28
DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber USDA ARS US Meat Animal Research Center, Clay Center, Nebraska USA

DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Embed Size (px)

Citation preview

Page 1: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF

VOLATILE ORGANIC CARBON

B.L. Woodbury, D.N. Miller,R.A. Eigenberg and J.A. NienaberUSDA ARS US Meat Animal Research Center,

Clay Center, Nebraska USA

Page 2: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

The ProblemThe Feedlot Environment

• Spatial & temporal variation:• Moisture• Temperature• Soil characteristics• Manure deposition

Page 3: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

The ProblemPotential Gaseous Emissions from Feedlot Surface

AmidesAmmonia

MethylaminesDiamines

AromaticsBenzoates

IndolesPhenols

SulfidesHydrogen sulfideMethyl sulfides

Alcohols (Straight & Branch Chain)Ethanol, Propanol, Butanol, etc.

VFAs (Straight & Branch Chain) Acetate Octanoate

Isobutyrate, Isovalerate

Page 4: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

ObjectivesFeedlot Surface Emissions

•Design a cost-effective headspace chamber suitable for laboratory and field studies

•Evaluate its flow characteristics

Page 5: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Design Criteria

•Portable for use either in lab or field• Internal distribution system to ensure completely mixed conditions

•Septa port for gas sampling (i.e., SPME)

•Acid trap to collect ammonia•Calculate relative emission rates•Battery operated

Page 6: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

The Design“The Real Salad Bowl Study”

• Hemispherical headspace chamber

• Measure VOC w/SPME• Ammonia trap

Item Cost

Chamber $5.00

Air Pump $130.00

Bubbler $50.00

Battery $25.00

Connectors/Fan $190.00

Total $400.00

Page 7: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Sampling Port With Septa Seal

Page 8: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Inside View With Internal Mixing Fan

Page 9: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Tracer Study

•Total headspace volume (V) 7.6 L•Flow rate (Q) 1.18 L min-1

RT = V/Q•50 ml CH4 injection pulse•Analyzed using a GC/MS with HID detector

Page 10: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Time (sec)

0 500 1000 1500 2000 2500

Cu

mm

ula

tive

Mas

so

f C

H4

Co

llec

ted

0

20

40

60

80

100

120

140

96%

Mass Balance

Page 11: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

CH4 Break-Through-Curve

• At 1 dilution• 32%

• At 3 dilutions• 5%

• Ideal reactor • 37 & 5%, respectively

Time (sec)0 500 1000 1500 2000 2500

CH

4 C

on

c. ( g

m-3

)

0

1e+6

2e+6

3e+6

4e+6

5e+6

32%

5%

Page 12: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Theoretical And Experimental Headspace Chamber Properties

HRT V Q (min) (L) (L min-1)

Calculated 6.5 7.6 1.16Experimental 6.3 7.3 1.16

Page 13: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Gaseous Output

Flow rate, L/min0 1 2 3 4 5

To

tal

ion

cu

rren

t, a

rea x

10

9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y = 0.0578x + 1.704R2 = 0.745

Microbiologist: One return port would be enoughEngineers: Four would be better

Page 14: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Gaseous Output

• Linear with manure surface area

Surface area, cm20 100 200 300 400 500 600

To

tal

ion

cu

rren

t, a

rea

x 10

8

0

2

4

6

8

10

12

14

16

y = 0.0214x + 0.878R2 = 0.973

Page 15: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Conclusions

• Chamber design performed similar to an ideal continuous flow stirred reactor

• Concentrations measured at sampling port are indicative of concentrations anywhere in headspace

• Chamber was found to be reasonably stable over wide range of flow rates

• Linear with respect to surface area of manure• Cost per unit approx. $400.00

Page 16: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

•Laboratory Studies•Field Studies

Page 17: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

Time-->

Abundance

TIC: 0003.D

Laboratory StudiesFresh Manures: Cattle vs. Swine

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

Time-->

Abundance

TIC: 0009.D

Cattle—Ground corn/corn silage

Swine—Grower diet

Abu

ndan

ce,

peak

are

a x

106

5

15

10

5

15

10

Run time, minutes

1 2 3 4 5 9876

Page 18: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Laboratory StudiesVolatiles Composition & Cattle Diets

