14
Revision 2.0 Development Board EPC9147A Quick Start Guide Motor Drive Controller Interface board – Microchip DSP

Development Board EPC9147A Quick Start Guide

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Development Board EPC9147A Quick Start Guide

Revision 2.0

Development Board EPC9147AQuick Start Guide Motor Drive Controller Interface board – Microchip DSP

Page 2: Development Board EPC9147A Quick Start Guide

QUICK START GUIDE EPC9147A Interface Board for Motor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 2

DESCRIPTION The EPC9147A board is an interface board that accepts the Microchip MA330031-2 Plug-In-Module (PIM), that is fitted with the dsPIC33EP256MC506 Digital Signal Processor (DSP), and interfaces to a 3-phase eGaN® FET/IC motor drive inverter board. This interface board allows users to utilize the existing Microchip motorBench® Development Suite resources to program the PIM that controls a motor powered by an eGaN FET/IC 3-phase inverter using sensorless field orientation control with space vector pulse width modulation.

Figure 1 shows an overview of the EPC9147A board detailing connections and various human interfaces that measures 99.3 mm x 68 mm (L x W). It is provided with a fully isolated micro-USB communications interface that is powered by the host computer on the isolated side and by the motor inverter on the non-isolated side.

Figure 1. Overview of the EPC9147A board

USB communications

Speed adjust knob Start/Stop button Direction button Reset button

Expansion port Programming connection Monitor selection jumpers

Motor drive connection

Error LED

Debug LED 1

Debug LED 2

Power LED

DSP PIM

Page 3: Development Board EPC9147A Quick Start Guide

QUICK START GUIDE EPC9147A Interface Board for Motor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 3

The EPC9147A is includes a standard Microchip compatible programming port (J4), I2C expansion port (J8) and, a 40-pin card edge connector (J2) that interfaces the PWM, analog feedback signal, errors states and 3.3 V power to the motor drive inverter board as shown in figure 2.

The USB communication port is used to communicate with the PIM module that monitors various inverter operating conditions using X2C-Scope.The programming port is used to program the controller using MPLAB® X IDE or IPE and compatible programming devices.

Figure 2. Application overview of the EPC9147A control interface board

Communications Programming

EPC9147A

3-phase inverterBLDC motorDSP PIM

Page 4: Development Board EPC9147A Quick Start Guide

QUICK START GUIDE EPC9147A Interface Board for Motor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 4

HUMAN INTERFACE CONTROLS AND INDICATORS The EPC9147A has various human interface controls and indicators as shown in figure 1.

To operate the motor the following controls are available as push button or knob:

• Start/Stop – Starts and stops the motor from spinning toggle.• Direction – This button toggles the motor spin direction.• Speed – This knob changes the rotation speed of the motor.

There are also 4 LED indicators the help provide information on the status of the controller:

• Power LED (green) – The board has power. Power is provided by the motor drive inverter.

• Error LED (red)- Indicates some error has occurred. The operator can read the error based on the flashing codes of the debug LED or using motorBench® Development Suite.

• Debug LEDs (yellow and blue) - Indicates the code by a series of encoded flashes. Please refer to the Microchip manual for MCLV-2 for details on the codes.

There is a reset button that can be used to reset the processor to the power up state.

Warning: The human interface controls and knob, as well as the entire EPC9147A, are not isolated. The EPC9147A is referenced to Power Ground and extreme caution has to be observed when operating at high voltage.

Test PointsA number of test-points are available for measurement of various analog, error and PWM signals. Analog signals include voltage and current readings, input DC voltage to the drive, and current sense amplifier voltage reference. The operator is encouraged to read the motor drive inverter drive QSG carefully to determine the correct scaling factors. All three phases of the PWM signals are available as test points. An over-current error signal is also available as a test point. Two locations for ground connections for measurement purposes are available at TP4 and TP5.

Over-Current detectThe EPC9147A includes and overcurrent detect that is fed to the controller as a fault signal (OC_FLT). This signal will trigger if any motor current phase exceeds the preset voltage of 3.25 V. Refer to the motor drive inverter for the correct conversion of the current sense circuit to determine the correct current magnitude that will generate an over-current trip. Once an over-current is triggered, the OC_FLT signal will remain low for a short period of time, determined by the RC time constant of R5+R8 and C17. The behavior when the OC_FLT is asserted depends on the specific program that has been programmed in the PIM.

