Network AR

    Update Parameters

    OBS Data ...

    SP3, EOP, RINEX CLK, ...

    Stack NEQ

    Epoch NEQ Scratch

    ( ( ))

    T

    T

    j i

    N N H WH

    b b H W y h x

    1 x N b

    0( ) ( ) ( , , , )t t t dt r r f r v p

    1i i x x x

    0x

    1 2, ,...y y

    Constraint to Fixed Ambiguity

    Generate Products

  • 13

    • Dynamic baseline selection to convert ZD to DD

    • WL and NL DD ambiguities by rounding

    • Validation by confidence function and FCB

    • For GPS, QZSS and Galileo (not for GLONASS)

    Network AR

    AR-OFF AR-ON

    GPS3D-RMS: 5.63 cm

    GPS3D-RMS: 2.59 cm

  • Dual-Cycle-EKF for Real-Time

    14

    ˆ ˆ( , ), ( , ),e c e c v y h x x H H H R

    T Te e e c c c S H P H H P H R

    ˆ ˆe e e x x K v

    ( )e e e e P I K H P

    1Te e e

    K P H S

    ˆ ˆc c c x x K v

    ( )c c c c P I K H P

    1Tc c c

    K P H S

    , ,0

    2 2

    ˆ

    ( , ,...)

    e k e

    e diag

    x x

    P

    ,ˆ ˆ( )c k c

    c c

    t

    x f x

    P ΦP Φ Q

    y

    Epoch Parameters Common Parameters

    Common cycle (30 s)Epoch cycle (1Hz)

    TimeUpdate

    Meas.Update

    OBSData

  • Numerically Stable EKF

    15

    1( )

    ( ( ))

    ( )

    T T

    K P H HP H R

    x x K y h x

    P I KH P

    (1) v = y - h(x), H, R(2) D = P HT

    (3) S = H D + R(4) U = chol(S)(5) K = (D U-1) U-T

    (6) x = x + K v(7) P = P - K DT

    (1) v = y - h(x), H, R(2) D = P HT

    (3) S = H D + R(4) U = chol(S)(5) E = D U-1

    (6) K = E U-T

    (7) x = x + K v(8) P = P - E ET

    (sparse)

    (sparse)

    DPOTRF

    DTRSM

    DTRSM

    DGEMV

    DSYRK

    (sparse)

    (sparse)

    DPOTRF

    DTRSM

    DGEMV

    DGEMM

    Standard EKF Numerically Stable EKF

    Measurement Update of EKF

  • Test and Evaluation

    16

  • R

    Offline GPS/GLONASS Orbit

    172011/01/01 - 2011/12/31 (365 days), wrt IGS Final

    A

    C

    R

    A

    C

    RMSR: 0.89 cmA: 1.10 cmC: 1.12 cm

    3D: 1.81 cm

    GPS (32 sats)

    GLONASS (24 sats)

    RMSR: 1.37 cmA: 3.70 cmC: 2.94 cm

    3D: 4.92 cm

    +0.5m

    -0.5m

  • Offline QZSS Orbit

    18

    R

    A

    C

    2011/06/04 - 2011/11/03 (153 days), 24 H-overlap

    RMSR: 2.37 cmA: 4.47 cmC: 3.21 cm

    3D: 5.99 cm

    +1m

    -1m

    QZSS-1 Michibiki J01

  • Offline Galileo Orbit

    19

    RMSR: 2.65 cmA: 8.72 cmC: 2.92 cm

    3D: 9.56 cm

    RMSR: 1.70 cmA: 8.21 cmC: 2.92 cm

    3D: 8.88 cm

    Galileo E11

    Galileo E12

    R

    A

    C

    R

    A

    C

    2012/11/2 - 2013/02/27 (117 days), 24H-overlap

    +1m

    -1m

  • Galileo Orbit vs. TUM/GRM

    20

    R

    A

    C

    R

    A

    C

    RMSR: 18.42 cmA: 83.92 cmC: 52.51 cm

    3D: 100.69 cm

    RMSR: 8.32 cmA: 23.35 cmC: 22.19 cm

    3D: 33.27 cm

    Galileo E11, E12: MADOCA - TUM

    2012/11/02 - 2013/02/27 (117 days)

    Galileo E11, E12: MADOCA - GRM

    +1m

    -1m

  • Real-Time PPP Test

    21RTKLIB 2.4.2 PPP Kinematic

    Javad LEGANT + NovAtel OEM6(GPS + GLONASS + QZSS + Galileo)

    IGS/MGEX

    MGM-Net

    QZSS MS

    RTCM OBSRTCM MSMRTCM EPH

    www.igs-ip.netmgex.igs-ip.net

    IGS RTService

    JAXANTRIPCaster

    RT-MADOCA Test Server:Core i7 3930K, RAM 32GB,

    HDD 5TB/SSD 240GBubuntu 11.04 Linux

    BINEXJAVAD JPS

    STR2STR

    RTCM MSMRTCM EPH

    RTCM SSROBT/CLK/URA 30s

    HR-CLK 1Hz xx.xxx.xx.xxx/MADOCA_SSR

    MGRTE

    RT-MADOCA Test Server

    STRMONNTRIPCaster

    RTCM SSR

  • Reference Station Network

    22

    QZSS-MS (8) MGM-Net (17) IGS/MGEX (21) TOTAL (46)

  • Products for Real-Time PPP Test

    23

    Mount Point

    ProductsRTCM SSR Message Type Update

    IntervalLatency Notes

    GPS GLO QZSS Galileo

    MADOCA_SSR

    Orbit 1057 1063 1246* -

    30 s

    ~ 5 s

    APC in ITRF2008

    Clock 1058 1064 1247* - -

    Code Bias

    - - - - -

    URA 1061 1067 1250* - -

    HR-Clock

    1062 1068 1251* - 1 s -

    MADOCA_TEST

    same as above ~ 5 sTest and backup

    *

    * Based on Draft RTCM

  • Real-Time Product Monitor

    24

  • Real-Time PPP Test Results

    25

    With GPS Only

    With GPS + GLONASS + QZSS

    2013/11/26 00:00 - 23:59 (1Hz, 24 H), First 1H excluded for RMSE

    RMSEE: 4.45 cmN: 2.85 cm

    U: 11.00 cm

    RMSEE: 3.84 cmN: 3.50 cmU: 8.54 cm

    - 1 m

    + 1 m

    0

    - 1 m

    + 1 m

    0

    1 H

    E N U

  • PPP Solution Convergence

    26

    With GPS Only

    With GPS + GLONASS + QZSS

    2013/11/26 00:00 - 00:59 (1 H)

    - 1 m

    + 1 m

    0

    - 1 m

    + 1 m

    0

    ConvergenceHRMS

  • Real-Time Experiment via QZSS LEX

    27

    ScheduleLEX Data Format

  • LEX MT12 Format

    28

  • Status and Future Plan

    29

  • Status and Future Plan

    • Status in Dec 2013– All codes are completed both for real-time and offline

    – Long-term test and evaluation are conducted by test servers

    – Real-time PPP experiment via LEX was started in April 2013

    – Real-time GLONASS orbit/clock added in Nov 2013

    – Some problems are identified and going to be fixed

    • Future Plan– Adding PPP-AR (ambiguity resolution) feature

    – Supporting Chinese BeiDou

    – Local iono- and tropo-products to reduce convergence time

    – PPP-INS Integration for driving vehicle application

    30