26
Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 151 DEVELOPING PROPOSED LAYOUT FOR INCREASING LINE EFFICIENCY ON BODYSHOP Johan Oscar Ong; Cornellia Faculty of Technology, Industrial Engineering Department, President University Jl. Ki Hajar Dewantara, Kota Jababeka,Cikarang, Bekasi - Indonesia 17550 [email protected] ABSTRACT Recently, an imbalance workstation in assembly line is one of the critical problems faced by many companies. Many researches have proposed various designs of assembly line balancing to solve this problem. This research compared straight line balancing and u-shaped line balancing which both had the same target to minimize the workstations. The result showed that u-shaped line balancing provided a better solution than the straight line balancing did in number of workstation. Straight line balancing utilized rank positional weight (RPW) whereas u-shaped line balancing utilized Critical Task Method (CTM). Significantly, u-shaped line balancing was more efficient than straight line balancing. Keywords: assembly line balancing, straight line balancing, u-shaped line balancing, rank positional weight (RPW), critical task method (CTM) ABSTRAK Workstation yang tidak seimbang dalam jalur perakitan adalah salah satu masalah penting yang dihadapi oleh banyak perusahaan. Banyak penelitian telah mengusulkan berbagai desain penyeimbangan jalur perakitan untuk memecahkan masalah ini. Penelitian ini membandingkan penyeimbangan jalur lurus dan penyeimbangan jalur berbentuk U yang keduanya memiliki target yang sama yaitu meminimalkan workstation. Hasil penelitian menunjukkan bahwa penyeimbangan jalur berbentuk U memberikan solusi yang lebih baik daripada penyeimbangan jalur lurus dalam jumlah workstation. Penyeimbangan jalur lurus menggunakan utilized rank positional weight (RPW) sedangkan penyeimbangan jalur berbentuk U menggunakan critical task method (CTM). Secara signifikan, penyeimbangan jalur berbentuk U lebih efisien daripada penyeimbangan jalur lurus. Kata kunci: perakitan balancing, lurus line balancing, u-berbentuk line balancing, rank positional weight (RPW), Critical Task Method (CTM)

DEVELOPING PROPOSED LAYOUT FOR INCREASING LINE …research-dashboard.binus.ac.id/uploads/paper/document/publication...penyeimbangan jalur berbentuk U yang keduanya memiliki target

Embed Size (px)

Citation preview

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 151

DEVELOPING PROPOSED LAYOUT FOR INCREASING LINE EFFICIENCY ON BODYSHOP

Johan Oscar Ong; Cornellia

Faculty of Technology, Industrial Engineering Department, President University Jl. Ki Hajar Dewantara, Kota Jababeka,Cikarang, Bekasi - Indonesia 17550

[email protected]

ABSTRACT

Recently, an imbalance workstation in assembly line is one of the critical problems faced by many companies. Many researches have proposed various designs of assembly line balancing to solve this problem. This research compared straight line balancing and u-shaped line balancing which both had the same target to minimize the workstations. The result showed that u-shaped line balancing provided a better solution than the straight line balancing did in number of workstation. Straight line balancing utilized rank positional weight (RPW) whereas u-shaped line balancing utilized Critical Task Method (CTM). Significantly, u-shaped line balancing was more efficient than straight line balancing. Keywords: assembly line balancing, straight line balancing, u-shaped line balancing, rank positional weight (RPW), critical task method (CTM)

ABSTRAK

Workstation yang tidak seimbang dalam jalur perakitan adalah salah satu masalah penting yang dihadapi oleh banyak perusahaan. Banyak penelitian telah mengusulkan berbagai desain penyeimbangan jalur perakitan untuk memecahkan masalah ini. Penelitian ini membandingkan penyeimbangan jalur lurus dan penyeimbangan jalur berbentuk U yang keduanya memiliki target yang sama yaitu meminimalkan workstation. Hasil penelitian menunjukkan bahwa penyeimbangan jalur berbentuk U memberikan solusi yang lebih baik daripada penyeimbangan jalur lurus dalam jumlah workstation. Penyeimbangan jalur lurus menggunakan utilized rank positional weight (RPW) sedangkan penyeimbangan jalur berbentuk U menggunakan critical task method (CTM). Secara signifikan, penyeimbangan jalur berbentuk U lebih efisien daripada penyeimbangan jalur lurus. Kata kunci: perakitan balancing, lurus line balancing, u-berbentuk line balancing, rank positional weight (RPW), Critical Task Method (CTM)

152 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

INTRODUCTION

Automotive company is developing rapidly. It leads the BodyShop business be a promising business because the automotive company could not stand itself without the activities of BodyShop Business. There are three kinds of BodyShop’s activities: light repair, medium repair, and heavy repair. The standard time for light damage (one to three panels) is one to three days. For medium damage (four to six panels) is 3 to 5 days and for the heavy damage (≥ seven panels) is 5 days to 2 weeks. In fact, the actual repair time for light damage is 4.44 business days (more than 3 business days) and for medium damage is 7.02 business days (more than 5 business days). Thus, the line efficiency of BodyShop is low.

The line of BodyShop is not balance, it makes many vehicles got stuck when entering the

stalls. There are two types of assembly line balancing that matches for the condition of BodyShop; straight line balancing and u-shaped line balancing. Straight line balancing is a balance production line where stations are arranged consecutively in a line by grouping tasks into stations while moving forward through a precedence diagram using Rank Positional Weight. On the other hand, u-shaped line balancing is a balance production line arranged by assigning tasks into stations while moving forward, backward, or simultaneously in both directions through the precedence diagram by using Critical Task Method.

This research compares straight line balancing and u-shaped line balancing. The objective is to

minimize the workstations, and then to find which line balancing is better to be implemented at BodyShop Business.

METHOD

Designing Assembly Line Balancing Standard Time (Time Study)

There are three kind of test to prove the observation’s data is valid. First is normality test. If confidence interval construction is about unknown population mean μ

based upon the calculation of a point estimate and level of confidence, hypothesis testing allows an experimenter to assess the plausibility and credibility of a specific statement (Hayter, 2000). H0 : The data is normally distributed HA : The data is not normally distributed

Walpole, et al. (2002) puts the rules of p-value to take the statistical inference data:

If p-value ≤ α, reject the null hypothesis. If p-value > α, fail to reject the null hypothesis.

Second is uniformity test. There are several steps to determine the uniformity of a set of data:

Calculate average observed time (x) for each operation.

(1)

Calculate the standard deviation (s) of each operation.

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 153

(2)

Determine the Upper Control Limit (UCL) and Lower Control Limit (LCL) (Wignjosoebroto,

2000).

(3)

Third is suficiency test. The data is sufficient when n (number of data) greater than N’

(number of observation needed). The following formula calculates how many observations must be done to reach 95% confidence level (Sutalaksana, et al., 2006).

(4)

Rating Operator Performance (Westinghouse System) Niebel and Freivalds (2003) put the detail of westinghouse system as the rating method. This

method considers four factors in evaluating the performance of operator; skill, effort, conditions, and consistency. The overall performance factor could be determined by algebraically combining the four values and adding their sum to unity. Adding Allowance

Sutalaksana, et al. (2006) determines the factors as energy that be taken out, work posture, work motion, eye fatigue, temperature condition, atmosphere condition, and good environment condition. The evaluation is done by calculating the values of the seven factors, personal needs, and delays. Rank Positional Weight (Straight Line Balancing)

There are some steps in Helgeson-Birnie Approach method to design assembly line: (1) create

the precedence matrix to show the relationship among those elements. The following figure is established to show the precedence matrix. The numeral 1 signifies a “must preceed” relationship; (2) calculate positional weight (PW) for every work element (WE); (3) sort all work elements from the largest PW until the smallest PW. List all the positional weight in decreasing order of magnitude; (4) based on the rank of PW in step 2, develop the task loading into work station. Thus, there will be some limitations: the relation in precedence diagram (+Status zone/ zone constraints) and work station time (ST) could not be more than actual cycle time (CTi); (5) calculate the work station’s efficiency and efficiency of assembly line (LE).

