8
DETERMINING THE STRESS- STRAIN STATE OF A CIRCULAR PLATE REINFORCED WITH RADIAL RIBS ~.. S. Umanskii and G. L. Kalikhman UDC 539.4 The bending of circular ribbed plates, widely used in various constructions, has been investigated by many authors [4-8, 10]. In the present paper we examine the bending of a disk restrained on the inner periphery and free on the outer, reinforced by equally spaced radial ribs and loaded on the outer periphery by uniformly distri- buted bending moments (Fig. la) or by transverse forces (Fig. lb). Great difficulty is encountered in finding an exact solution of this problem. With a rather large num- ber of ribs (m > 8), it may be solved with acceptable accuracy on the basis of the theory of struck~rally orthotropic circular plates [5-7, 10]. Below we have presented an approximate solution of the problem by separating the composite design into disk and ribs, and the continuous interaction between these is replaced by several equally spaced forces uniformly distributed according to width of the ribs, acting at right angles to the central surface of the disk. It is assumed that the ribs are in a uniaxial stress state, the disk In a biaxial stress state. This approach is strictly appropriate only for symmetrically arranged ribs relative to the central surface of the disk (see Fig. 1). However, even when ribs tliat are not very high are asym- metrically arranged, it is possible to preserve the same model, neglecting the tangential forces of inter- action between ribs and disk, since the bending moments due to these forces are small and cannot substan- tially affect the bending of the disk. The unknown forces are determined from the equality of deflections of the disk and ribs at the points the forces are applied. There is also another approach to substitution for the nature of interaction between ribs and disk [1, 4, 8]. The first problem concerns bending of the disk by a concentrated force. Its solution is not difficult and has been discussed for other boundary conditions in a number of papers (such as [3, 9]). In the present example, it is assumed that the unknown force is uniformly distributed along an arc of the circumference, the length of which is equal to the width of a rib b, and it is further assumed that the force function may be expanded along the circumference in a Fourier series q = ~ --~A- nO cosn~ , (1) where r 0 is the radius of force distribution, and fl is the angular coordinate (see Fig. 1). Having assumed that the polar axis lies along the axis of a rib, and having divided the imaginary disk into two parts by cylindrical sectioning r = r0, let us represent the function of disk deflection in the form w, (r, ~) = A~,) o _~ A(O2o r~ + A(')~o lnr + A(')4o r~ Inr + (A~t~r + A(2~)r - I + A(at~ra + A~)r lnr) cos~ +tAU)r, q-A(~r-n " ACOr"+ 2 A(4~r-"+2)cosn~, (2) where i = 1 refers to the outer zone of the disk and i = 2 refers to the inner part. Kiev Polytechnic Institute. Translated from Problemy l>rochnosti, No. 10, pp. 57-63, October, 1970. Original article submitted December 15, 1969. 1971 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced [or any purpose whatsoever without permission o[ the publisher. A copy o[ this article is available [rom the publisher for $15.00. 1023

Determining the stress-strain state of a circular plate reinforced with radial ribs

Embed Size (px)

Citation preview

D E T E R M I N I N G T H E S T R E S S - S T R A I N S T A T E O F A

C I R C U L A R P L A T E R E I N F O R C E D W I T H R A D I A L R I B S

~.. S. U m a n s k i i a n d G. L . K a l i k h m a n UDC 539.4

The bending of c i rcu la r r ibbed plates, widely used in various construct ions, has been investigated by many authors [4-8, 10].

In the present paper we examine the bending of a disk res t ra ined on the inner per iphery and free on the outer, re inforced by equally spaced radial r ibs and loaded on the outer per iphery by uniformly d i s t r i - buted bending moments (Fig. la) or by t r ansve r se forces (Fig. lb).

Great difficulty is encountered in finding an exact solution of this problem. With a ra ther large num- ber of r ibs (m > 8), it may be solved with acceptable accuracy on the basis of the theory of struck~rally or thotropic c i rcu la r plates [5-7, 10]. Below we have presented an approximate solution of the problem by separa t ing the composite design into disk and r ibs, and the continuous interact ion between these is replaced by severa l equally spaced forces uniformly distr ibuted according to width of the r ibs, acting at right angles to the central surface of the disk. It is assumed that the r ibs a re in a uniaxial s t r e ss state, the disk In a biaxial s t r e s s state. This approach is s t r ic t ly appropriate only for symmet r ica l ly ar ranged r ibs re lat ive to the central surface of the disk (see Fig. 1). However, even when r ibs tliat are not very high a re a s y m - met r i ca l ly arranged, it is possible to p rese rve the same model, neglecting the tangential forces of in ter - action between r ibs and disk, since the bending moments due to these forces are small and cannot substan- tially affect the bending of the disk.