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

Time-->

Abundance

TIC: 0003.D

Ground corn/corn silage dietA

bund

ance

, pe

ak a

rea

x 10

6

5

15

10

5

15

10

Run time, minutes

1 2 3 4 5 98761.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

Time-->

Abundance

TIC: 0008.D

Alfalfa maintenance diet

Page 19: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Cattle—Ground corn/corn silage diet

Laboratory StudiesManure Incubation

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

Time-->

Abundance

TIC: 0003.D

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

Time-->

Abundance

TIC: 0009.D

Abu

ndan

ce,

peak

are

a x

106

5

15

10

Run time, minutes1 2 3 4 5 9876

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

Time-->

Abundance

TIC: 0008.D

5

15

10

5

15

10

Fresh

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

Time-->

Abundance

TIC: 0003.D

Cattle—Alfalfa maintenance diet

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

Time-->

Abundance

TIC: 0003.D

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

Time-->

Abundance

TIC: 0011.D

Swine—Grower diet

Incubated

Run time, minutes1 2 3 4 5 9876

Page 20: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

• Manure can be from 10 to 100 times more conductive than typical soil

Field StudiesPrecision Feedlot Surface Management

TX RX

S

The transmitter coil (TX) is placed near the earth and is energized with an alternating current. The small currents induced into the earth generate a secondary signal which is picked up by a receiver coil (RX) at a distance S away. The ratio of the two signals gives a measure of the soil’s conductivity beneath the two coils.

The transmitter coil (TX) is placed near the earth and is energized with an alternating current. The small currents induced into the earth generate a secondary signal which is picked up by a receiver coil (RX) at a distance S away. The ratio of the two signals gives a measure of the soil’s conductivity beneath the two coils.

Electromagnetic Induction Principles

Page 21: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

570330 570340 570350 570360

44

89

81

04

48

98

30

4489

850

44

89

87

044

8989

0Bunk

Waterer

Mound

0.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.6

Oct

ob

er 2

004

570330 570340 570350 570360

4489

810

44

89

83

04

48

98

50

44

89

87

044

898

90

Bunk

Waterer

Mound

Jun

e 20

04

570330 570340 570350 570360

4489

810

4489

830

4489

850

4489

870

4489

890

Bunk

Waterer

Mound

July

200

4

Page 22: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Association of volatile solids (manure) to ECa

EMI, mS m-10 50 100 150 200 250

% V

ola

tile

So

lids

0.0

0.1

0.2

0.3

0.4

0.5y = 0.0022x - 0.0961r2 = 0.7661

Page 23: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Total Phosphorus

Volatile Solids, %0.0 0.1 0.2 0.3 0.4 0.5

To

tal P

0

2000

4000

6000

8000

10000y = 18094x - 8.9472r2 = 0.7996

Page 24: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Total Nitorgen

Volatile Solids, %0.0 0.1 0.2 0.3 0.4 0.5

To

tal N

, pp

m

0

5000

10000

15000

20000

25000

30000y = 65549x - 2299r2 = 0.9247

Page 25: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Area based on Conductivity

050

100150200250300350400

Electrical Conductivity, mS/m

Rel

ativ

e A

rea

050

100150200250300350400

Electrical Conductivity, mS/m

Rel

ativ

e A

rea

570340 570350 570360

4489

810

4489

820

4489

830

4489

840

4489

850

4489

860

4489

870

4489

880

4489

890

Less than 25% of the area is high conductivityHigh Conductivity = Manure Accumulation?

HighLow

Page 26: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Ammonia Flux Across Pen

BUNK

NH

3 f

lux

M

/m2/h

r

Sample Location

MOUND

Feedlot pen

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13

8X more VOC

Page 27: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Feedlot Survey in Cooperation with ARS-USDA, Bushland, TX

Feedlot Survey in Cooperation with ARS-USDA, Bushland, TX

217370 217380 217390 217400 217410 217420 217430

3896

690

3896

700

3896

710

3896

720

3896

730

3896

740

0 .10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.6

217370 217380 217390 217400 217410 217420 217430

3896

690

3896

700

3896

710

3896

720

3896

730

3896

740

0 .10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.6

Target our management strategies?

Page 28: DEVELOPMENT AND APPLICATION OF AN INEXPENSIVE CHAMBER FOR ANALYSIS OF VOLATILE ORGANIC CARBON B.L. Woodbury, D.N. Miller, R.A. Eigenberg and J.A. Nienaber

Questions?