Monitoring Jumper SettingsThe EPC9147A is provided with a set of jumpers that can be used to change the monitoring connections. Table 1 provides a detailed list of the settings mapping and figure 3 shows this graphically.

Table 1: Monitoring jumper settings mapping Jumper Phase Position 5-6 Position 4-3 Position 1-2

J10 1 Motor Phase Current 1 Motor Phase Voltage 1 Shaft Encoder A

J11 2 Motor Phase Current 2 Motor Phase Voltage 2 Shaft Encoder B

J12 3 Motor Phase Current 3 Motor Phase Voltage 3 Shaft Encoder Index

(a)

(b)

(c)

Any combination of valid position settings may be selected.

Figure 3. Monitoring jumper settings (a) All phases Current, (b) All phases voltage, (c) Shaft encoder

Page 5: Development Board EPC9147A Quick Start Guide

QUICK START GUIDE EPC9147A Interface Board for Motor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 5

Compatible Motor Drive InvertersA list of compatible motor drive inverter to the EPC9147A is given in table 2. Check EPC9147A web page for updates on additional compatible converters.

EPC9147A Electrical Specifications

Table 2: Compatible eGaN FET/IC motor driver inverters to the EPC9147A Board Number Basic specifications Web link

EPC9146 Rev. 2.1 400 W, 3-phase BLDC motor drive inverter using EPC2152 https://epc-co.com/epc/Products/DemoBoards/EPC9146.aspx

Table 3: Performance Summary (TA = 25°C) EPC9147A

Symbol Parameter Conditions Min Nominal Max Units

VDD Operating voltage 3.1 3.3 3.5V

VIN PWM voltage 3.3

VPWM Analog feedback voltage -0.1 3.4V

VIN Digital feedback voltages -0.1 3.4

Table 5: Programming port (J4)pin allocation map

Pin# Connector

1 MCLR

2 3V3

3 GND

4 PGD

5 PGC

Table 4: Motor interface connection (J2) pin allocation map

Symbol Nominal Max Units

2 PWMH1 GND 1

4 PWML1 GND 3

6 PWMH2 GND 5

8 PWML2 GND 7

10 PWMH3 3V3 9

12 PWML3 3V3 11

14 EncA 3V3 13

Index Slot

18 EncB GND 17

20 EncI GND 19

22 Vin GND 21

24 V1 GND 23

26 V2 GND 25

28 V3 GND 27

30 Iin GND 29

32 I1 GND 31

34 I2 GND 33

36 I3 GND 35

38 EN/Pgood LEDerr 37

40 Tsns LEDact 39

CONNECTION DETAILS InverterA 40 pin connector is used to interface power, PWM signals and analog feedback signals between the interface board and the motor drive inverter. Table 4 gives the map (J2) for each signal.

ProgrammingThe PIM module can be programmed using compatible programmers connected to Programming port (J4). The pin allocation map is shown in table 5.

The programming port (J4) supports all of Microchip’s in-circuit programmers/debuggers, such as MPLAB® ICD4, MPLAB® REAL ICE or MPLAB® PICkit4 and previous derivatives.

Development tools: https://www.microchip.com/development-tools

Table 6: Expansion port (J8) pin allocation map

Pin# Connector

1 SCL

2 GND

3 SDA

4 GND

5 3V3

ExpansionThe EPC9147A is provided with an I2C expansion port (J8) that can be used to expand functionality to the board. Table 6 provides the pin allocation map for the expansion port.

Page 6: Development Board EPC9147A Quick Start Guide

QUICK START GUIDE EPC9147A Interface Board for Motor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 6

Programming with HEX fileDownload the latest MPLAB® X IPE from Microchip website and follow the five steps below:

https://www.microchip.com/mplab/mplab-integrated-programming-environment

1. Enable Advanced Mode: 5. Erase device, and then program device:

2. Select Device: dsPIC33EP256MC506 and then apply:

dsPIC33EP256MC506

3. Select programming tool and then connect:

4. Click ‘Browse’ to select the provided .hex file:

Optional:

dsPIC33EP256MC506

Page 7: Development Board EPC9147A Quick Start Guide

QUICK START GUIDE EPC9147A Interface Board for Motor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 7

QUICK START PROCEDURE Please check the following: https://epc-co.com/epc/Products/eGaNDriversandControllers.aspx for updates on compatible eGaN FET/IC inverters with reference settings for specific motors.