The unknown forces are determined f rom the equality of deflections of the disk and r ibs at the points the forces are applied. There is also another approach to substitution for the nature of interaction between r ibs and disk [1, 4, 8].

The f i rs t problem concerns bending of the disk by a concentrated force. Its solution is not difficult and has been discussed for other boundary conditions in a number of papers (such as [3, 9]).

In the present example, it is assumed that the unknown force is uniformly distributed along an a rc of the c i rcumference , the length of which is equal to the width of a r ib b, and it is fur ther assumed that the force function may be expanded along the c i rcumference in a Four ie r se r ies

q = ~ --~A- nO cosn~ , (1)

where r 0 is the radius of force distribution, and fl is the angular coordinate (see Fig. 1).

Having assumed that the polar axis lies along the axis of a rib, and having divided the imaginary disk into two par ts by cyl indrical sectioning r = r0, let us r ep resen t the function of disk deflection in the form

w, (r, ~) = A~,) o _~ A(O2o r~ + A(')~o lnr + A(')4o r~ Inr + (A~t~r + A(2~)r -I + A(at~ra + A~)r lnr) cos~

+tAU)r, q -A(~r-n " ACOr"+ 2 A(4~r-"+2)cosn~, (2)

where i = 1 r e f e r s to the outer zone of the disk and i = 2 r e f e r s to the inner part.

Kiev Polytechnic Institute. Trans la ted f rom Problemy l>rochnosti, No. 10, pp. 57-63, October, 1970. Original ar t ic le submitted December 15, 1969.

�9 1971 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced [or any purpose whatsoever without permission o[ the publisher. A copy o[ this article is available [rom the publisher for $15.00.

1023

a

Fig . 1. C o m p u t a t i o n a l s c h e m e of a r i b b e d d i s k with l oad ing on the o u t e r r i m by an a x i s y m m e t r i c a l load: by d i s t r i b u t e d r a d i a l m o m e n t s M 0 (a) and by f o r c e s Q0 (b).

A l l d i s p l a c e m e n t s and i n t e r n a l f o r c e s in t he d i s k a r e found f r o m w e l l - k n o w n f o r m u l a s of the e n g i n e e r i n g t h e o r y of th in e l a s t i c p l a t e s [3]:

O = OWar ' M , = - - D --07i- --}- ~ -7Ei- + r,--i~--~, ;

0~, Ow q_ O=w ~. M~j ---- - - D v ~ --b -TE;" r'ap' 1' Mp, = M p = - - D (1 - - v) ~./. i r_.y~_ , 0 0~ (3)

8 0 OMr[ ~ q , = o - ~ - V e w ; Q p = D T V~w; V, = Q, - - ra~ "

H e r e D is the c y l i n d r i c a l r i g i d i t y of the d i sk ; D = E h 3 / 1 2 ( 1 - v2)). [3) a r e d e t e r m i n e d f r o m the fo l lowing b o u n d a r y cond i t i ons :

1) a t the i n n e r r e s t r a i n e d r i m (r = rB)

2) a t the o u t e r f r e e r i m (r = rH)

3)

Mr. = Vr. -~- O;

at the con juga te c i r c u m f e r e n c e (r = r0)

A r b i t r a r y c o n s t a n t s in the func t ion w i ( r ,

(4)

(5)

w.-----:w., 0 = 0 B, M~ = M . , Q - - Q % = q . (6)

S u b s t i t u t i n g (2) and (3) in c o n d i t i o n s (4) - (6) , we o b t a i n a s y s t e m o f l i n e a r equa t i ons f o r d e t e r m i n i n g the a r b i t r a r y cons tan ts i n the f u n c t i o n s (2).