Critical Task Method (U-Shaped Line Balancing)

Yeh and Kao (2009) in Fathi, et al. (2011) propose a new approach based on critical path

methods (CPM) in order to solve bidirectional assembly lines, and the time complexity of this method

40 . ∑ ∑∑

∑1

3 3

154 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

is only O(mn2), meaning that this method can be solved within a polynomial-time. Because of the advantage of less time complexity, the effective heuristic method is presented which is based on combining the proposed approach by Yeh and Kao (2009) and the well-known rank positional weight technique (RPW) introduced by Helgeson and Birnie (1961) to solve U-shape assembly line problems in the area of type-1.

There are several steps to do the Critical Task Method CTM. First is calculating minimum

feasible number of workstation S and the minimum feasible cycle time MCT and the adjusted value of CT* = (MCT + CT) / 2

Second is creating a new workstation. Then, calculate the weight for each task in two stages,

one time from the forward direction and another time from the backwards direction. And then, identify activities permitted for assigning and creating a candidate list.

The third step is assigning activities with high weight on the candidate list. Iif there are two or

more activities with the same weight, one can be selected to be assigned at random. This order in each stage is continued by finding the new weight for each task using the critical path. When solving U-shape line, the tasks' weight should be updated in forward direction if the assigned task is from the end of network. Otherwise, the tasks' weight in the backward direction should be recalculated until all the activities are assigned to the workstations.

The fourth step is calculating the remaining time for the current station and updating the

candidate list based on the new calculated weights and constraints. If the station has enough time for any feasible unassigned task, back to step 3, otherwise go to step 5. The fifth step is repeat assigning process until no tasks are left. If there are unassigned tasks, back to step 2. Activity Relationship Chart

Activity Relationship Chart (ARC) can be defined as the maping of activity relation that

describe the closeness degree of every facility. Mulyati and Rachmi (2011) set the main goal of ARC is to identify the relationship closeness of each group’s activity in terms of factory organization. There are six symbols of ARC’s closeness degree (Table 1).

Table 1 Table closeness degree

Code Closeness Degree

A Absolutely necessary E Especially important I Important O Ordinary closeness OK X Undesirable U Unimportant

The dimensionless block diagram is the first attempt and the result of the ARC. This layout

will be the basis for the master layout and plot plan. The following table is the position requirements of placing the relationship codes (Table 2).

Table 2 Position in dimensionless block diagram

Code Position

A in the top left-hand corner E top right corner I bottom left corner

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 155

O bottom right corner U relationship omitted X in the center under the department number

Bonferroni Approach In Harrell et al. (2012), the statistical methods for making the comparison of system are called

hypotheses tests. One of the methods that could be used is Bonferroni Approach. When there are three to about five alternative system designs to compare with respect to some performance measure, the Bonferroni approach is the method to solve it. Given K alternative system designs to compare, the null hypothesis H0 and alternative hypothesis H1 become :

H0: µ = µ = µ = . . . . = µ μ for K alternative systems H1: µ ≠ µ for at least one pair i ≠ i’ where i and i’ are between 1 and K and i < i’.

The number of pairwise comparisons for K candidate designs is computed by K(K – 1) / 2.

Model Verification and Model Validation

There is a way to do the model verification; using trace and debugging facilities. Comparing

with the actual system is one of the techniques that could be used to validate the model. Using the paired-t test for comparing the model with the actual system. In paired-t test, it is necessary for testing the hypotheses;

H0: µ µ = 0 H1: µ µ ≠ 0

Thus, the paired-t confidence interval for an α level of significance is P(x – hw ≤ µ ≤ x + hw) = 1 – α

Mathematics

There are three parameters in designing the assemly line balancing. First is the efficiency of

assembly line (ratio between total workstation time and multification of cycle time and number of workstations).

LE = ∑ x 100% (K) (CT) (5)

LE = efficiency of assembly line STi = workstation time i K = number of workstations CT = cycle time Second is the smoothness index (index that shows the relative smoothness of the assembly line).

SI = ∑ 2 (6)

SI = smoothness index STmax = maximum workstation time STi = workstation time i Third is the balance delay (the rate of delay).

BD =(K) (STmax) – ∑ x 100% (K) (STmax) (7)

BD = balance delay K = number of workstation

156

STmax =ti =

Actual A

facts abowas rougstudy (re

No

1 2 3 4 5 6

7

8

T

LE = (K) = = 46,

T

= maximum = work elem

l Condition

Actual workout actual timgh from oneefers to Appe

Q1 + Q2 +Q3Q4 + Q5 + QQ9 + Q10 + Q13 + Q14 +Q19 + Q20 +Q29 + Q30 +Q35 + Q36 ++ Q45 Q46 + Q47

The line effi

x 100) (CT)

x 100%,1%

The smoothn

workstationment time

R

n of Balan

k arrangemenme; some woe workstationendix 1).

Tab

3 Q6 + Q7 + Q8

Q11 + Q12 + Q15 + Q16 ++ Q21 + Q22 ++ Q31 + Q32 ++ Q37 + Q38 +

Fig

ciency of act

0%

%

ness index of

n time

RESULTS

nced Layou

nt (Table 3)aorkstations vin to another

ble 3 Actual c

Operation

+ Q17 + Q18+ Q23 + Q24 + Q33 + Q34+ Q39 + Q40

Total

gure 1 Actual

tual conditio

f the process

S AND DIS

ut

and yamazumiolated the ta. The time w

cycle time of w

+ Q25 + Q26

+ Q41 + Q42

yamazumi ch

on is:

is shown be

INASEA, Vol.

SCUSSION

mi chart (Fiakt time (wowas based on

work arrangem

+ Q27 + Q28

+ Q43 + Q44

hart of BodySh

elow (Table 4

WorkstCycle T

14 No.2, Ok

N

gure 1) beloorkstation 4, n the standa

ment

WorkstatTime (m

4,69 7,53 22,41 64,76

8 60,28 20,84

4 55,12

3,18 238,82

hop

4):

tation Time Time

ktober 2013:

ow identified5, and 7), thrd time thro

tion min)

Numbopera

111111

1

12 8

151-176

d the two e process

ough time

ber of ator

8

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 157

Table 4 Smoothness Index of Bodyshop

Operator STi (STmax-STi)2

1 4,69 3608,79 2 7,53 3274,80 3 22,41 1793,21 4 64,76 0,00 5 60,28 20,06 6 20,84 1928,91 7 55,12 92,89 8 3,18 3792,13

Total 14510,79 Smoothness Index 120,46

Due to bottleneck and idle time occured in the BodyShop line, delays came up. The value of

delay was: BD =(K) (STmax) – ∑ x 100% (K) (STmax) = , ,

, 100%

= 53,9% Simulation

The picture below showed the layout of location constructed (Figure 2).

Figure 2 Display of location for current line

Table 5 showed the process and routing of the current line’s simulation.

Table 5 Process of current line

Process Routing Entity Location Operation Output Destination Rule Move Logic

Car Enter Car Operator_1 FIRST 1 MOVE FOR 4 MIN

158 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

Car Operator_1 WAIT N(4.69,5) MIN Car Operator_2 FIRST 1 MOVE FOR 4 MIN

Car Operator_2 WAIT N(7.53,5) MIN Car Operator_3 FIRST 1 MOVE FOR 4 MIN

Car Operator_3 WAIT N(22.41,5) MIN Car Operator_4 FIRST 1 MOVE FOR 4 MIN

Car Operator_4 WAIT N(64.76,5) MIN Car Operator_5 FIRST 1 MOVE FOR 4 MIN

Car Operator_5 WAIT N(60.28,5) MIN Car Operator_6 FIRST 1 MOVE FOR 4 MIN

Car Operator_6 WAIT N(20.84,5) MIN Car Operator_7 FIRST 1 MOVE FOR 4 MIN

Car Operator_7 WAIT N(55.12,5) MIN Car Operator_8 FIRST 1 MOVE FOR 4 MIN

Car Operator_8 WAIT N(3.18,5) MIN INC Finished_Repair Car EXIT FIRST 1 MOVE FOR 4

MIN The trace below shows that the entity or sequence of events follow the behavior that would

occur in the actual system (model verification) (Figure 3).