Motor Commissioning ProcedureIt is recommended to follow the detailed motor commissioning process for MCLV-2, provided by Microchip MotorBench® Development Suite when using the EPC9147A in conjunction with and compatible eGaN FET/IC 3-phase motor drive inverter. The procedure documented here provided as simple guide and example only.

1) Start MPLAB X, then select MCC to load the MPLAB X Code Configurator (MCC).

2) On MCC tree view in the left panel, scroll down until you find motor Bench® development and select it.

3) Once motor Bench development suite has loaded, select the Configure Tab and chose Board and expand it, then select the MCLV-2 board. The MCLV-2 settings can be used to configure the eGaN FET/IC based inverter to the motor selected.

4) An example is given in Table 7. Pay careful attention to the deadtime field as it tends to revert to 2µs, which is too long for GaN FET inverters. A dead time setting of 21 ns is recommended.

5) Customizable settings can be changed by selecting the “Show advanced parameters” checkbox. Customizable settings include: minimum velocity, maximum acceleration/deceleration, startup current, minimum acceleration time and, active damping (recommend using zero here).

6) After entering all the parameters, check that you get “Ready to Generate” on the tab above “Configure”. If not, recheck the parameter settings. If you get the “Ready to Generate” tab then proceed to select the Generate tab and allow MCC to generate the code. Once the code is generated, connect the ICD programmer to the EPC9147A board programming port (JX) and select the Program Icon. Make sure that the ICD can power up the EPC9147A and that the EPC9147A is not connected to other power supply.

Note: Every time you change Motor or load (e.g. from no load to dynamometer bench) it is important to regenerate the code with proper values. If you change motor section parameter, double check the board parameters. MPLAB X occasionally reverts them back to the default values of MCLV-2 that are not suitable for the GaN FET/IC inverter.

Warning: The motor parameters measurement feature of motorBench® Development Suite does not work by default on the EPC9147A.

Table 7: Example settings for EPC9146 Inverter paired with Teknic M-3411P-LN-08D Motor

General ParametersID mclv2Name EPC9146 Development BoardBoard Part Number DM330021-2PIM Part Number dspic33ep256mc506-external-opampProcessor Clock 70.0 × 10⁶ HzSampling Time Current 50.0 × 10-⁶ sSampling Time Velocity 1.00 × 10-³ sMinimum Operating Velocity 524 rad/sPWMSwitching frequency minimum 1000 HzSwitching frequency maximum 100 × 10³ HzSwitching frequency 100 × 10³ HzDeadtime minimum 21.0 × 10-⁹ sDeadtime maximum 6.00 × 10-⁶ sDeadtime 21.0 × 10-⁹ sVoltage SourceOutput 48.0 VMax Current 12.0 AInverterMaximum duty cycle 95Minimum duty cycle 0.500Minimum DC link voltage 16.0 VMaximum DC link voltage 72.0 VMaximum current 22.0 AVoltage SensorFull scale reading 81.5 VEquivalent time constant 188 × 10-⁶ sCurrent SensorFull scale reading 22.0 AEquivalent time constant 1.50 × 10-⁶ s

Compensation Gains [ 1.0 0.0 ][ 0.0 1.0 ]

Motor DefinitionID TeknicCompany Name TeknicMotor Name DummyPart Number DummyAdditional Info rshunt=1.5MicrochipDIRECT Part NumberNumber of Pole Pairs 4Rated Current : Continuous 14.0 ARated Current : Peak 14.0 ARated Voltage 48.0 VNominal Speed 1300 RPMMaximum Speed 1300 RPMElectrical And Mechanical ParametersRs 0.800 Ω line to lineLd 1.00 mH line to lineLq 1.00 mH line to lineKe 10.2 Vrms/kRPM (l-l)B 301 × 10-⁶ N·m/(rad/s)Tf 0.0746 N·mJ 867 × 10-⁶ N·m/(rad/s²)Time Constant 2.19 × 10-³ sCurrent Phase Margin 80.0Current Phase Lag 45.0Velocity Phase Margin 85.0Velocity Phase Lag 1.00

