27
Development of a geostatic model for a geoscience field research station in Alberta Jessica Dongas (CMC, CREWES, U of C) Dr. Don Lawton (CMC, CREWES, U of C)

Development of a geostatic model for a geoscience field

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Development of a geostatic model for a geoscience field

Development of a geostatic model for a geoscience field research station in Alberta

Jessica Dongas (CMC, CREWES, U of C)Dr. Don Lawton (CMC, CREWES, U of C)

Page 2: Development of a geostatic model for a geoscience field

Outline

• Introduction• Resources• 5 x 5 km Property Model• 4 x 5 km Geophysical Model• Conclusions & Future work• Acknowlegdments

2

Page 3: Development of a geostatic model for a geoscience field

Location

Newell County, AB

3

Page 4: Development of a geostatic model for a geoscience field

Objective

Primary Target: 290‐300 m

Secondary Target: 480 m

~1000 tons/yr CO2

Test limits of current MMV technology (CMC)

Develop new MMV technology for fluid monitoring (CMC)

Site used to improve and enhance 4‐D seismology (CREWES) for fluid containment and 

conformance (CMC)

4

Page 5: Development of a geostatic model for a geoscience field

Resources• Data Suite (IHS Energy)

– 191 wells with digital LAS files (>10 km radius)– FRS (5 km x 5 km) = 21 wells– Limited core data– Deviation surveys and locations– Well tops– Static water levels – 3 m below surface

• Software– Schlumberger Canada Ltd.

• Petrel™ E&P Software Platform 2014.1– IHS Energy Canada Ltd.

• Accumap® and Acculogs® 2013– MS Office 2012

5

Page 6: Development of a geostatic model for a geoscience field

Data Coverage

6

Page 7: Development of a geostatic model for a geoscience field

Stratigraphic Column

7

Page 8: Development of a geostatic model for a geoscience field

5 km x 5 km Property Model• Vertical pillar gridding• Orientation N‐S (in‐line with GW flow)

Defined Grid Volume: 200 x 200 x 922 (nI x nJ x nGrid Layers)• Total #3D cells: 36 million• Total # faults: 0• Horizons honour surfaces

– Surface generation via interpolation – honours well tops

Layering of Cells• Reference surface• Zone division based on cell thickness

– Seal and Target intervals = 0.5 m– Non‐important intervals = 5 m

8

Page 9: Development of a geostatic model for a geoscience field

Layered Intervals

9

Page 10: Development of a geostatic model for a geoscience field

Property Calculations

• Well Log Calculator

2

γ1

• Property Calculator– Plotted  and E from core data– Use E in equation of best fit to calculate 

10

Page 11: Development of a geostatic model for a geoscience field

BBRS Core Data

0.1

1

10

100

1000

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

(M

ax)

(%) 

Only two wells – within greater 10 km outside FRS

11

Page 12: Development of a geostatic model for a geoscience field

Medicine Hat Member Core Data

0.01

0.10

1.000.060 0.070 0.080 0.090 0.100 0.110 0.120 0.130

(M

ax)

(%)

Only one well – within greater 10 km outside FRS

12

Page 13: Development of a geostatic model for a geoscience field

Log Cut‐offs for VSH and CoalFacies Log Cut‐offCoal RHOB<2; DT>130; PHI_E>0.26; PHIE_E=0.03

Shale GR>95

Silty‐Sand 50<GR<95Sand GR<50

GR, VSH, PEF DT E, TOT, N,  FaciesRes

BBRS

Foremost F

ormation

13

Page 14: Development of a geostatic model for a geoscience field

Petrophysical Modeling

• Gaussian random function simulation algorithm– Conditional Simulation = kriging + unconditional simulation– Parallelized = fast computation time– Models expected variability and distribution in input data

– Uses upscaled well logs (averaged log in 0.5 m or 5 m cell)– Uses variogram settings specified to each zone