Figure 3 Trace listing of current line Model validation is tested by using paired-t (comparing with actual system of BodyShop).

Below is the calculation of paired-t confidence intervals. Comparing μ(A-C): α 0.05 The approximate 95% confidence interval:

hw = , .

hw = . .√

0.43 – 0.56 ≤ μ(A – C) ≤ 0.43 + 0.56 hw = 0.56 unit per hour -0.12 ≤ μ(A – C) ≤ 0.99 Given that the confidence interval about μ(A – C) includes zero, it is concluded that there was no

significant difference in the mean throughput produced by Actual System (μA) and Current Line in

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 159

ProModel (μC). Thus, the model of current line in ProModel is right (validation and verification). There were 7.48 finished repair vehicles that are found in the finished stall. This is the output of current line in the simulation.

Layout of Proposed Straight Line Rank Positional Weight

Below is the example of calculating positional weight for Q1 based on precedence diagram

(refers to Appendix 2). Since Q1 precedes all operations except Q22, Q26, Q32, and Q45, the operational weight of Q1 is:

∑1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34,35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47

=0,92+1,34+2,44+1,50+1,84+2,76+1,09+0,36+2,01+7,74+3,23+9,44+5,19+0,84+44,38+1,52+11,72+1,12+4,74+2,58+0,63+0,50+1,40+2,63+10,09+34,85+1,92+3,87+3,64+4,93+2,65+3,01+6,94+2,41+7,95+3,68+2,04+13,31+1,93+5,60+2,79+1,77+1,41 = 226.66

Calculation table and the application of RPW are attached in Appendix 3. Then the data is

used as the basis in determining the work arrangement between operators. Work Arrangement

The table below is the work arrangement of straight line balancing based on RPW (Table 6),

generating Yamazumi Chart on Figure 4.

Table 6 Proposed work arrangement of straight line (RPW)

Workstation Operation Workstation Time (min)

Number of

operator

1 Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q7 + Q8 + Q9 + Q10 + Q11 + Q12 + Q13 39,52 1

2 Q14 + Q15 + Q16 46,74 1

3 Q17 + Q18 + Q19 + Q20 + Q21 + Q22 + Q23 + Q24 + Q25 26,2 1

4 Q26 + Q27 + Q28 46,92 1

5 Q29 + Q30 + Q31 + Q32 + Q33 + Q34 + Q35 + Q36 + Q37 + Q38 + Q39 44,84 1

6 Q40 + Q41 + Q42 + Q43 + Q44 + Q45 + Q46 + Q47 34,32 1 TOTAL 238,54 6

Figure 4 Yamazumi Chart of proposed straight line

160 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

Line Efficiency, Smoothness Index, and Balance Delay Table 7 below showed the line efficiency of each proposed workstation. It proved that the line

efficiency was better than the current line.

Table 7 Calculation of straight line efficiency

Workstation Station Time (min) Operator Idle Time (min) Line Efficiency 1 39,52 1 8,48 82,3% 2 46,74 1 1,26 97,4% 3 26,20 1 21,80 54,6% 4 46,92 1 1,08 97,8% 5 44,84 1 3,16 93,4% 6 34,32 1 13,68 71,5%

Average 8,24 82,8%

The following table is the calculation of the smoothness index for proposed straight line (table 8). It proved how smooth the proposed line was.

Table 8 Calculation of smoothness index for straight line

Operator STi (STmax-STi)2

1 39,52 54,76 2 46,74 0,03 3 26,2 429,32 4 46,92 0,00 5 44,84 4,33 6 34,32 158,76

Total 647,20 Smoothness Index 25,44

Below is the calculation of Balance Delay:

BD =(K) (STmax) – ∑ x 100% (K) (STmax)

BD = , ,,

100% BD = 15,2%

The value of balance delay has been decreased become 15,2%. It meant that the bottleneck or

idle time would be reduced. Activity Relationship Chart

It could be beneficial to design the layout of straight line balancing. Below is the table of ARC

(Table 9).

Table 9 ARC of straight line balancing

No Facility Relationship 1 Workstation 1

2 Workstation 2

6 5

43

21

E OI

A

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 161

3 Workstation 3

4 Workstation 4

5 Workstation 5

6 Workstation 6

Below is the dimensionless block diagram (layout) for straight line balancing (Figure 5).

Figure 5 Dimensionless block diagram of straight line balancing

Simulation There were three model system designs of proposed straight line; system 1 with 15 operators

(station 1= 2opt, station 2= 3opt, station 3= 2opt, station 4= 3opt, station 5= 3opt, station 6= 2opt), system 2 with 16 operators (station 1= 2opt, station 2= 3opt, station 3= 2opt, station 4= 3opt, station 5= 3opt, station 6= 3opt), and system 3 with 15 operators (station 1= 3opt, station 2= 3opt, station 3= 2opt, station 4= 3opt, station 5= 3opt, station 6= 2opt). Using the benferroni approach to compare these systems. Below was the calculation of paired-t confidence intervals. Comparing μ(1-2): α1 0.02 The approximate 98% confidence interval:

hw = , .

hw = . .√

-0.48 – 0.38 ≤ μ(1 – 2) ≤ -0.48 + 0.38 hw = 0.38 unit per hour -0.86 ≤ μ(1 – 2) ≤ -0.10

Comparing μ(1-3): α2 0.02 The approximate 98% confidence interval:

hw = , .

hw = . .√

-0.91 – 0.59 ≤ μ(1 – 3) ≤ -0.91 + 0.59 hw = 0.59 unit per hour -1.50 ≤ μ(1 – 3) ≤ -0.32

Comparing μ(2-3): α1 0.02 The approximate 98% confidence interval:

hw = , .

65

43

21

O

EX

XO

AX

OO

X O

162 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

hw = . .√

-0.43 – 0.44 ≤ μ(2 – 3) ≤ -0.43 + 0.44 hw = 0.44 unit per hour -0.88 ≤ μ(2 – 3) ≤ 0.01 Based on the results, system 1 is the least favorable with respect to the mean throughtput while

System 2 and System 3 are the most favorable with respect to mean throughput. Thus, the recommendation is implementing the System 3 in place of the System 2 because System 3 was the boss’s idea.

The picture below shows the layout of location which has been constructed.

Figure 6 Display of locations for system 3 proposed straight line

The following table is the process and routing of the proposed straight line.

Table 10 Process of proposed straight line

Process Routing Entity Location Operation Output Destination Rule Move Logic

Car Enter Car Operator_1 FIRST 1

MOVE FOR 5 MIN

Car Operator_1 WAIT 39.52 MIN Car Operator_2 FIRST

1 MOVE FOR 5 MIN

Car Operator_2 WAIT 46.74 MIN Car Operator_3 FIRST

1 MOVE FOR 5 MIN

Car Operator_3 WAIT 26.2 MIN Car Operator_4 FIRST

1 MOVE FOR 5 MIN

Car Operator_4 WAIT 46.92 MIN Car Operator_5 FIRST

1 MOVE FOR 5 MIN

Car Operator_5 WAIT 44.84 MIN Car Operator_6 FIRST

1 MOVE FOR 5 MIN

Car Operator_6

WAIT 34.32 MIN INC Finished_Repair

Car EXIT FIRST 1

MOVE FOR 5 MIN

The trace below shows that the entity or sequence of events follow the behavior of system

(model verification).

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 163

Figure 7 Trace listing of proposed straight line Model validation is tested by using paired-t (comparing with the calculation of maximum

production capacity). Below is the calculation of maximum production capacity. P = T / C P = 480 / 46.92 = 10.23 ≈ 10

Suppose that overall significance level is 5% (α= 0.05). Below is the calculation of paired-t

confidence intervals. • Comparing μ(C-S): α 0.05 The approximate 95% confidence interval:

hw = , .

hw = . .√

-0.22 – 0.28 ≤ μ(C – S) ≤ -0.22 + 0.28 hw = 0.28 unit per hour -0.50 ≤ μ(C – S) ≤ 0.06 Given that the confidence interval about μ(C – S) includes zero, it is concluded that there is no

significant difference in the mean throughput produced by calculation of maximum production capacity (μC) and proposed straight line in ProModel (μS). Thus, the model of proposed straight line in ProModel is right (validation and verification). The output of proposed straight line is 11,22 finished repair vehicles in the simulation. Layout of Proposed U-Shaped Line Critical Task Method

Below is the example of calculating backward and forward weight for Q1.