Page 8: Development Board EPC9147A Quick Start Guide

QUICK START GUIDE EPC9147A Interface Board for Motor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 8

Table 1: Bill of Materials Item Qty Reference Part Description Manufacturer Part #

1 2 C5, C7 33 pF Yageo CC0603JRNPO9BN3302 3 C13, C14, C15 10 μF Murata GRM188R61C106MA73D3 2 C22, C23 10 μF Murata Electronics GRM188R61E106MA73J4 1 C4 56 pF TDK C1005C0G1H560J050BA

5 26C1, C2, C3, C6, C8, C10, C11, C12, C16_O1, C16_O2, C16_O3, C19, C20, C21, C41, C42, C210, C211, C212, C331, C341, C351, C361, C500, C501, C520

100 nF Yageo CC0402KRX7R8BB104 04023C104JAT2A

6 10 C10_O1, C10_O2, C10_O3, C17, C18_O1, C18_O2, C18_O3, C38, C39, C40 1 nF KEMET C0402C102J5GACTU

7 2 C502, C503 47 pF Yageo CC0402JRNPO9BN4708 1 C510 1 μF TDK GCM155C71A105KE3809 1 C511 470 nF TDK C1005X5R1E474K050BB

10 1 D301 Red LED 0603 Lite-On LTST-C193KRKT-5A11 1 D302 Yellow LED 0603 Lite-On LTST-C193KSKT-5A12 1 D303 Blue LED 0603 Lite-On LTST-C193TBKT-5A13 1 D304 Green LED 0603 Lite-On LTST-C193KGKT-5A14 1 D500 USB TVS array Wurth 8240015215 3 FB1, FB501, FB502 600 Ω @ 100MHz Murata BLM15PX601SN1D

16 1 J1 100-pin PIM Header, Pitch 1.27mm TMS-125-01-G-S

17 3 J10, J11, J12 2-pin 100 mil male header Sullins GRPB032VWVN-RC18 1 J500 Micro USB connector Amphenol 10118194-0001LF19 3 JP8, JP9, JP10 50 mil blue jumper Harwin Inc M50-203000520 1 L500 9 Ω @ 100MHz Wurth 74423090021 1 P361 10 k Vishay M63P103KB30T60722 4 R4, R551,R20,R111 0 Ω Panasonic ERJ-3GEY0R00V23 7 R2, R12, R14, R15, R50, R51, R510 10 k Yageo RC0402FR-0710KL