S ince the l o a d had been expanded in a F o u r i e r s e r i e s (1), t he i n d i c a t e d s y s t e m f a l l s i n t o n s y s t e m s o f the 8 th o r d e r , w h i c h have the f o l l o w i n g f o r m :

When n = 0 (2) _2 "'10/1(2) -1--- ~2o'1(2)rB2 -F --3oA (~) In r + A4o r In r = 0;

Am). A(2)r - t A (m ( 2 r In 0; 20zr -~- 30 B -~---40 r -J- r ) =

0) A(z) {3 = -~oA~ ~-21nr ~ - v ~ - 2 v ] n r ) 0;

A~,, = o;

A(2) _{_ A(2) ~ A O) A(2) 2 . n(1 ) A ( I ) _2 A(z ) In r e - - A4o r o m r o = O; IO 20%+ I n r o + In 0)_2,_ "'30 40 ro /o - - "'110 - - " - 2 0 [ 0 - - z't30

A(2)~ _L ~(2).--~ Am) --0)o r 0) 2In ro) 2oZro ' "'30"0 -J---40 ro( 1 - I -2 lnro) ~(l~ - i - - A2o " o - - ~3o ro - - A4o r o ( 1 + = 0 ;

A(2) t9 A (2) - 4- A (2) A (u (2 -b 2v) 20 ,- + 2v) - -3o ( l - - v ) ro 2 - - "'4o (3 + 2v lnro + 2In ro + v) - - - -~o

o) - A(u (3 + 2vln r o -F 2In r o ~- v) = 0; + A3o (1 - - v) r o 2__ 40

(7)

When n = 1

A(2) __ A([) R s 40 "'40 ~ - - 8 ~ O "

A(2)_ - - .4(2) --f (2)_3 ~ --(m_ In r a ---- 0; I I re -[- "q21 ra --[-- A31 re = /'t41 ra

A ( 2 ) (2)_-2 4_ A(2)3r2 A~2t ) (1 + In r . ) 0; I I A21 f8 = --31 n ~ =

A(' (2- - 2~) r : 3 + A~',' (6 + 2v ) r + A~',' (I + ~) q ' = 0; 21

(I) - - 4 A21 (2 - - 2v) r. -F A~'I)(6 -{- 2v) - - A~II ) (3 - - v) r . 2 = 0;

(2). A(2)_- I A(2) 3 (2) . A ( I ) a ( I ) - I _ _ A ( I ) 3 A( I ) | B r 0 0; A=1% -{- --21% - ~ - . ' t 3 1 r o - } - A 4 = r o l n . o - - r h l r o - - , = 2 1 , 0 ..3t %--,~41 ro =

A(2) (2)_-_~ .(2)~ 2 A (2) fl A (I) A H)--2 A(U.'~ -~ A (I) (] -~- |n ro) 0; t , - - A 2 1 % -t- ,a31 ~ r o -F --4t ,- -[- In %)-- -{- = " * l l " ' 2 1 /0 - - ' ~ v ; 0 - " ' 4 1

1024

0

- 2

- 4 / 5

2 5

>=- -, , /

a / b I

I0 15 n 0 5 I0 15

Fig . 2. Dependence of r e l a t i v e e r r o r 5 on the n u m b e r of m e m b e r s n of the e x p a n s i o n of the i n t e r a c t i n g s e r i e s in to a F o u r i e r s e r i e s (a) and the n u m b e r of po in t s k of a p p l i e d f o r c e : 1, 2) fo r the m o m e n t M T a t the o u t e r r i m of the d i sk , b e n e a t h the r i b s and b e t w e e n the r i b s r e - s p e c t i v e l y ; 3, 4) f o r d e f l e c t i o n of the o u t e r r i m of the d i sk , b e n e a t h the r i b s and b e t w e e n r i b s r e s p e c t i v e l y ; 5) fo r the m a x i m u m bend ing m o m e n t in the r i b .

A~2) t g - - 2v) - " + A ( e ) ( 6 - 4 - 2 V ) r o - k - A ( 2 ) ( l + v ) r o I AO)(2 2v) A0)(6.+ 2V)ro 0) 21 ~.-- ro 3 "-31 "'41 -21 ro 3 "'31 ~--- - - - - - - - - - A 4 1 ( l + v ) r o I O;

8A(2) A(2)9_-2 RA(l) + A(4',)2ro 2 R s "-31 - - "-41 -% ~"3] -~ ~ s i n - ~ - o �9

When n > 1

(8)

4n I}

O~ n + l (2) _ r--n+l A(l~ nr~-' ~ A~, ) nr-~ ~-' + AI2)3~ (n + . , r~ - - A4. ( . - - 2) ~ = 0 ;