Backward: ∑ 1, 3, 5, 6, 8, 9, 10, 13, 14, 16, 17, 19, 21, 23, 24, 25, 2729, 30, 31, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47

=0,92+2,44+1,84+2,76+0,36+2,01+7,74+5,19+0,84+1,52+11,72+4,74+0,63+0,50+1,40+2,63+10,09+1,92+3,87+3,64+4,93+2,65+3,01+6,94+2,41+7,95+13,31+1,93+5,60+2,79+1,77+1,41 = 121,43 Forward: Q1 = 0,92

164 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

Calculation table and the application of CTM are attached in Appendix 4. Then the data is used as the basis in determining the work arrangement between operators. Work Arrangement

The following table is work arrangement of u-shaped line balancing based on CTM.

Table 11 Proposed work arrangement of u-shaped line (CTM)

Workstation Operation Workstation Time (min)

Number of operator

1 Q1 + Q2 + Q3 + Q4 + Q5 + Q6+ Q7 + Q8 + Q31 + Q32 + Q33 + Q34 + Q35 + Q36 + Q37 + Q38

47,58 1

2 Q9 + Q10 + Q39 + Q40 + Q41 + Q42 + Q43 + Q44 + Q45 + Q46 + Q47 47,75 1

3 Q11 + Q12 + Q13 + Q17 + Q19 + Q20 + Q21 + Q23 + Q24 + Q25 +Q29 + Q30 47,85 1

4 Q14 + Q15 + Q16 + Q18 47,86 1 5 Q26 + Q27 + Q28 + Q22 47,79 1

Average 238,82 5

Figure 8 Yamazumi chart of proposed u-shaped line Line Efficiency, Smoothness Index, and Balance Delay

Below is the table that shows the line efficiency of each proposed workstation.

Table 12 Calculation of u-shaped efficiency

Work Station Station Time (min) Number of Operator Idle Time (min) Line Efficiency

1 47,58 1 0,30 99,37% 2 47,75 1 0,13 99,73% 3 47,85 1 0,03 99,93% 4 47,86 1 0,02 99,95% 5 47,79 1 0,09 99,82%

Average 0,12 99,76%

It is proven that the efficiency of proposed u-shaped line is the best efficiency. The table below is the calculation of smoothness index for proposed u-shaped line.

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 165

Table 13 Calculation of smoothness index for u-shaped line

Work Station STi (STmax-STi)2

1 47,58 0,077 2 47,75 0,012 3 47,85 0,000 4 47,86 0,000 5 47,79 0,004

Total 0,093 Smoothness Index 0,305

Below is the calculation of Balance Delay of proposed u-shaped line.

BD =(K) (STmax) – ∑ x 100% (K) (STmax)

BD = , ,,

100% BD = 0,2%

The value of balance delay is very small. Thus, there is no bottleneck on BodyShop.

Activity Relationship Chart

Below is the table of ARC for u-shaped line balancing.

Table 14 ARC of u-shaped line balancing

No Facility Relationship

1 Workstation 1

2 Workstation 2

3 Workstation 3

4 Workstation 4

5 Workstation 5

Dimensionless block diagram is the layout of proposed u-shaped line balancing.

Figure 9 Dimensionless block diagram of straight line balancing

54

32

1

54

32

1

IA

A OI

EO

OI

E

166 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

Simulation There are three model system designs of proposed u-shaped line: system 1 with 15 operators

(station 1= 3opt, station 2= 3opt, station 3= 3opt, station 4= 3opt, station 5= 3opt), system 2 with 14 operators (station 1= 2opt, station 2= 3opt, station 3= 3opt, station 4= 3opt, station 5= 3opt), and system 3 with 16 operators (station 1= 3opt, station 2= 3opt, station 3= 3opt, station 4= 4opt, station 5= 3opt). We used Bonferroni approach to compare these systems. Below were the calculations of paired-t confidence intervals.

Comparing μ(1-2): α1 0.02 The approximate 98% confidence interval:

hw = , .

hw = . ,√

1.13 – 0.57 ≤ μ(1 – 2) ≤ 1.13 + 0.57 hw = 0.57 unit per hour 0.56 ≤ μ(1 – 2) ≤ 1.70

Comparing μ(1-3): α2 0.02 The approximate 98% confidence interval:

hw = , .

hw = . ,√

-0.48 – 0.61 ≤ μ(1 – 3) ≤ -0.48 + 0.61 hw = 0.61 unit per hour -1.09 ≤ μ(1 – 3) ≤ 0.13

Comparing μ(2-3): α1 0.02 The approximate 98% confidence interval:

hw = , .

hw = . ,√

-1.61 – 0.47 ≤ μ(2 – 3) ≤ -1.61 + 0.47 hw = 0.47 unit per hour -2.08 ≤ μ(2 – 3) ≤ -1.14 Based on the results, the System 1 was the least favorable with respect to the mean

throughtput while System 2 and System 3 were the most favorable with respect to mean throughput. Thus, the recommendation was implementing the System 3 in place of the System 2 because System 3 was the boss’s idea. The picture below showed the proposed layout of location using U-shape line (Figure 10).

Figure 10 Display of location for system 3 proposed u-shaped line. The following table was the process and routing of the proposed u-shaped line (Table 15).

Table 15 Process of proposed u-shaped line

Process Routing

Entity Location Operation Output Destination Rule Move Logic Car Enter Car Operator_1 FIRST 1 MOVE FOR 5 MIN

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 167

Car Operator_1 WAIT N(12.22, 5) MIN Car Operator_2 FIRST 1 MOVE FOR 5 MIN

Car Operator_2 WAIT N(9.75, 5) MIN Car Operator3a_rework FIRST 1 MOVE FOR 5 MIN

Car Operator3a_rework

WAIT N(17.85, 5) MIN Car Operator_4 FIRST 1 MOVE FOR 5 MIN

Car Operator_4 WAIT N(47.86, 5) MIN Car Operator_3 FIRST 1 MOVE FOR 5 MIN

Car Operator_3 WAIT N(24.2, 5) MIN Car Operator_5 FIRST 1 MOVE FOR 5 MIN

Car Operator_5 WAIT N(47.79, 5) MIN Car Operator3b_rework FIRST 2 MOVE FOR 5 MIN

Car Operator3b_rework

WAIT N(5.79, 5) MIN Car Operator1_rework FIRST 3 MOVE FOR 5 MIN

Car Operator1_rework WAIT N(35.36, 5) MIN Car Operator2_rework FIRST 4 MOVE FOR 5 MIN

Car Operator2_rework WAIT N(38, 5) MIN INC Finished_Repair

Car EXIT FIRST 1 MOVE FOR 5 MIN

The trace (Figure 11) below showed that the entity or sequence of events follow the behavior

of system (model verification).

Figure 11 Trace listing of proposed u-shaped line Model validation is tested by using paired-t (comparing with the calculation of maximum

production capacity). Below is the calculation of maximum production capacity. P = T / C P = 480 / 46.92 = 10.23 ≈ 10

Supposed that overall significance level was 5% (α= 0.05). Below was the calculation of

paired-t confidence intervals.

168 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

Comparing μ(C-U): α 0.05 The approximate 95% confidence interval:

hw = , .

hw = . .√

-0.22 – 0.24 ≤ μ(C – U) ≤ -0.22 + 0.24 hw = 0.24 unit per hour -0.46 ≤ μ(C – U) ≤ 0.02 Given that the confidence interval about μ(C – U) included zero, we concluded that there was no

significant difference in the mean throughput produced by calculation of maximum production capacity (μC) and we proposed u-shaped line in ProModel (μU). Thus, the proposed model of u-shaped line in ProModel was appropriate (validation and verification). There were 11,83 finished repair vehicles found in the finished stall. They were the outputs of proposed u-shaped line in the simulation.