24 2 R3, R361 100 Ω Yageo RC0402FR-07100RL RC0402JR-07100RL

25 1 R5 10 k Yageo RC0402JR-0710KL

26 3 R6_O1, R6_O2, R6_O3 470 Ω Yageo RC0402FR-07470RL, PFR05S-471-FNH

27 6 R7_O1, R7_O2, R7_O3, R17, R24, R41 1 k YageoRC0402FR-071KL RC0402FR-071KL RJ-2RKF1001X

28 4 R8, R11, R13, R16 300 Ω Yageo RC0402FR-07300RL RC0402JR-07300RL

29 3 R9_O1, R9_O2, R9_O3 1M Yageo RC0402FR-071ML

30 3 R10_O1, R10_O2, R10_O3 30 k Yageo RC0402FR-0730KL ERA-2AEB303X

31 6 R120, R121, R122, R123, R124, R125 10 Panasonic ERJ-2RKF10R0X32 6 R301, R302, R303, R304, R530, R531 270 Ω Panasonic ERJ-2RKF2700X33 7 R331, R332, R341, R342, R351, R352, R501 4.7 k Panasonic ERJ-2RKF4701X34 2 R502, R503 15 Panasonic ERJ-2RKF15R0X35 3 S331, S341, S351 SPST-NO 50 mA 24 V Omron B3S-100036 2 TP4, TP5 SMD Test hookup Keystone 501537 1 U1 PIM Controller Microchip MA330031-238 3 U2_O1, U2_O2, U2_O3 IC COMPARATOR R-R INPUT SC-70-5 Open Drain Texas Instruments LMV7235M7/NOPB39 4 U12, U210, U211, U212 Op Amp Texas Instruments OPA320AIDBVT40 1 U510 USB to UART IC MicroChip MCP2221A-I/ML41 1 U520 UART isolator Analog Devices ADuM1201CR42 1 X1 Crystal oscillator ECS ECS-80-20-4X43 1 J4 CONN HEADER R/A 5POS 2.54 MM Wurth 61300511021

Table 2: Optional Components Item Qty Reference Part Description Manufacturer Part #

1 4 SO1, SO2, SO3, SO4 Stand off Keystone 48102 1 J8 50 mil male header 5 position Samtec TMS-105-02-L-S3 9 R21, R22, R23, R25, R26, R112, R532, R533, R552 0 Ω Yageo RC0603JR-070RL4 1 R110 10 k Yageo RC0402FR-0710KL5 4 R520, R521, R534, R535 4.7 k Panasonic ERJ-2RKF4701X

Page 9: Development Board EPC9147A Quick Start Guide

QUICK START GUIDEEPC9147A Interface Board for M

otor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM

| ©2021 |

| 9

Figure 4: EPC9147A Main schematic

MCL R3V 3

3V 3

PICKIT PROGRAM HEADER

Programming and Communications

Iso Mini USB Interface

GND

3V 3

GND

GND

PG DPG C

GND

Vsns1Vsns2

Isns1Isns2

Vdc

Tsns

Motor Drive interface connector

E ncA

EncBEncI

LEDerrLEDact

3V3

Vsns3Idc

Isns3PGood_E N

Vout2

Vout3

NE UT RL

Vout1V in1

V in2

V in3

GND

3V3

NTAP1024_Rev2_0_Neutral.SCHDOC

V _M1

Neutral V oltage

V _M2

V _M3

GND

NE UT RL

V sns1

V sns2

V sns3

External Power &I2C Communications

SD A2

SCL2

3V3

StrtStp

Dir

MCL R

SpeedL E D_1

L E D_2

3V 3

GND

L E D_3

UIA P1027_Rev2_0_UserInterfaceMotorDrive.SCH DOC

3V 3

Repeat(INPUT)