- - n - - 2 n A(')n (n - - 1)(1 - - v) ~ - 2 + A~,)n (n + 1) (1 - - 'v) r. tn + A~ (n + 1) (n+2 - - vn + 2v)r,

_p " ( ' ) , n4~ tn - - I) (n - - 2 - - vn - - 2v) r~ -~ = 0;

A~ n 2 (n-I- I) (1 - - v) r -"-3 ~ A~ ) n (n + 1) (n - - vn - - A(,~ n ' (n - - 1 ) (1 - - v) ~ - 3 H- - - h

-(l) n (n - - 1) (n - - vn-4-4)r[n-l=O; - - 4 ) ~ - ' - - y A4n

A(2) (2) A(2) ~+2 A(2) - A~,~ ,, A(t) - A~,) ~-~2_ A ( ' %"42=0; (9) l n~ - I -A2nro " + 3. -t- 4nro " + 2 - i r o - - . - , ~ r o n - - 3. "'4.

.(2) n-~ (2) __-n-, + A(21 2) ro+~ A (2) - - A ~ - - A ~ " o (n + (n - - 2) n ~ - ' d i n /2?'0 3n - - " ' 4 n / . o n + I I n

+A(~) - - o) _ A ~ - = 0 ; --2n nro n l ~ A3" (n + 2) %+' + 4. r0 ~+1

a(2) n ( n + 1 ) ( 1 - - v ) r o "-2 A(2) (n + 1)(n +2) - - v n "-In A(2) n ( n - - 1)(1 - - v) ro - 2 + "'z~ "k- "'3.

J r 2v) ~o -F A(2)4n (n - - I ) ( n - - 2 - - v n - - 2v) r o " - - A(,~ n (n - - l ) ( 1 - - v) ro -'~

_,_o. A ( ' ) ( n + 1 ) ( n + 2 - - v n + 2 v ) " " ( ' ) ( n ~ l ) ( n - - 2 - - v n - - 2 v ) r - ~ o n = O ; - - A ~ 1)(1 - - v ) r 0 - - ' -3n ro~A4n 2n

A (2) 4 n ( n - - l)ro n-I - - A ( ~ ) 4 n ( n + 1)~ -I A~ r~on-I R3 A~ 4n(n -4- l ) ro - ' -4-'-,n "'3n - - ,n = - - n---h--ff~ sin r"-~'- �9

A f t e r the s y s t e m s (7)-(9) have been so lved , i t i s p o s s i b l e to d e t e r m i n e d e f l e c t i o n of the d i s k (2) a t any po in t due to a s i ng l e f o r c e , and, by u s i n g the t h e o r e m of m u t u a l d i s p l a c e m e n t , c o n s t r u c t a m a t r i x o f the c o e f f i c i e n t s of the e f fec t of d e f l e c t i o n s fo r a l l the unknown f o r c e s r e p l a c i n g the r i b s .

We s h a l l u s e the fo l lowing d e s i g n a t i o n s : j i s the po in t of the d i s k and r i b w h e r e the unknown s t r e s s of i n t e r a c t i o n b e t w e e n d i s k and r i b Xj i s app l i ed ; Wjm i s the d e f l e c t i o n of poin t j b e c a u s e of the f o r c e 7-m = 1; Wjp i s the d e f l e c t i o n of the g iven po in t b e c a u s e of t he l oad on the r i m ; 5jm i s the de f l e c t i on of the po in t of the r i b j b e c a u s e of the e f fec t of Xm = 1, d e t e r m i n e d fo r the c a n t i l e v e r . We ob ta in the s y s t e m of equa t ions

1 0 2 5

I;: k p = .V 6i,,,X., j = 1, 2, . . . , k, lm= WimX., + %~

r t l = l

(10)

w h e r e k i s the n u m b e r of unknown i n t e r a c t i n g f o r c e s b e t w e e n d i s k and r i b s . F r o m the s y s t e m (10) we f ind the i n d i c a t e d i n t e r a c t i n g f o r c e s , a f t e r which we u s e Eqs . (2) and (3) to c ompu te d i s p l a c e m e n t s and i n t e r n a l f o r c e s in the d i sk . The i n t e r n a l f o r c e s in a r i b a r e d e t e r m i n e d as n o r m a l l y fo r the a t t a c h e d c a n t i l e v e r .