Computational Result

In order to prove that both proposed lines are better than the current line, see the comparison

graphs below (Figure 12). Those graphs showed significant improvement in line efficiency, smoothness index, and

balance delay. Although both proposed lines were better than the current line, the proposed u-shaped line was the best line to implement in the body shop. The proposed u-shaped line is significantly increasing the line efficiency and reducing the number of workstations. On contrast, the proposed u-shaped line did not significantly increase the output of body shop because there was no significant difference between output of proposed straight line and output of proposed u-shaped line. It could happen because the main goal of proposed u-shaped line was minimizing the number of workstations. Therefore, the proposed u-shaped line is better than proposed straight line.

Figure 12 Comparison between current, straight, and u-shaped line

CONCLUSION

There are two ways to improve the line efficiency in the body shop; creating the accurate standard time by using time study and redesigning the assembly line through heuristic approaches (Rank Positional Weight for straight line balancing and Critical Task Method for u-shaped line balancing). The proposed u-shaped line significantly increased the line efficiency and reduced the number of workstations. On contrast, the proposed u-shaped line did not significantly increase the output of body shop because there was no significant difference between output of proposed straight

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 169

line and output of proposed u-shaped line. It could happen because the main goal of proposed u-shaped line was minimizing the number of workstations. Therefore, the proposed u-shaped line is better than proposed straight line.

REFERENCES Fathi, M., Alvarez, M. J. & Rodriguez, V. (2011). A new heuristics approach to solving u-shape

assembly line balancing problem type-1. World Academy of Science, Engineering and Technology, 59.

Harrell, C., Ghosh, Biman K. & Bowden, Royce O. (2012). Simulation using Promodel 3rd edition.

New York: McGraw-Hill. Hayter, A. (2000). Probability and Statistics for Engineers and Scientists (3rd ed.). Boston: Thomson

Learning. Mulyati, Erna & Rachmi, Ricca. (2011). Redesain Layout untuk Meningkatkan Efisiensi Ruangan

Gudang Tertutup: Studi Kasus PT Kaltim Industrial Estate. Skirpsi tidak diterbitkan. Politeknik Pos Indonesia, Bandung.

Niebel, B.W. & Freivalds, A. (2003). Niebel’s Methods, Standards, and Work Design (12th ed.). New

York: McGraw-Hill. Sutalaksana, Iftikar Z., Anggawisastra, R. And Tjakraatmadja, J.H. (2006). Teknik Perancangan

Sistem Kerja. Bandung: ITB. Walpole, R.E., Myers, R.H., Myers, S.L. & Ye, K. (2002). Probability and Statistic for Engineers and

Scientists (7th ed.). New Jersey: Prentice Hall. Wignjosoebroto, S. (2000). Ergonomi, Studi Gerak dan Waktu. Surabaya: Guna Widya. Yeh, D. H. & Kao, H. H. (2009). A New Bidirectional Heuristic for the Assembly Line Balancing

Problem. Comput Indu Eng, 57 (4), 1156-1160.

