29
Development and applications of benchmarking aerosol models on the regional scale using a stochastic particle-resolved approach Jeffrey H. Curtis, Nicole Riemer and Matthew West University of Illinois at Urbana-Champaign International Aerosol Modeling Algorithms Conference December 5, 2019 Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 1/15

Development and applications of benchmarking aerosol models … · 2020. 1. 6. · regional scale using a stochastic particle-resolved approach Jeffrey H. Curtis, Nicole Riemer and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Development and applications ofbenchmarking aerosol models on the

    regional scale using a stochasticparticle-resolved approach

    Jeffrey H. Curtis, Nicole Riemer and Matthew West

    University of Illinois at Urbana-Champaign

    International Aerosol Modeling Algorithms ConferenceDecember 5, 2019

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 1/15

  • Atmospheric modeling: A multiscale challenge

    0.0·107

    0.5·107

    1.0·107

    1.5·107

    2.0·107

    2.5·107

    3.0·107

    3.5·107

    4.0·107

    4.5·107

    5.0·107

    5.5·107

    6.0·107

    6.5·107

    n(logd)p

    0.01 0.10 1.00

    d in mmp

    ifjfic

    sjc

    total

    µm

    n(log  d p)  

    1  

    Global  scale  

    Regional  scale  

    Mesoscale    

    Microscale    

    Par7cle  scale    

    Molecular  scale    Li#et#al.,#Atmospheric#Environment,#45,#248892495,#2011#

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 2/15

  • Atmospheric modeling: A multiscale challenge

    0.0·107

    0.5·107

    1.0·107

    1.5·107

    2.0·107

    2.5·107

    3.0·107

    3.5·107

    4.0·107

    4.5·107

    5.0·107

    5.5·107

    6.0·107

    6.5·107

    n(logd)p

    0.01 0.10 1.00

    d in mmp

    ifjfic

    sjc

    total

    µm

    n(log  d p)  

    1  

    Global  scale  

    Regional  scale  

    Mesoscale    

    Microscale    

    Par7cle  scale    

    Molecular  scale    Li#et#al.,#Atmospheric#Environment,#45,#248892495,#2011#

    0.0·107

    0.5·107

    1.0·107

    1.5·107

    2.0·107

    2.5·107

    3.0·107

    3.5·107

    4.0·107

    4.5·107

    5.0·107

    5.5·107

    6.0·107

    6.5·107

    n(logd)p

    0.01 0.10 1.00

    d in mmp

    ifjfic

    sjc

    total

    µm

    n(log  d p)  

    1  

    Global  scale  

    Regional  scale  

    Mesoscale    

    Microscale    

    Par7cle  scale    

    Molecular  scale    Li#et#al.,#Atmospheric#Environment,#45,#248892495,#2011#

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 2/15

  • How do models represent aerosol composition?

    amount

    amount

    radiusradius

    Modalradiusradius

    Sectional

    I Simplifying assumptions regarding the aerosol compositionI Sectional model: aerosols in a bin are fully internally mixed.I Modal model: aerosols in a mode are fully internally mixed.

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 3/15

  • How do models represent aerosol composition?

    amount

    amount

    radiusradius

    Modalradiusradius

    Sectional

    I Simplifying assumptions regarding the aerosol compositionI Sectional model: aerosols in a bin are fully internally mixed.I Modal model: aerosols in a mode are fully internally mixed.

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 3/15

  • Alternative representation: Particle-resolved

    Particle-resolved

    I Use a discrete representation of particlesI Representation of processes are straight-forward to modelI No bins or modesI No assumption made regarding how particles are mixed

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 4/15

    N. Riemer, M. West, R. A. Zaveri, and R. C. Easter, Journal of Geophysical Research, 2009

  • Model verification of aerosol representation

    We need approximations at the regional and global scales.But approximations cause error and uncertainties.

    0.0·107

    0.5·107

    1.0·107

    1.5·107

    2.0·107

    2.5·107

    3.0·107

    3.5·107

    4.0·107

    4.5·107

    5.0·107

    5.5·107

    6.0·107

    6.5·107

    n(logd)p

    0.01 0.10 1.00

    d in mmp

    ifjfic

    sjc

    total

    µm

    n(log  d p)  

    1  

    Global  scale  

    Regional  scale  

    Mesoscale    

    Microscale    

    Par7cle  scale    

    Molecular  scale    

    amount

    amount

    radiusradius radiusradius Howwell is this complexity captured?