C a l c u l a t i o n by the i n d i c a t e d m e t h o d invo lves l a b o r i o u s c o m p u t a t i o n s . In th i s connec t ion , a p r o g r a m was se t up on a M i n s k - 2 2 c o m p u t e r , p e r m i t t i n g d e t e r m i n a t i o n not only of the unknown f o r c e s but a l s o the be nd i ng m o m e n t in the r i b and a l s o the d e f l e c t i o n of the o u t e r r i m of the d i s k and the r a d i a l bend ing m o m e n t s on the i nne r r i m at s e v e r a l po in t s a long the c i r c u m f e r e n c e : u n d e r the r i b s , b e t w e e n the r i b s , and a t o n e - q u a r t e r the d i s t a n c e b e t w e e n r i b s . The p r o g r a m m a k e s i t p o s s i b l e to r a t e the d i s k u n d e r a r b i t r a r y r i m l oad i ng and wi th any n u m b e r of i d e n t i c a l equa l l y s p a c e d r i b s a r b i t r a r i l y a r r a n g e d . F o r t h i s i t i s n e c e s s a r y to s e t up a s u b p r o g r a m of expand ing the l oad in a F o u r i e r s e r i e s and of change in r i g i d i t y of the r i b s a long the r a d i u s .

R e p l a c e m e n t of the i n t e r a c t i o n b e t w e e n r i b s and d i s k by a f in i t e n u m b e r of f o r c e s k and p r e s e r v a t i o n of only s o m e m e m b e r s n of the e x p a n s i o n in the F o u r i e r s e r i e s l e a d to d e f i n i t e e r r o r s . D e t e r m i n a t i o n of e r r o r was m a d e on a d i s k wi th the fo l lowing d i m e n s i o n s ( see F ig . 1): r H = 100 cm, r B = 40 cm, h = 1 cm, b = 1 cm, H = 10 cm, and the n u m b e r of r i b s m = 4 ( d i s t r i b u t e d r a d i a l m o m e n t s of 1 k g - c m / c m w e r e a p - p l i ed on the o u t e r r a d i u s ) . To d e t e r m i n e the e f fec t of the va lue of n on the a c c u r a c y of t he so lu t ion , the r e l a t i v e e r r o r was c o m p u t e d f r o m the fo l lowing:

M(nmax) - - M(n ) W(nma x) - - W(n ) fin = �9 100% and (5= ---- �9 100%, (11)

M(nmax) W(nmax)

w h e r e M(n ) i s the r a d i a l bend ing m o m e n t at the i n n e r r i m of the d i s k o r the m a x i m u m bend ing m o m e n t in the r i b ; W(n ) i s the d e f l e c t i o n of the d i s k at the o u t e r r i m wi th the r e t e n t i o n of n m e m b e r s of t he e x p a n s i o n in to the s e r i e s (1); M(nmax) and W(nmax) a r e the s a m e wi th r e t e n t i o n of the m a x i m u m n u m b e r of m e m b e r s of the s e r i e s (1), for which s t r o n g c o n v e r g e n c e i s ob t a ined . F o r m o s t c a s e s i n v e s t i g a t e d , i t i s s u f f i c i e n t to adopt n m a x = 30.

