27
DEVELOPMENT OF A SUPERCRITICAL CARBON DIOXIDE REACTOR WITH ONLINE SAMPLING BY MASS SPECTROMETRY FOR OBSERVATION OF PREBIOTIC CHEMICAL REACTION PRODUCTS Daniel Thomas , Jenny Fan , Scott Virgil , and J. L. Beauchamp Noyes Laboratory of Chemical Physics, Caltech Center for Catalysis and Chemical Synthesis, Caltech

DEVELOPMENT OF A SUPERCRITICAL CARBON DIOXIDE …

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

DEVELOPMENT OF A SUPERCRITICAL CARBON DIOXIDE REACTOR WITH ONLINE SAMPLING BY MASS SPECTROMETRY FOR OBSERVATION OF PREBIOTIC CHEMICAL REACTION PRODUCTS

Daniel Thomas†, Jenny Fan†, Scott Virgil‡, and J. L. Beauchamp†

†Noyes Laboratory of Chemical Physics, Caltech‡Center for Catalysis and Chemical Synthesis, Caltech

Overview

• Supercritical carbon dioxide – what do we know? Why is it interesting

• Experimental apparatus for studying reactions in scCO2

• Diagnostic testing of experimental apparatus

• Synthesis of biomolecules in scCO2

• Discussion of future work

Supercritical carbon dioxide (scCO2)

• ≥ 73.8 atm• ≥ 31.3°C• Evaporates upon

removal of pressure –hence its potential as a green solvent

Known processes in scCO2

http://philschatz.com/chemistry-book/contents/m51080.html

DecaffeinationHydrogenation

Wai, C. M. et al. Journal of Chem Ed, 75, 1641 (1998)

HydroformylationWai, C. M. et al. Journal of Chem Ed, 75, 1641 (1998)

• CO2 a common compound present in planetary atmospheres, and supercritical conditions may exist on exoplanets

• Hypothesis that life on earth may have formed in scCO2 in thermal vents in oceans and at the scCO2-H2O interface

• Exoplanets: life forming in supercritical or liquid CO2

• scCO2 may comprise a unique medium in which prebiotic molecules can be formed

scCO2 a possible pre-biotic solvent?

scCO2 a possible pre-biotic solvent? (cont.)• Fujioka and colleagues demonstrated synthesis of some amino acids in

an scCO2-H2O system

Fujioka, K. et al.Int J Mol Sci., 10, 2730 (2009)

CO2cylinder

pumpback

pressure regulator

reac

tor

N2 gas source

ESI solvent syringe

MS built-in 6-port switching valve

ss tubing-fused silica adaptor

PEEK T-junction

ESI chamber

ESI source (modified)

to MS inlet

stainless steel T-junction

SFC unit

oven

6-port switching valve for sample

injection

Pressure dial

mass spectrometersample

loop

syringe inlet

An scCO2 – MS coupled reactorKey: fused silica capillary 26 gauge ss tubing 0.005” i.d. ss tubing

Electrospray ionization mass spectrometry (ESI-MS)

Banerjee, S.; Mazumdar, S. Int. J. Anal. Chem., 282574, (2012)

mass spectrometer

ESI solvent syringe

ss tubing-fused silica adaptor

PEEK T-junction

ESI chamber

to MS inlet

Modified ESI source

N2 gas source

flow from

reactor

Key: fused silica capillary 26 gauge ss tubing 0.005” i.d. ss tubing

Fused silica capillary

(195um o.d., 100um i.d.)

Stainless steel tubing (26 gauge,

approx 0.018” o.d., 0.010” i.d.)

Modified ESI tip (fused silica protruding)

MS Inlet

Oven unit

SFC pump unit (with backpressure regulator)

ESI chamber

switching valve for sample injection

Laboratory set-up

• Solvent injection tests• 100 μL injection volume

• Amino acid & peptide tests• Dissolved in methanol, 100 μL

injection

Diagnostic tests

Methanol

Acetone Histidine (1 mM) Valine (1 mM, 10 μM)

Alanine (1 mM) Ala-Leu (1 mM, 10 μM)

Conditions for testing

• 100 bar, 40⁰ C

• 150 bar, 60⁰ C

• 100 bar, 60⁰ C

50 100 150 200 250 300m/z

0

20

40

60

80

1000

20

40

60

80

100

Rel

ativ

e Ab

unda

nce

117.5 165.2

59.3

273.0

65.4

33.5195.3

Acetone Monomer

Acetone Dimer

MeOH Monomer

MeOH Dimer

Solvent tests – acetone & methanol spectra

Ion current: 1.38E5

Acetone spectrumt = 3.84 min

Ion current: 2.17E5

Methanol spectrumt = 3.17 min

0 1 2 3 4 5 6 7 8 9Time (min)

0

20

40

60

80

1000

20

40

60

80

100

Rela

tive

Abun

danc

e

3.493.81

4.034.21

3.31 4.943.27 5.60

6.42

6.813.02 7.20

5.45

5.30

5.774.03 6.334.893.883.21

7.30

8.217.60

Ion current: 3.44E6

Methanol dimer tracem/z = 64.70-65.70

Ion current: 1.07E6

Acetone dimer tracem/z = 116.70-117.70

Solvent tests – acetone & methanol

100 bar, 40⁰ C1.5 mL/min

100 bar, 40⁰ C1.5 mL/min

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0Time (min)

0

20

40

60

80

1000

20

40

60

80

100

Rela

tive

Abun

danc

e

2.95

3.102.90

3.22

2.843.46

3.69

4.061.83

1.99

2.08

2.281.72

2.692.97

Ion current: 1.59E7

Valine high T/P tracem/z = 117.70-118.70

Ion current: 9.32E6

Valine low T/P tracem/z = 117.70-118.70100 bar, 40⁰ C

1.5 mL/min

150 bar, 60⁰ C2.1 mL/min

Valine tests (low T/P & high T/P)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0Time (min)