GND

OUT PU T

Repeat(O,1,3)AP1025_Rev2_0_OCP.SCHDOC

OCP faultGND

OC_FL T

L E D_1

L E D_2

3V3

Speed

GND

StrtStp

Dir

MCLR

User Interface

L E Derr

Fiducial Local Fiducial Local Fiducial Local

FD1 FD2 FD3

T X

RX

GND

3V 3GP0

GP1

GP2

GP3

GN

DF

USBAP1018_Rev2_0_IsoMicroUSBinterface.SCHDOC

3V 3

GNDThese pins are not isolated

123456789

10111213141516171819202122232425

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

51525354555657585960616263646566676869707172737475

767778798081828384858687888990919293949596979899100

J1100-pin PIM Header

PW MH3

PIM_ V _M1PIM_ V _M2PIM_ V _M3

PIM_ IMO TOR2

L E D_1

MCLR

3V3

3V3

GND

PWM

L1PW

MH

1

PWM

L2PW

MH

2PW

ML3

Enc

A

StrtS

tp

3V3

L E D_2

3V 3

GND

Enc

B

Vdc

PGC

PGD

3V3

3V3

GND

Dir

PIM

_TX

PIM

_RX

PIM_ T XPIM_ Tsns

Spee

d

NEU

TRL

OC_FL T

E ncI

GND

USB_ RX

USB

_TX

SCL 2

SDA

2

PIM

_PG

ood_

EN

L E Derr

PIM_ RX

PIM

_Enc

I

PIM_ IMO TOR1

PIM

_MO

NIT

OR

_1PI

M_M

ON

ITO

R_2

PIM

_MO

NIT

OR

_3

AVC

C

GND GND

8 MHz thru holeECS-80-20-4X

X 1

GND

GND

GND

3V3

GND

Isns1

Isns2

PIM_ IMOTOR1

PIM_ IMOTOR2

Isns3

Isns3

040210 k 1/16 W

R5 0

040210 k 1/16 W

R5 1

040210 k 1/16 W

R2

MC LR 1

VD D 2

GN D 3

PGD 4

PGC 5

100mil

J4

0402100 nF 25 V

C3

040256 pF 50 V

C4

0402100 Ω 1/16 W

R3

VREF

GND

GND

3V 3

0402100nF 25V

C8

GND

3V3

0402100 nF 25 V100 nF 25 V

C2

GND

3V 3

0402100nF 25V

C6

GND

3V3

0402100 n F 25 V

C10

GND

3V3

0402C11

GND

3V3

0402100 nF 25 V

C12

GND

3V3

0402100 nF 25 V

C42

GND

0402100 nF 25 V

C41

3

41

52

OPA320AIDBVTU12

3V3

VREF

GND

3V3

GND

06030 Ω 0.1 W

R4

0603C13

GND

AVCC

0603C14

GND

AVCC

060310 μF 16 V10 μF 16 V10 μF 16 V

C15

GND

AVCC

3V3 AV CC

Voltage Reference

GND

3V 3

0402100 n F 25 V

C1

060333 pF 50 V

C5

060333 pF 50 V

C7

PIM_ IMOTOR1

PIM_ IMO TOR2

PIM_ MO NIT OR_ 1

PIM_ MO NIT OR_ 2

PIM_ MO NIT OR_ 3

V _M1

V _M2

V _M3

EncA

E ncB

E ncI

V _M1

V _M2

V _M3

PIM_ V _M1

PIM_ V _M2

PIM_ V _M3E ncIPIM_ E ncI

TsnsPIM_ Tsns

PG ood_E NPIM_ PG ood_E N

PIM_ RX

PIM_ T X

R2 0

R2 1

R2 2

06030 Ω 0.1 WEMPTY

06030 Ω 0.1 WEMPTY

06030 Ω 0.1 WEMPTY

06030 Ω 0.1 WEMPTY

06030 Ω 0.1 WEMPTY

06030 Ω 0.1 WEMPTY

R2 3

R2 5

R2 6

Optional Mapping

04021 k 0.1 W

R17

04021 nF 50 V

C38

GND

04021 k 0.1 W

R24

04021 nF 50 V

C40

GND

04021 k 0.1 W

R41

04021 nF 50 V

C39

600 Ω @ 100 MHz 0.9A

FB1

DGND

3V 3

GND

3V 3

060310 μF 50 V

C22060310 μF 50 V

C23

DGND

0402

300 Ω 1/16 W

R8

GND

040210 k 1/16 W

R5

3V3

04021nF 50 V

C17

3V3

Isns1

Isns2Isns[1..3] Isns

06030 Ω 0.1 W

0 Ω 0.1 W

R112

E MPT Y 040210 k 1/16 W

R110

E MPT Y

GND

DGNDGND

Default = Imotor

PIM_ IMOTOR3

Position 5-6

Default = ImotorPosition 5-6

Default = ImotorPosition 5-6

PIM_ IMO TOR3

0603

R111

PIM_ IMO TOR3

12345

50mil T H

J8

1235

46

50mil T H

J12

GRPB032VWVN-RC

1235

46

50mil T H

J11

GRPB032VWVN-RC

1235

46

50mil T H

J10

GRPB032VWVN-RC

Monitor selection

12345678910

11121314

171819202122232425262728293031323334353637383940

1mm Edge

J2OC

Net Changing ViaJP100

040210 0.1WR120

040210 0.1W

R121

040210 0.1W

R122

040210 0.1W

R123