170 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

APPENDIX

Appendix 1: Standard Time after Time Study

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 171

Appendix 2: Precedence Diagram

172 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

Appendix 3: Rank Positional Weight

Opera

tionStd

Time

Q1Q2

Q3Q4

Q5Q6

Q7Q8

Q9Q1

0Q1

1Q1

2Q1

3Q1

4Q1

5Q1

6Q1

7Q1

8Q1

9Q2

0Q2

1Q2

2Q2

3Q2

4Q2

5Q2

6Q2

7Q2

8Q2

9Q3

0Q3

1Q3

2Q3

3Q3

4Q3

5Q3

6Q3

7Q3

8Q3

9Q4

0Q4

1Q4

2Q4

3Q4

4Q4

5Q4

6Q4

7Q1

0,92

1Q2

1,34

11

Q32,4

41

1Q4

1,50

11

1Q5

1,84

11

1Q6

2,76

11

11

Q71,0

91

11

11

Q80,3

61

11

11

Q92,0

11

11

11

11

Q10

7,74

11

11

11

11

Q11

3,23

11

11

11

11

1Q1

29,4

41

11

11

11

11

1Q1

35,1

91

11

11

11

11

Q14

0,84

11

11

11

11

11

Q15

44,38

11

11

11

11

11

1Q1

61,5

21

11

11

11

11

11

Q17

11,72

11

11

11

11

11

11

Q18

1,12

11

11

11

11

11

11

1Q1

94,7

41

11

11

11

11

11

11

Q20

2,58

11

11

11

11

11

11

11

Q21

0,63

11

11

11

11

11

11

11

Q22

0,88

1Q2

30,5

01

11

11

11

11

11

11

11

1Q2

41,4

01

11

11

11

11

11

11

11

11

Q25

2,63

11

11

11

11

11

11

11

11

11

1Q2

61,9

81

Q27

10,09

11

11

11

11

11

11

11

11

11

11

Q28

34,85

11

11

11

11

11

11

11

11

11

11

1Q2

91,9

21

11

11

11

11

11

11

11

11

11

11

Q30

3,87

11

11

11

11

11

11

11

11

11

11

11

Q31

3,64

11

11

11

11

11

11

11

11

11

11

11

1Q3

23,8

41

Q33

4,93

11

11

11

11

11

11

11

11

11

11

11

11

1Q3

42,6

51

11

11

11

11

11

11

11

11

11

11

11

11

1Q3

53,0

11

11

11

11

11

11

11

11

11

11

11

11

11

11

Q36

6,94

11

11

11

11

11

11

11

11

11

11

11

11

11

11

Q37

2,41

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1Q3

87,9

51

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1Q3

93,6

81

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

Q40

2,04

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1Q4

113,

311

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

Q42

1,93

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

Q43

5,60

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1Q4

42,7

91

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

Q45

5,47

1Q4

61,7

71

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1Q4

71,4

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

226,66

1,34

224,41

1,50

220,47

218,63

215,52

214,79

214,43

212,42

12,66

9,44

192,02

186,83

44,38

141,61

140,09

1,12

127,26

2,58

119,94

120,18

119,30

118,80

117,40

119,37

114,77

34,85

69,83

67,91

64,04

64,24

60,40

55,48

52,83

49,82

42,88

40,47

3,68

2,04

26,81

13,50

11,57

5,97

11,45

3,18

1,41

Weigh

t

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 173

Following table shows how the combination is determined after having RPW

174 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

Appendix 4: Critical Task Method Tas

k Num

berQ1

Q2Q3

Q4Q5

Q6Q7

Q8Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Q23

Q24

Q25

Q26

Q27

Q28

Q29

Q30

Q31

Q32

Q33

Q34

Q35

Q36

Q37

Q38

Q39

Q40

Q41

Q42

Q43

Q44

Q45

Q46

Q47

Backw

ard W

eight

121,43

1,341

20,51

1,501

18,08

116,24

114,21

113,48

113,12

111,11

12,66

9,441

03,37

98,19

44,38

97,34

95,82

1,12

84,11

2,58

79,37

79,62

78,74

78,23

76,83

78,81

74,20

34,85

64,12

62,20

58,33

58,53

54,69

49,76

47,11

44,11

37,16

34,76

3,68

2,04

26,81

13,50

11,57

5,97

11,45

3,18

1,41

Forwa

rd Weig

ht0,9

22,2

53,3

54,8

55,1

97,9

59,0

38,3

110,

3218,

0621,

2830,

7223,

2424,

0968,

4625,

6137,

3238,

4442,

0644,

6442,

690,8

843,

2044,

6047,

231,9

857,

3192,

1659,

2363,

1066,

743,8

471,

6774,

3177,

3284,

2786,

6794,

6298,

3096,

66107

,93109

,86115

,46118

,255,4

7120,

02121

,43Bac

kward

Weig

ht1,3

4120,

511,5

0118,

08116

,24114

,21113

,48113

,12111

,1112,

669,4

4103,

3798,

1944,

3897,

3495,

821,1

284,

112,5

879,

3779,

6278,

7478,

2376,

8378,

8174,

2034,

8564,

1262,

2058,

3358,

5354,

6949,

7647,

1144,

1137,

1634,

763,6

82,0

426,

8113,

5011,

575,9

711,

453,1

81,4

1For

ward W

eight

1,34

2,44

3,93

4,27

7,03

8,12

7,39

9,40

17,14

20,37

29,80

22,33

23,17

67,55

24,69

36,41

37,52

41,14

43,73

41,78

0,88

42,28

43,68

46,31

1,98

56,40

91,25

58,32

62,19

65,83

3,84

70,75

73,40

76,41

83,35

85,76

93,70

97,38

95,74

107,01

108,94

114,54

117,33

5,471

19,11

120,51

Backw

ard W

eight

1,34

1,501

18,08

116,24

114,21

113,48

113,12

111,11

12,66

9,441

03,37

98,19

44,38

97,34

95,82

1,12

84,11

2,58

79,37

79,62

78,74

78,23

76,83

78,81

74,20

34,85

64,12

62,20

58,33

58,53

54,69

49,76

47,11

44,11

37,16

34,76

3,68

2,04

26,81

13,50

11,57

5,97

11,45

3,18

1,41

Forwa

rd Weig

ht1,3

41,5

01,8

44,6

05,6

84,9

56,9

614,

7017,

9327,

3719,

8920,

7365,

1122,

2533,

9735,

0938,

7141,

2939,

340,8

839,

8441,

2543,

871,9

853,

9688,

8155,

8859,

7563,

393,8

468,

3170,

9673,

9780,

9183,

3291,

2794,

9593,

30104

,58106

,51112

,10114

,905,4

7116,

67118

,08Bac

kward

Weig

ht1,3

41,5

0116

,24114

,21113

,48113

,12111

,1112,

669,4

4103,

3798,

1944,

3897,

3495,

821,1

284,

112,5

879,

3779,

6278,

7478,

2376,

8378,

8174,

2034,

8564,

1262,

2058,

3358,

5354,

6949,

7647,

1144,

1137,

1634,

763,6

82,0

426,

8113,

5011,

575,9

711,

453,1

81,4

1For

ward W

eight

1,34

1,50

2,76

3,84

3,12

5,13

12,87

16,09

25,53

18,05

18,90

63,27

20,42

32,13

33,25

36,87

39,45

37,50

0,88

38,00

39,41

42,04

1,98

52,12

86,97

54,04

57,91

61,55

3,84

66,48

69,12

72,13

79,07

81,48

89,43

93,11

91,46

102,74

104,67

110,27

113,06

5,471

14,83

116,24

Backw

ard W

eight

1,34

1,50

114,21

113,48

113,12

111,11

12,66

9,441

03,37

98,19

44,38

97,34

95,82

1,12

84,11

2,58

79,37

79,62

78,74

78,23

76,83

78,81

74,20

34,85

64,12

62,20

58,33

58,53

54,69

49,76

47,11

44,11

37,16

34,76

3,68

2,04

26,81

13,50

11,57

5,97

11,45

3,18

1,41

Forwa

rd Weig

ht1,3

41,5

01,0

90,3

62,3

710,

1113,

3422,

7715,

3016,

1460,

5117,

6629,

3730,

4934,

1136,

6934,

740,8

835,

2536,

6539,

281,9

849,

3684,

2251,

2955,

1558,

793,8

463,

7266,

3769,

3876,

3278,

7286,

6790,

3588,

7199,

98101

,91107

,51110

,305,4

7112,

07113

,48Bac

kward

Weig

ht1,3

41,5

0113

,48113

,12111

,1112,

669,4

4103,

3798,

1944,

3897,

3495,

821,1

284,

112,5

879,

3779,

6278,

7478,

2376,

8378,

8174,

2034,

8564,

1262,

2058,

3358,

5354,

6949,

7647,

1144,

1137,

1634,

763,6

82,0

426,

8113,

5011,

575,9

711,

453,1

81,4

1For

ward W

eight

1,34

1,50

0,36

2,37

10,11

13,34

22,77

15,30

16,14

60,51

17,66

29,37

30,49

34,11

36,69

34,74

0,88

35,25

36,65

39,28

1,98

49,36

84,22

51,29

55,15

58,79

3,84

63,72

66,37

69,38

76,32

78,72

86,67

90,35

88,71

99,98

101,91

107,51

110,30

5,471

12,07

113,48

Backw

ard W

eight

1,34

1,50

113,12

111,11

12,66

9,441

03,37