w , c m

aolo % . . . . . . . . . . ~oos . i 2 o..oo6 ~ o ~ i

M r, kg-cmlcm a

1 f

M kg-cm

- . _ - - 2 - - - 1 = - _

0.4 ~ - . . , ~ . . ~ "qt -,L,. 40 45 30 135 B,deg 40 50 60 70 80 $Or, cm

c d

Fig . 3. S t r e s s - s t r a i n s t a t e o f a r i b b e d d i s k l o a d e d on the o u t e r r i m by u n i f o r m l y d i s t r i b u t e d m o m e n t s M 0 = 1 k g . c m / e m : a) eb~nge in d e - f l e c t i o n s of the d i s k in a c i r c u m f e r e n t i a l d i r e c t i o n f o r t he po in t s r H = 100 c m (I) and r a v e = 70 c m (2); b) change in d e f l e c t i o n s of the d i s k in a r a d i a l d i r e c t i o n b e n e a t h a r i b (1), m i d w a y b e t w e e n r i b s (2) and o n e - q u a r t e r the d i s t a n c e b e t w e e n r i b s (3); c) change in r a d i a l bend ing m o m e n t M r in the c i r c u m f e r e n t i a l d i r e c t i o n at po in t s r B = 40 c m (1) and r a v e = 70 c m (2); d) change in r a d i a l bend ing m o m e n t M r in the r a d i a l d i r e c t i o n [1) b e n e a t h a r i b , 2) m i d w a y b e t w e e n r i b s , and 3) o n e - q u a r t e r t he d i s t a n c e be tw e e n r i b s ] and the bend ing m o m e n t in the r i b Mp (4). (Sol id l i n e s r e f e r to the r i b b e d d i s k , d a s h e d l i n e s to a d i s k wi thout r i b s . )

1026

W, cm

a4 --"" ~ 1 ,42

~ - - . . ~ / / ~ . ~ 0,2 _. _7~ . . . . ~ 7 , , _ ~ 7 ~ _ _ ~ _ ~ _ __

M r, kg-cm/cm

60 . ....>1, 2

,to __/_, _, ~ T / 7 . ~ _ _ / _ _ _ n ~

"/5 30 135 B, deg

~ J

M kg-cm

.,2<'-<

40 50 50 70 80 ,90 100r, cm

Fig . 4. S t r e s s - s t r a i n s t a t e of a r i b b e d d i s k l oaded on the o u t e r r i m by u n i f o r m l y d i s t r i b u t e d l oad Q0 = 1 k g / c m ( s y m b o l s the s a m e as in F ig . 3).

F i g u r e 2a shows the d e p e n d e n c e 5 M = f(n) and 5 w = f(n), f r o m which we s e e tha t su f f i c i en t a c c u r a c y fo r e n g i n e e r i n g c o m p u t a t i o n s i s o b t a i n e d by r e t a i n i n g 10-12 m e m b e r s of s e r i e s (1).

A n a l y s i s of the e f fec t of n u m b e r of po in t s k on the a c c u r a c y of the so lu t i on was m a d e in s i m i l a r f a s h - ion, fo r which i t was a l s o a s s u m e d tha t k m a x = 30. F i g u r e 2b shows g r a p h s of the dependen t r e l a t i o n s 5 M = f(k) and ~w = f(k). On the b a s i s of the r e s u l t s ob t a ined , the v a l u e adop ted fo r f u r t h e r c o m p u t a t i o n s was k = 8 -10 .

As an e x a m p l e , we have shown in F i g s . 3 and 4 the r e s u l t s of c o m p u t a t i o n s of the r i b b e d d i s k of the d i m e n s i o n s i n d i c a t e d above , a c t e d on by r i m l o a d s of M 0 = 1 k g - c m / c m and Q0 = 1 k g / c m r e s p e c t i v e l y .

F r o m the i n v e s t i g a t e d e x a m p l e s we s e e tha t a p p l i c a t i o n of the t h e o r y of s t r u c t u r a l l y o r t h o t r o p i c p l a t e s to c o m p u t a t i o n of d i s k s wi th a s m a l l n u m b e r of r i g i d r a d i a l r i b s m a y l e a d to c o n s i d e r a b l e e r r o r , which w a s a l s o no ted in [5]. Be low we p r o p o s e an e n g i n e e r i n g m e t h o d fo r c o m p u t a t i o n of d i s k s wi th a s m a l l n u m - b e r of r i b s hav ing any d e g r e e of r i g i d i t y .

T h e m e t h o d c o n s i s t s ch i e f ly of m a k i n g n u m e r o u s c o m p u t a t i o n s , by m e a n s of an ~.TsVM c o m p u t e r , of d i s k s wi th d i f f e r e n t n u m b e r s of r i b s hav ing d i f f e r e n t r i g i d i t y r e l a t i o n s .

D i s k s wi th c o m p a r a t i v e l y n a r r o w wid th w e r e c o n s i d e r e d : b / r B = 1 / 5 - 1 / 5 0 at r B / r H = 0.2, 0.4, and 0.6. It was e s t a b l i s h e d tha t t he s t r e s s s t a t e of the d i s k in th i s c a s e d e p e n d s v e r y i n s i g n i f i c a n t l y on change in r i b width wi th in the i n d i c a t e d l i m i t s a t a g iven m o m e n t of i n e r t i a of the r i b . Wi th in t h e s e l i m i t s we z~ight r e c o m m e n d u s e of an a p p r o x i m a t i o n m e t h o d of c o m p u t a t i o n , p e r f e c t l y s a t i s f a c t o r y fo r p r a c t i c a l a p p l i c a - t ion.