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 5/15

  • Particle-resolved modeling technique

    What is composition space? Each particle is uniquely represented as anA-dimensional vector with mass composition components {µi1, µi2, . . . , µiA}

    Particle 1

    Particle 2

    Particle 3

    BC 3 10 1 SO4 12 3 4 OC 5 8 2

    BC

    SO4

    OC

    Sulfate (SO4)

    Black carbon (BC)

    Organic carbon (OC)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 6/15

    N. Riemer, M. West, R. A. Zaveri, and R. C. Easter, Journal of Geophysical Research, 2009

  • Particle-resolved modeling technique

    What is composition space? Each particle is uniquely represented as anA-dimensional vector with mass composition components {µi1, µi2, . . . , µiA}

    Particle 1

    Particle 2

    Particle 3

    BC 3 10 1 SO4 12 3 4 OC 5 8 2

    BC

    SO4

    OC

    Sulfate (SO4)

    Black carbon (BC)

    Organic carbon (OC)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 6/15

    N. Riemer, M. West, R. A. Zaveri, and R. C. Easter, Journal of Geophysical Research, 2009

  • Particle-resolved modeling technique

    What is composition space? Each particle is uniquely represented as anA-dimensional vector with mass composition components {µi1, µi2, . . . , µiA}

    Particle 1

    Particle 2

    Particle 3

    BC 3 10 1 SO4 12 3 4 OC 5 8 2

    BC

    SO4

    OC

    Sulfate (SO4)

    Black carbon (BC)

    Organic carbon (OC)

    Composition space A ≈ 20

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 6/15

    N. Riemer, M. West, R. A. Zaveri, and R. C. Easter, Journal of Geophysical Research, 2009

  • Benefits of particle-resolved models

    I No approximation need for representing mixing stateI Coarse graining tool: deriving parameters for more approximate modelsI Benchmark and error quantification for more approximate modelsI Detailed studies on the particle scale and experimental intercomparison.

    I Scales efficiently for high-dimensional data (number of aerosol species)I Avoids curse of dimensionality

    I Efficient algorithms make particle-resolved modeling feasibleI Accelerated binned coagulation (Riemer et al. 2009, Michelotti et al. 2013)I Particle weighting methods to reduce statistical error (DeVille et al. 2011, 2019)I Accelerated particle removal algorithms (Curtis et al. 2016)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 7/15

  • Benchmarking approximate models

    Simulation inputs and processes should be as similar as possible

    I Same meteorological model

    I Same chemical mechanisms

    I Consistency in emissions

    I Identical particle removal processes

    I Identical transport algorithms

    Only change the aerosol microphysics

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 8/15

  • Particle-resolved modeling on the regional scale

    I PartMC coupled with WRF allows regionalsimulations with highly-detailed mixing state.

    I Each grid cell simulates 10 000 computationalparticles - billions of particles for the domain.

    I Many levels of detail from the large-scale topopulation level to single-particle details ofcomposition and emission source.

    I Computational expense: 300 000 core hours for2 day simulation from the domain to right

    106 107 108 109 1010 1011

    number concentration # / m3

    pt natgasonroad hddiesel

    nonroad gas4strk

    np other pt other

    nonroad diesel

    10�9 10�8 10�7 10�6

    dry diameter (m)

    0.0

    0.5

    1.0

    OC

    mas

    sfr

    action

    101 102 103 104 105

    number concentration #/cm3

    SO4

    NO 3

    OIN O

    C BC

    0

    1

    2

    3

    mas

    s(k

    g)

    ⇥10�19

    aircraftegu natgas

    nonroad diesel

    nonroad gas2strk

    nonroad gas4strknp natgas

    np other

    onroad ldgaspt natgas pt other

    Population level

    Single-particle level

    Source contributions in grid cell

    Source contributions in single particle

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 9/15

    Curtis, Riemer and West, Geoscientific Model Development, 2017

  • How do we move vectors of particle composition?