98,19

44,38

97,34

95,82

1,12

84,11

2,58

79,37

79,62

78,74

78,23

76,83

78,81

74,20

34,85

64,12

62,20

58,33

58,53

54,69

49,76

47,11

44,11

37,16

34,76

3,68

2,04

26,81

13,50

11,57

5,97

11,45

3,18

1,41

Forwa

rd Weig

ht1,3

41,5

02,0

19,7

512,

9822,

4114,

9415,

7860,

1617,

3029,

0230,

1333,

7536,

3434,

390,8

834,

8936,

2938,

921,9

849,

0183,

8650,

9354,

8058,

443,8

463,

3666,

0169,

0275,

9678,

3786,

3189,

9988,

3599,

62101

,55107

,15109

,945,4

7111,

72113

,12Bac

kward

Weig

ht1,3

41,5

0111

,72109

,7112,

669,4

4101,

9796,

7844,

3895,

9494,

421,1

282,

702,5

877,

9678,

2177,

3376,

8375,

4277,

4072,

8034,

8562,

7160,

7956,

9257,

1253,

2848,

3645,

7142,

7035,

7633,

353,6

82,0

425,

4012,

0910,

164,5

710,

041,7

7For

ward W

eight

1,34

1,50

2,01

9,75

12,98

22,41

14,94

15,78

60,16

17,30

29,02

30,13

33,75

36,34

34,39

0,88

34,89

36,29

38,92

1,98

49,01

83,86

50,93

54,80

58,44

3,84

63,36

66,01

69,02

75,96

78,37

86,31

89,99

88,35

99,62

101,55

107,15

109,94

5,471

11,72

Backw

ard W

eight

1,34

1,50

109,94

107,93

12,66

9,441

00,19

95,00

44,38

94,16

92,64

1,12

80,93

2,58

76,19

76,44

75,56

75,05

73,65

75,63

71,02

34,85

60,94

59,01

55,15

55,35

51,51

46,58

43,93

40,92

33,98

31,58

3,68

2,04

23,63

10,32

8,39

2,79

8,26

Forwa

rd Weig

ht1,3

41,5

02,0

19,7

512,

9822,

4114,

9415,

7860,

1617,

3029,

0230,

1333,

7536,

3434,

390,8

834,

8936,

2938,

921,9

849,

0183,

8650,

9354,

8058,

443,8

463,

3666,

0169,

0275,

9678,

3786,

3189,

9988,

3599,

62101

,55107

,15109

,945,4

7Bac

kward

Weig

ht1,3

41,5

0107

,9312,

669,4

4100,

1995,

0044,

3894,

1692,

641,1

280,

932,5

876,

1976,

4475,

5675,

0573,

6575,

6371,

0234,

8560,

9459,

0155,

1555,

3551,

5146,

5843,

9340,

9233,

9831,

583,6

82,0

423,

6310,

328,3

92,7

98,2

6For

ward W

eight

1,34

1,50

7,74

10,97

20,40

12,93

13,77

58,15

15,29

27,01

28,12

31,74

34,33

32,38

0,88

32,88

34,28

36,91

1,98

47,00

81,85

48,92

52,78

56,43

3,84

61,35

64,00

67,01

73,95

76,35

84,30

87,98

86,34

97,61

99,54

105,14

107,93

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,441

00,19

95,00

44,38

94,16

92,64

1,12

80,93

2,58

76,19

76,44

75,56

75,05

73,65

75,63

71,02

34,85

60,94

59,01

55,15

55,35

51,51

46,58

43,93

40,92

33,98

31,58

3,68

2,04

23,63

10,32

8,39

2,79

8,26

Forwa

rd Weig

ht1,3

41,5

03,2

312,

665,1

96,0

350,

417,5

519,

2720,

3824,

0026,

5924,

640,8

825,

1426,

5429,

171,9

839,

2674,

1141,

1845,

0548,

693,8

453,

6156,

2659,

2766,

2168,

6276,

5680,

2478,

6089,

8791,

8097,

40100

,195,4

7Bac

kward

Weig

ht1,3

41,5

012,

669,4

497,

4092,

2144,

3891,

3789,

851,1

278,

132,5

873,

4073,

6472,

7672,

2670,

8672,

8368,

2334,

8558,

1456,

2252,

3552,

5548,

7143,

7941,

1438,

1331,

1928,

783,6

82,0

420,

847,5

35,6

05,4

7For

ward W

eight

1,34

1,50

3,23

12,66

5,19

6,03

50,41

7,55

19,27

20,38

24,00

26,59

24,64

0,88

25,14

26,54

29,17

1,98

39,26

74,11

41,18

45,05

48,69

3,84

53,61

56,26

59,27

66,21

68,62

76,56

80,24

78,60

89,87

91,80

97,40

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

91,80

86,62

44,38

85,77

84,25

1,12

72,54

2,58

67,80

68,05

67,17

66,66

65,26

67,24

62,63

34,85

52,55

50,63

46,76

46,96

43,12

38,19

35,54

32,53

25,59

23,19

3,68

2,04

15,24

1,93

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

665,1

96,0

350,

417,5

519,

2720,

3824,

0026,

5924,

640,8

825,

1426,

5429,

171,9

839,

2674,

1141,

1845,

0548,

693,8

453,

6156,

2659,

2766,

2168,

6276,

5680,

2478,

6089,

8791,

805,4

7Bac

kward

Weig

ht1,3

41,5

012,

669,4

489,

8784,

6944,

3883,

8482,

321,1

270,

612,5

865,

8766,

1265,

2464,

7363,

3365,

3160,

7034,

8550,

6248,

7044,

8345,

0341,

1936,

2633,

6130,

6123,

6621,

263,6

82,0

413,

315,4

7For

ward W

eight

1,34

1,50

3,23

12,66

5,19

6,03

50,41

7,55

19,27

20,38

24,00

26,59

24,64

0,88

25,14

26,54

29,17

1,98

39,26

74,11

41,18

45,05

48,69

3,84

53,61

56,26

59,27

66,21

68,62

76,56

80,24

78,60

89,87

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

76,56

71,37

44,38

70,53

69,01

1,12

57,30

2,58

52,56

52,80

51,93

51,42

50,02

52,00

47,39

34,85

37,30

35,38

31,52

31,72

27,88

22,95

20,30

17,29

10,35

7,95

3,68

2,04

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

665,1

96,0

350,

417,5

519,

2720,

3824,

0026,

5924,

640,8

825,

1426,

5429,

171,9

839,

2674,

1141,

1845,

0548,

693,8

453,

6156,

2659,

2766,

2168,

6276,

5680,

2478,

605,4

7Bac

kward

Weig

ht1,3

41,5

012,

669,4

476,

5671,

3744,

3870,

5369,

011,1

257,

302,5

852,

5652,

8051,

9351,

4250,

0252,

0047,

3934,

8537,

3035,

3831,

5231,

7227,

8822,

9520,

3017,

2910,

357,9

52,0

45,4

7For

ward W

eight

1,34

1,50

3,23

12,66

5,19

6,03

50,41

7,55

19,27

20,38

24,00

26,59

24,64

0,88

25,14

26,54

29,17

1,98

39,26

74,11

41,18

45,05

48,69

3,84

53,61

56,26

59,27

66,21

68,62

76,56

78,60

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

76,56

71,37

44,38

70,53

69,01

1,12

57,30

2,58

52,56

52,80

51,93

51,42

50,02

52,00

47,39

34,85

37,30

35,38

31,52

31,72

27,88

22,95

20,30

17,29

10,35

7,95

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

665,1

96,0

350,

417,5

519,

2720,

3824,

0026,

5924,

640,8

825,

1426,

5429,

171,9

839,

2674,

1141,

1845,

0548,

693,8

453,

6156,

2659,

2766,

2168,

6276,

565,4

7Bac

kward

Weig

ht1,3

41,5

012,

669,4

471,

3744,

3870,

5369,

011,1

257,

302,5

852,

5652,

8051,

9351,

4250,

0252,

0047,

3934,

8537,

3035,

3831,

5231,

7227,

8822,

9520,

3017,

2910,

357,9

55,4

7For

ward W

eight

1,34

1,50

3,23

12,66

0,84

45,22

2,36

14,08

15,20

18,81

21,40

19,45

0,88

19,95

21,36

23,98

1,98

34,07

68,92

35,99

39,86

43,50

3,84

48,42

51,07

54,08

61,02

63,43

71,37

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

44,38

70,53

69,01

1,12

57,30

2,58

52,56

52,80

51,93

51,42

50,02

52,00

47,39

34,85

37,30

35,38

31,52

31,72

27,88

22,95

20,30

17,29

10,35

7,95

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

6644,

381,5

213,

2314,

3517,

9720,

5618,

600,8

819,

1120,

5123,

141,9

833,

2368,

0835,

1539,

0142,

653,8

447,

5850,

2353,

2460,

1862,

5870,

535,4

7Bac

kward

Weig

ht1,3

41,5

012,

669,4

444,

3869,

011,1

257,

302,5

852,

5652,

8051,

9351,

4250,

0252,

0047,

3934,

8537,

3035,

3831,

5231,

7227,

8822,

9520,

3017,

2910,

357,9

55,4

7For

ward W

eight

1,34

1,50

3,23

12,66

44,38

11,72

12,83

16,45

19,04

17,09

0,88

17,59

18,99

21,62

1,98

31,71

66,56

33,63

37,49

41,14

3,84

46,06

48,71

51,72

58,66

61,06

69,01

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

44,38

61,06

1,12

49,35

2,58

44,61

44,86

43,98

43,48

42,07

44,05

39,44

34,85

29,36

27,44

23,57

23,77

19,93

15,00

12,36