14

Page 15: Development of a geostatic model for a geoscience field

Populated E 5 km x 5 km model

E (m3/m3)

1 km

15

Page 16: Development of a geostatic model for a geoscience field

P10/50/90 Framework• Conservative/Typical/Optimistic values• Both E and  were modeled: 40 iterations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

6.85E+05 7.45E+05 8.05E+05 8.65E+05

Freq

uency

Total Pore Volume 

Pore Volume 1 Km Clip

BBRS (Primary Injection)

16

Page 17: Development of a geostatic model for a geoscience field

P10/50/90 Framework for BBRS

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

6.87E+05 7.37E+05 7.87E+05 8.37E+05

Percentage

Total Pore Volume

Total Pore Volume

P10

P50

P90

17

Page 18: Development of a geostatic model for a geoscience field

4 km x 5 km Geophysical Model• Well‐ties & Synthetic Seismograms

– 8 Well‐ties to two 3D seismic reflection volumes• ‘97 Vintage 3D/1C – Cenovus Energy• ‘14 May 3D/3C – CMC

• Replacement velocity: 2600 m/s• SRD: 800 m• NO checkshot data available – TDR developed on DT

• Wavelet– Zero‐Phase Ormsby

• (15/20‐75/95)– Length: 200 ms– Sample Rate: 2 ms

18

Page 19: Development of a geostatic model for a geoscience field

Synthetic Seismogram at 7‐22

DT, RHOB

Reflection Coefficients

May 2014 3‐D/3‐C Seismic Data

Synthetic Seismogram

19

Page 20: Development of a geostatic model for a geoscience field

Five tied wells to ‘97 3D Vintage

20

BBRSPakowkiMilk RiverColorado

Medicine Hat 

Base Medicine Hat 

Second White Specks

Base Fish ScalesBow IslandJoli FouMannville

Page 21: Development of a geostatic model for a geoscience field

Depth Conversion ‐ Velocity Modeling

21

2213 m/s

2195 m/s2628 m/s

3252 m/s

2965 m/s

3255m/s

Page 22: Development of a geostatic model for a geoscience field

Model Update• Weighted 75% depth‐converted seismic horizons and 25% well‐top interpretation

• 1 post‐processing smoothing iteration 

22

‘97 3D/1C‘14 3D/3C

Page 23: Development of a geostatic model for a geoscience field

Model Update

2310 km x 10 km

5 km x 5 km Property Model

4 km x 5 km Geophysical Model

1 km x 1 km FRS

7‐22 WellTime Surfaces

Page 24: Development of a geostatic model for a geoscience field

1 km x 1 km Integrated FRS Model

24

(mD)

1 km x 1 km FRS

Page 25: Development of a geostatic model for a geoscience field

Conclusions

• Developed 5 x 5 km property and 4 x 5 km geophysical model– From existing well, core, and seismic data

• Built‐in workflows and mechanics– Can be easily updated

• P10/50/90 statistics for E and – Both primary and secondary injection intervals

• BBRS: E: 0‐27% : 0‐360 mD• Medicine Hat Mbr: E: 0‐18% : 0‐1 mD

25

Page 26: Development of a geostatic model for a geoscience field

Ongoing & Future Work

• Identify sandstone zones in Medicine Hat Mbrusing shallow resistivity log

• Simulation of fluid injection• Study behaviour of P‐ & S‐waves on intervals of injection

• Update model with new logs and core from drilled well

26

Page 27: Development of a geostatic model for a geoscience field

Acknowledgements• Carbon Management Canada• CREWES Sponsors• NSERC through the grant CRDPJ 379744‐08• Wade Zaluski (Schlumberger Ltd. – Senior Geologist)• Si‐Yong (Schlumberger Ltd. – Reservoir Engineer)• Valerie Smith (Schlumberger Ltd. – Reservoir Geophysicist)

• Dr. Per Pedersen • Dr. Helen Isaac• IHS Energy Canada• Schlumberger Ltd. Canada

27