    Transport PDE→ Discretize in space, time, and particles→ Determine probabilities→ Sample particle sets

    qt+1i,j − qti,j = ∆tF ti+1/2,j

    −F ti−1/2,j

    ∆x + ∆tF ti,j+1/2

    −F ti,j−1/2

    ∆y

    (a) (b) (c)

    Replicates deterministic finite volume method to isolate importance of representation

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 10/15

  • Simulating stochastic aerosol transport

    Testcase: 1D constant positive u advection (third order)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 11/15

  • Simulating stochastic aerosol transport

    Testcase: 1D constant positive u advection (third order)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 11/15

  • Simulating stochastic aerosol transport

    Testcase: 1D constant positive u advection (third order)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 11/15

  • Simulating stochastic aerosol transport

    Testcase: 1D constant positive u advection (third order)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 11/15

  • Simulating stochastic aerosol transport

    Testcase: 1D constant positive u advection (third order)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 11/15

  • Simulating stochastic aerosol transport

    Testcase: 1D constant positive u advection (third order)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 11/15

  • Simulating stochastic aerosol transport

    Testcase: 1D constant positive u advection (third order)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 11/15

  • Simulating stochastic aerosol transport

    Testcase: 1D constant positive u advection (third order)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 11/15

  • Simulating stochastic aerosol transport

    Testcase: 1D constant positive u advection (third order)

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 11/15

  • Results: Simulating stochastic aerosol transport

    0.0 0.5 1.0x

    0.00

    0.25

    0.50

    0.75

    1.00

    1.25

    q

    spatial order = 1

    0.0 0.5 1.0x

    spatial order = 2

    0.0 0.5 1.0x

    spatial order = 3

    0.0 0.5 1.0x

    spatial order = 4

    0.0 0.5 1.0x

    spatial order = 5

    0.0 0.5 1.0x

    spatial order = 6

    100 101

    Frequency (1/m)

    103

    Pow

    er

    1st

    2nd

    3rd

    4th

    5th

    6th

    Odd orders perform better (implicit diffusion)

    102 105 108 1011 1014

    Number of computational particles npart

    10−8

    10−6

    10−4

    10−2

    100

    Mea

    nre

    lati

    veer

    rorē

    Converges to FV method in particle number

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 12/15

    Curtis, Riemer and West, Geoscientific Model Development (in prep)

  • Transport performance in real-world case

    Complex terrain, complex and evolving wind field

    t = 0 hr t = 6 hr t = 12 hr

    0 10 20 30 40

    Wind speed m s−110−1 101

    q

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 13/15

  • Transport performance in real-world case

    Stochastic algorithm applied to third order monotonic advection scheme in WRF

    Npart = 10 Npart = 100 Npart = 1000 FV

    10−1 100 101 102

    q

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 13/15

  • Transport performance in real-world case

    Stochastic algorithm applied to third order monotonic advection scheme in WRF

    Npart = 10 Npart = 100 Npart = 1000 FV

    10−1 100 101 102

    q

    101 102 103

    Number of particles Npart

    10−2

    10−1

    RM

    SE

    Par

    t-F

    V

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 13/15

  • First step: CCN error quantification for a sectional projection

    0 20 40 60 80 100

    Mixing state χccn (%)

    −100

    0

    100

    200

    Per

    cent

    erro

    rin

    CC

    Nco

    nce

    ntr

    ati

    on

    (%)

    100

    101

    102

    103

    104

    105

    grid

    cell

    cou

    nt

    0 2

    0

    1Externallymixed

    0 2

    0

    1 Internallymixed

    0 2

    0

    1

    Underestimated

    Overestimated

    Complex mixing stateresults in larger error

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 14/15

  • Concluding thoughts

    Future work: Model benchmarking

    Use particle-resolved modeling andmixing state metrics to benchmarkaerosol models that use varying levelsof mixing state

    amount

    amount

    radiusradius

    Modalradiusradius

    Sectional

    Code availability

    https://github.com/compdyn/partmc

    Funding

    DE-SC0011771DE-SC0019192

    Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019 15/15

    https://github.com/compdyn/partmc

    TransportExampleConclusion