040210 0.1W

R124

040210 0.1W

R125

PW MH 2PW ML 2PW MH 3PW ML 3

PW MH 1PW ML 1

MA330031-2Microchip

MicrochipMA330031-2

U1

PIM

50 mil

JP8

M50-2030005

50mil

JP10

M50-2030005

50mil

JP9

M50-2030005

SO1

Stando�s

SO2 SO3 SO4

4810EMPTY

4810EMPTY

4810EMPTY

4810EMPTY

SMD T PT P4

SMD T PT P5

DGNDGND

60 mil

T P2

ProbePad

60 mil

T P1

ProbePad

60 mil

T P3

ProbePad

60 mil

T P6

ProbePad

60 mil

T P7

ProbePad

60 mil

T P8

ProbePad

60 mil

T P9

ProbePad

60 mil

T P10

ProbePad

60 mil

T P11

ProbePad

60 mil

T P33

ProbePad60 mil

T P44

ProbePad

60mil

T P26

ProbePad

60 mil

T P21

ProbePad

60 mil

T P22

ProbePad60 mil

T P23

ProbePad

60 mil

T P25

ProbePad

60 mil

T P24

ProbePad

ATTENTIONELECTROSTATIC

SENSITIVE DEVICE

ATTENTIONELECTROSTATIC

SENSITIVE DEVICE

Page 10: Development Board EPC9147A Quick Start Guide

QUICK START GUIDEEPC9147A Interface Board for M

otor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM

| ©2021 |

| 10

Figure 5: EPC9147A Human Interface schematic

GND

GNDL E D_3 L E D_2

CW

M63P10 k 0.5 W

P361

LTST-C193KRKT-5A0603 Red

D301LTST-C193KGKT-5A0603 G reen

D304LTST-C193KSKT-5A0603 Yellow

D302LTST-C193TBKT-5A0603 Bl ue

D303

GND GND GND GND

0402270 Ω 1/10 W

R3010402270 Ω 1/10 W

R3020402270 Ω 1/10 W

R303

LEDerr L E D_1 L E D_2L E D_1

3V3 3V3

0402270 Ω 1/10 W

R304

3V3

0402100 nF 25 V

C331

GND

N.O. 24 V 50 mAB3S-1000

S331

GND

04024.7 k 0.1 W

R331

04024.7 k 0.1W

R332 StrtStp StrtStp

3V3

0402100 nF 25 V

C341

GND

N.O. 24 V 50 mA

S341

B3S-1000

GND

04024.7 k 0.1 W

R341

04024.7 k 0.1 W

R342

3V3

0402100 nF 25 V

C351

GND

N.O. 24 V 50 mAB3S-1000

S351

GND

04024.7 k 0.1W

R351

04024.7 k 0.1W

R352

3V3

MCLR MCLRDir Dir

Start/Stop

Error Debug 1 Debug 2 Power

Direction

Controls

Indicators

Reset SpeedGND

0402100 nF 25 V

C361

GND

3V3

Speed Speed

0402100 Ω 1/16 W

R3 61

Page 11: Development Board EPC9147A Quick Start Guide

QUICK START GUIDEEPC9147A Interface Board for M

otor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM

| ©2021 |

| 11

Figure 6: EPC9147A USB schematic

600 Ω @ 100 MHz 0.9A

FB5 02

+5V

1

D- 2D

+ 3

ID

4GN

D 50

SMD pins 0.65 mm

J500

10118194-0001L F

040247 pF 50 V

C50382400152

25 1,63,4

USB TVS Array 6 V

D500

1 2

34

90 Ω @ 100 MHz 550 mA

L 500600 Ω @ 100 MHz 0.9A

FB5 01

USB_D-

USB_D+

MCP2221A-I/ML

USBinterface

BusMatrix

UARTinterface

GIO16

1 23

4

5

6 7

8

9

10

11

12

13 17

SC L

SD A

R X

TX

EP

R ST

GP

3

VSS

D-

D+

VD D VUSB

GP

2

GP

1

GP

0

InterfaceI C2

U510

040210 k 1/16 W

R5 10

04024.7 k 0.1 W 4.7 k 0.1 W

R5 34

E MPT Y

0402100 nF 25 V

C501

GNDF

GNDFGNDF

GND

040210 μF 10 V

C510

0402100 nF 25 V

C500

040215 0.1W

R5 02

040215 0.1W

R5 030402270 Ω 1/10 W

270 Ω 1/10 W

R530

0402R531

0402R5 35

E MPT Y

T X

RX

GND

3V3

GNDF GNDF

04024.7 k 0.1 W

R5 01

GNDF

GNDF

040247 pF 50 V

C502

0402470 nF 25 V

C511

5 V

GNDF GNDF

GNDF

3V3

5 V

I2CUART

DNP

R551

Do Not Connect

T X

RX

SDA

SCL0603

0 Ω 0.1 W

0 Ω 0.1 W

R532E MPT Y

0603R533E MPT Y

GNDGNDF

3V3

5 VVUSB

VUSB

Data type selector

06030 Ω 0.1 W

0 Ω 0.1 W

R5 51

0603R5 52

E MPT Y

Default set to UART using 5 V