0

20

40

60

80

1000

20

40

60

80

100

Rela

tive

Abun

danc

e

2.72 2.91

3.07

3.40

3.85

4.48

1.971.85

2.10

2.56

1.65

2.73

2.943.78

Ion current: 1.70E7

Alanine high T/P tracem/z = 89.70-90.70

Ion current: 1.19E7

Alanine low T/P tracem/z = 89.70-90.70100 bar, 40°C

1.5 mL/min

150 bar, 60°C2.1 mL/min

Alanine tests (low T/P & high T/P)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5Time (min)

0

20

40

60

80

1000

20

40

60

80

100

Rela

tive

Abun

danc

e

2.53

2.46

5.03

4.432.633.78

1.772.00

2.20

2.39

3.043.58

Ion current: 5.85E5

Histidine high T/P tracem/z = 155.70-156.70

Ion current: 1.07E5

Histidine low T/P tracem/z = 155.70-156.70100 bar, 40⁰ C

1.5 mL/min

150 bar, 60⁰ C2.1 mL/min

Histidine tests (low T/P & high T/P)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5Time (min)

0

20

40

60

80

1000

20

40

60

80

100

Rela

tive

Abun

danc

e

3.132.38

2.692.17

2.04

3.281.90

2.81

3.092.16 2.59

2.04

3.13

1.93

Ion current: 4.12E5

Ala-Leu tracem/z = 202.70-203.70

Ion current: 4.53E5

Valine tracem/z = 117.70-118.70100 bar, 40⁰ C

1.5 mL/min

100 bar, 40⁰ C1.5 mL/min

10 μM val & ala-leu (low T/P)

50 100 150 200 250 300 350 400 450 500m/z

0

10

20

30

40

50

60

70

80

90

100

Rela

tive

Abun

danc

e

65.18

391.45118.27 413.64

238.00

[Val + H]+

Ion current: 8.21E5

Valine spectrumm/z = 117.70-118.70

10 μM valine – spectrum

50 100 150 200 250 300 350 400 450 500m/z

0

10

20

30

40

50

60

70

80

90

100

Rela

tive

Abun

danc

e

65.27

391.55

97.18 413.64203.36

[Ala-Leu + H]+

Ion current: 4.65E5

Ala-Leu spectrumm/z = 202.70-203.70

10 μM Ala-Leu – spectrum

Fujioka, K. et al.Int J Mol Sci., 10, 2730 (2009)

Hydroxylamine and Carboxylic Acid Tests

• Injected 50 μL of 1 mM Hydroxylamine + 50 μL of 1 mM Glyoxylic/Pyruvic Acid in 75/25 (v/v) MeOH/H2O

• Ran in reactor for 2 h at 60⁰ C and 100 bar

0 1 2 3 4 5 6 7 8 9 10Time (min)

0

20

40

60

80

1000

20

40

60

80

100

Rel

ativ

e Ab

unda

nce

7.7

7.67.6

8.0 8.1

1.21.1 8.7

6.2

6.1

6.1

6.36.4 6.5

BPI: 8.90E5

Glycine tracem/z = 75.5-76.5

BPI: 6.95E4

Alanine tracem/z = 89.5-90.5

Hydroxylamine + Glyoxylic Acid

Hydroxylamine + Pyruvic Acid

Hydroxylamine and Carboxylic Acid Tests

50 100 150 200 250m/z0

20

40

60

80

1000

20

40

60

80

100

Rel

ativ

e Ab

unda

nce

65.2

207.076.1 238.797.1 179.0 210.7

65.2

76.2 97.1

BPI: 9.18E5

BPI: 9.05E5

Hydroxylamine + Glyoxylic Acid

Hydroxylamine + Pyruvic Acid

[Gly + H]+

[Gly + H]+

[Ala + H]+

Hydroxylamine and Carboxylic Acid Tests

20 30 40 50 60 70 80 90 100m/z

0

5

10

15

20

250

5

10

15

20

25

Rel

ativ

e A

bund

ance

30.348.2

89.262.2

30.344.2 72.158.2

NL: 4.42E31mM hydroxylam acid#540-551 R AV: 12 T: ITMS ms2 76.10@cid [20.00-200.00]

NL: 1.72E21mm hydroxylam acid#480-494 R AV: 15 T: ITMS ms2 90.00@cid [20.00-200.00]

MS/MS to Confirm Glycine and Alanine[Gly + H]+

[Ala + H]+

-28 m/z(CO)

-46 m/z(CO+H2O)

-28 m/z(CO)

-46 m/z(CO+H2O)

• Built system for coupling of supercritical CO2 reactor to online sampling by mass spectrometry

• Electrospray ionization is capable of ionizing analytes of prebiotic interest dissolved in scCO2

• Amino acid solubility impacted by temperature, pressure, cosolvent, so need to make sure have solubility during loading and sampling

• Can detect down to 10 μM concentration of amino acids and peptides

• Observed strong evidence for formation of glycine from hydroxylamine and glyoxylic acid in supercritical carbon dioxide, evidence for alanine formation from pyruvic acid not as definitive

• Future work: understanding the role of supercritical solvents vs water or subcritical solvents in these conditions

• Further reactions of interest?

Conclusions & future work

• Jenny Fan• Beauchamp group• Scott Virgil, 3CS

Manager• Nathan Dalleska, EAC

Director• Keck Institute for Space

Studies• Caltech SFP Office

Acknowledgements