9,35

2,41

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

6644,

3811,

7212,

8316,

4519,

0417,

090,8

817,

5918,

9921,

621,9

831,

7166,

5633,

6337,

4941,

143,8

446,

0648,

7151,

7258,

6661,

065,4

7Bac

kward

Weig

ht1,3

41,5

012,

669,4

444,

3861,

061,1

249,

352,5

844,

6144,

8643,

9843,

4842,

0744,

0539,

4429,

3627,

4423,

5723,

7719,

9315,

0012,

369,3

52,4

15,4

7For

ward W

eight

1,34

1,50

3,23

12,66

44,38

11,72

12,83

16,45

19,04

17,09

0,88

17,59

18,99

21,62

1,98

31,71

33,63

37,49

41,14

3,84

46,06

48,71

51,72

58,66

61,06

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

44,38

58,66

1,12

46,94

2,58

42,21

42,45

41,57

41,07

39,67

41,64

37,04

26,95

25,03

21,16

21,36

17,52

12,60

9,95

6,94

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

6644,

3811,

7212,

8316,

4519,

0417,

090,8

817,

5918,

9921,

621,9

831,

7133,

6337,

4941,

143,8

446,

0648,

7151,

7258,

665,4

7

541 2 3 11109876 171615141312 232221201918

Developing Proposed Layout … (Johan Oscar Ong; Cornellia) 175

Task N

umber

Q1Q2

Q3Q4

Q5Q6

Q7Q8

Q9Q1

0Q1

1Q1

2Q1

3Q1

4Q1

5Q1

6Q1

7Q1

8Q1

9Q2

0Q2

1Q2

2Q2

3Q2

4Q2

5Q2

6Q2

7Q2

8Q2

9Q3

0Q3

1Q3

2Q3

3Q3

4Q3

5Q3

6Q3

7Q3

8Q3

9Q4

0Q4

1Q4

2Q4

3Q4

4Q4

5Q4

6Q4

7Ba

ckward

Weig

ht1,3

41,5

012,

669,4

444,

3851,

721,1

240,

002,5

835,

2735,

5134,

6334,

1332,

7334,

7030,

1020,

0118,

0914,

2214,

4210,

585,6

63,0

15,4

7For

ward W

eight

1,34

1,50

3,23

12,66

44,38

11,72

12,83

16,45

19,04

17,09

0,88

17,59

18,99

21,62

1,98

31,71

33,63

37,49

41,14

3,84

46,06

48,71

51,72

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

44,38

48,71

1,12

36,99

2,58

32,26

32,50

31,62

31,12

29,72

31,69

27,09

17,00

15,08

11,21

11,41

7,57

2,65

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

6644,

3811,

7212,

8316,

4519,

0417,

090,8

817,

5918,

9921,

621,9

831,

7133,

6337,

4941,

143,8

446,

0648,

715,4

7Ba

ckward

Weig

ht1,3

41,5

012,

669,4

444,

3846,

061,1

234,

342,5

829,

6129,

8528,

9828,

4727,

0729,

0424,

4414,

3512,

438,5

78,7

74,9

35,4

7For

ward W

eight

1,34

1,50

3,23

12,66

44,38

11,72

12,83

16,45

19,04

17,09

0,88

17,59

18,99

21,62

1,98

31,71

33,63

37,49

41,14

3,84

46,06

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

44,38

41,14

1,12

29,42

2,58

24,68

24,93

24,05

23,55

22,14

24,12

19,52

9,43

7,51

3,64

3,84

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

6644,

3811,

7212,

8316,

4519,

0417,

090,8

817,

5918,

9921,

621,9

831,

7133,

6337,

4941,

143,8

45,4

7Ba

ckward

Weig

ht1,3

41,5

012,

669,4

441,

141,1

229,

422,5

824,

6824,

9324,

0523,

5522,

1424,

1219,

529,4

37,5

13,6

43,8

45,4

7For

ward W

eight

1,34

1,50

3,23

12,66

11,72

12,83

16,45

19,04

17,09

0,88

17,59

18,99

21,62

1,98

31,71

33,63

37,49

41,14

3,84

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

37,49

1,12

25,78

2,58

21,04

21,29

20,41

19,91

18,50

20,48

15,87

5,79

3,87

3,84

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

6611,

7212,

8316,

4519,

0417,

090,8

817,

5918,

9921,

621,9

831,

7133,

6337,

493,8

45,4

7Ba

ckward

Weig

ht1,3

41,5

012,

669,4

41,1

225,

782,5

821,

0421,

2920,

4119,

9118,

5020,

4815,

875,7

93,8

73,8

45,4

7For

ward W

eight

1,34

1,50

3,23

12,66

1,12

4,74

7,32

5,37

0,88

5,87

7,28

9,90

1,98

19,99

21,91

25,78

3,84

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

1,12

21,91

2,58

17,18

17,42

16,54

16,04

14,63

16,61

12,01

1,92

3,84

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

661,1

24,7

47,3

25,3

70,8

85,8

77,2

89,9

01,9

819,

9921,

913,8

45,4

7Ba

ckward

Weig

ht1,3

41,5

012,

669,4

41,1

219,

992,5

815,

2515,

5014,

6214,

1212,

7114,

6910,

093,8

45,4

7For

ward W

eight

1,34

1,50

3,23

12,66

1,12

4,74

7,32

5,37

0,88

5,87

7,28

9,90

1,98

19,99

3,84

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

1,12

2,58

15,25

15,50

14,62

14,12

12,71

14,69

10,09

3,84

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

661,1

22,5

80,6

30,8

81,1

42,5

45,1

71,9

815,

253,8

45,4

7Ba

ckward

Weig

ht1,3

41,5

012,

669,4

41,1

22,5

815,

2514,

6214,

1212,

7114,

6910,

093,8

45,4

7For

ward W

eight

1,34

1,50

3,23

12,66

1,12

2,58

0,63

1,14

2,54

5,17

1,98

15,25

3,84

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

1,12

2,58

14,62

14,12

12,71

14,69

10,09

3,84

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

661,1

22,5

80,5

01,9

14,5

41,9

814,

623,8

45,4

7Ba

ckward

Weig

ht1,3

41,5

012,

669,4

41,1

22,5

814,

6214,

1212,

7110,

093,8

45,4

7For

ward W

eight

1,34

1,50

3,23

12,66

1,12

2,58

0,50

1,91

4,54

14,62

3,84

5,47

Backw

ard W

eight

1,34

1,50

12,66

9,44

1,12

2,58

4,54

4,03

2,63

3,84

5,47

Forwa

rd Weig

ht1,3

41,5

03,2

312,

661,1

22,5

80,5

01,9

14,5

43,8

45,4

7Ba

ckward

Weig

ht1,3

41,5

09,4

41,1

22,5

84,5

44,0

32,6

33,8

45,4

7For

ward W

eight

1,34

1,50

9,44

1,12

2,58

0,50

1,91

4,54

3,84

5,47

Backw

ard W

eight

1,34

1,50

1,12

2,58

4,54

4,03

2,63

3,84

5,47

Forwa

rd Weig

ht1,3

41,5

01,1

22,5

80,5

01,9

14,5

43,8

45,4

7Ba

ckward

Weig

ht1,3

41,5

01,1

22,5

84,5

44,0

32,6

33,8

4For

ward W

eight

1,34

1,50

1,12

2,58

0,50

1,91

4,54

3,84

Backw

ard W

eight

1,34

1,50

1,12

2,58

4,03

2,63

3,84

Forwa

rd Weig

ht1,3

41,5

01,1

22,5

81,4

04,0

33,8

4Ba

ckward

Weig

ht1,3

41,5

01,1

22,5

82,6

33,8

4For

ward W

eight

1,34

1,50

1,12

2,58

2,63

3,84

Backw

ard W

eight

1,34

1,50

1,12

2,58

2,63

Forwa

rd Weig

ht1,3

41,5

01,1

22,5

82,6

3Ba

ckward

Weig

ht1,3

41,5

01,1

22,5

8For

ward W

eight

1,34

1,50

1,12

2,58

Backw

ard W

eight

1,34

1,50

1,12

Forwa

rd Weig

ht1,3

41,5

01,1

2Ba

ckward

Weig

ht1,3

41,1

2For

ward W

eight

1,34

1,12

Backw

ard W

eight

1,12

Forwa

rd Weig

ht1,1

2

28 2927262524 353433323130 414039383736 474645444342

176 INASEA, Vol. 14 No.2, Oktober 2013: 151-176

Iteration Candidate List Assigned Task Task Time Station No.

1 Q1,Q47 Q1 0,92 12 Q3,Q47 Q3 2,44 13 Q5,Q47 Q5 1,84 14 Q6,Q47 Q6 2,76 15 Q7 Q7 1,09 16 Q8,Q47 Q8 0,36 17 Q9,Q47 Q47 1,41 28 Q9,Q46 Q46 1,77 29 Q9,Q44 Q9 2,01 2

10 Q10,Q44 Q10 7,74 211 Q13,Q44 Q44 2,79 212 Q13,Q43 Q43 5,60 213 Q13,Q42 Q42 1,93 214 Q13,Q41 Q41 13,31 215 Q39 Q39 3,68 216 Q40 Q40 2,04 217 Q13,Q38 Q13 5,19 318 Q14,Q38 Q14 0,84 419 Q16,Q38 Q16 1,52 420 Q17,Q38 Q38 7,95 121 Q28 Q28 34,85 522 Q17,Q37 Q37 2,41 123 Q17,Q36 Q36 6,94 124 Q17,Q35 Q35 3,01 125 Q17,Q34 Q34 2,65 126 Q17,Q33 Q33 4,93 127 Q15 Q15 44,38 428 Q17,Q31 Q31 3,64 129 Q17,Q30 Q17 11,72 330 Q19,Q30 Q30 3,87 331 Q19,Q29 Q29 1,92 332 Q19,Q27 Q19 4,74 333 Q22 Q22 0,88 534 Q21,Q27 Q21 0,63 335 Q26 Q26 1,98 536 Q23,Q27 Q27 10,09 537 Q11,Q12 Q11 3,23 338 Q12 Q12 9,44 339 Q45 Q45 5,47 240 Q23,Q25 Q23 0,50 341 Q24,Q25 Q24 1,40 342 Q32 Q32 3,84 143 Q25 Q25 2,63 344 Q20 Q20 2,58 345 Q4 Q4 1,50 146 Q2 Q2 1,34 147 Q18 Q18 1,12 4