0402100 nF 25 V

C520

GND

3V3

Use ADuM1201 for UART (Default)

for I2C only

04024.7 k 0.1 W

R5 20

E MPT Y

04024.7 k 0.1 W

R5 21

E MPT Y

Use ADuM1250 forI2C

3V3 3V3

3V3F 3V3F

5 V 3V3

R552

Install

R534R535

R532R533

R520R521

DNP

R552

Install

R534R535

R532R533

R520R521

R530R531

R551

R530R531

GP0

GP1

GP2

GP3Shield

GNDF

5

7

63

2

41 8

VD DA VD DB

G NDA G NDB

ADuM1201CRU520

Page 12: Development Board EPC9147A Quick Start Guide

QUICK START GUIDEEPC9147A Interface Board for M

otor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM

| ©2021 |

| 12

Figure 7: EPC9147A Over-current Detect schematic

0402100 nF 25 V

C16

04021 k 1/16 W

R7

04021 M 1/16 W

R9

3V3

3V3

3V3

GND

GND

GND

IN PU T

3V3

GND

3V3

GND

040230 k 1/16 W

R1 0

GND

04021 nF 50 V

C18

04021 nF 50 V

C10

GND

0402470 Ω 1/16 W

R6

OUT PU T4

31

52

L MV 7235M7/NOPBU2

Page 13: Development Board EPC9147A Quick Start Guide

QUICK START GUIDEEPC9147A Interface Board for M

otor Drive Board

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM

| ©2021 |

| 13

Figure 8: EPC9147A Phases and Neutral Voltage Feedback schematic

040210 k 1/16 W

R15

040210 k 1/16 W

R14

0402

R16

0402C21

GND

V in1Vout1

V _M1

GND

GND

040210 k 1/16 W

R12

0402

R13

0402C20

GND

NEUTRLV _M2

Vout2V in2

0402300 Ω 1/16 W

R11

0402C19

GND

V in3

V _M1

V _M2

Vout3V _M3

V _M3

GND

3V3

0402100 nF 25 V

100 nF 25 V

300 Ω 1/16 W

100 nF 25 V

100 nF 25 V

300 Ω 1/16 W

100 nF 25 V

100 nF 25 V

C210

3

41

52

OPA320AIDBVTU210

3V3

GND

3V3 3V3

GND

3V3

0402C211

3

41

52

OPA320AIDBVTU211

3V3

GND

GND

3V3

0402C212

3

41

52

OPA320AIDBVTU212

3V3

GND

Page 14: Development Board EPC9147A Quick Start Guide

EPC Products are distributed through Digi-Key.www.digikey.com

For More Information:

Please contact [email protected] your local sales representative

Visit our website: www.epc-co.com

Sign-up to receive EPC updates atbit.ly/EPCupdates or text “EPC” to 22828

Demonstration Board NotificationThe EPC9147A board is intended for product evaluation purposes only. It is not intended for commercial use nor is it FCC approved for resale. Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Quick Start Guide. Contact an authorized EPC representative with any questions. This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. As an evaluation tool, this board is not designed for compliance with the European Union directive on electromagnetic compatibility or any other such directives or regulations. As board builds are at times subject to product availability, it is possible that boards may contain components or assembly materials that are not RoHS compliant. Efficient Power Conversion Corpora-tion (EPC) makes no guarantee that the purchased board is 100% RoHS compliant.The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this Quick Start Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Disclaimer: EPC reserves the right at any time, without notice, to make changes to any products described herein to improve reliability, function, or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, or other intellectual property whatsoever, nor the rights of others.