We i n t r o d u c e the fo l lowing t e r m s : t, the p a r a m e t e r of r e l a t i v e r i g i d i t y , t = I / h 3 r H (l = bH3/12 , the m o m e n t of i n e r t i a of a r ib ) ; K 1 = w " / w ; K 2 = w ' / w ~ ; K 3 = M p / M r ; K 4 = M ~ / M r , w h e r e w", w ' , and w r e - p r e s e n t d e f l e c t i o n of the d i s k at the o u t e r r i m b e t w e e n r i b s , be ne a th a r i b , and in the d i s k wi th no r i b s ,

! r e s p e c t i v e l y (in cm); M r and M r a r e m a x i m u m r a d i a l bend ing m o m e n t s at the i n n e r r i m of the r i b b e d d i s k and the d i s k wi thout r i b s ( k g - c m / c m ) ; and Mp is the g r e a t e s t bend ing m o m e n t in the r i b (kg -cm) . In F i g s . 5 and 6 we have shown g r a p h s of the d e p e n d e n c e of the c o e f f i c i e n t s K i - K 4 on the p a r a m e t e r t a t d i f f e r e n t v a l u e s of the r a t i o r B / r H and n u m b e r of r i b s m = 4, 6, and 8.

The g r a p h s p e r m i t us to d e t e r m i n e the m a x i m u m de f l ec t i on , the m a x i m u m bend ing m o m e n t in the d i s k and r i b s , and a l s o the d e g r e e of d e v i a t i o n of the s t r e s s - s t r a i n s t a t e f r o m ax ia l s y m m e t r y with u n i - f o r m l y d i s t r i b u t e d m o m e n t s o r t r a n s v e r s e f o r c e s on the o u t e r r i m .

A c o n t r o l c o m p u t a t i o n of the d i s k w a s m a d e a c c o r d i n g to the fo l lowing s c h e m e .

1. C o m p u t a t i o n s w e r e m a d e fo r r i g i d i t y of the r i b I = bH3/12 , the p a r a m e t e r t = 1 / h 3 r H , and the

r a t i o p = r B / r H.

2. F r o m g r a p h s ( F i g s . 5 o r 6), depend ing on the t y p e of load ing , we found the c o e f f i c i e n t s K t - K 4 fo r the g iven n u m b e r of r i b s .

3. We d e t e r m i n e d the m a x i m u m d e f l e c t i o n and m a x i m u m bend ing m o m e n t for a g iven p la te wi thout r i b s a c c o r d i n g to f o r m u l a s f r o m [3]:

1027

~8

O.5

~2

/5

8O

7O

60

5O

4O

3O

2O

I0

--...-.__

m=4 ~--

5 "

\ \

'. " . K: 4 " ~

- ~ , ~ { C ~- -_ .. I m=4

,,,~--~" Ka: ~ ~ . . . . / :7-

. , ;:---- ~ ~'~ m ! ,.--

301

.,-,=~..=

-2 - I 0 I @t -2 -1 0 / ~ t

Fig. 5 Fig. 6 Fig. 5. Dependence of the coef f ic ien t s K t -K 4 on the p a r a m e t e r s t, p, and the n u m b e r of r i b s m with u n i f o r m l y d i s t r i b u t e d r a d i a l m o m e n t s (dashed l i n e s , p = 0.2; so l id l i n e s , p = 0.4; d a s h e d - d o t t e d l i ne s , p = 0.6).

Fig. 6. Dependence of the coef f i c ien t s K~-K 4 on the p a r a m e t e r s t, p, and n u m b e r of r i b s m with u n i f o r m l y d i s t r i b u t e d t r a n s v e r s e fo rce s ( symbols as in Fig. 5).

a) with loading by m e a n s of the m o m e n t M 0 ( k g - c m / c m )

5 46 (1 - - Q2 _{_ 202 In [2) Mor~ W ~

1 . 3 + 0,70 = Eh 8 ' (12)

2Mo Mr = 1.3 + 0.702 ;

b) with the t r a n s v e r s e fo rce Q0 (kg/cm)

2~ (0.7169 - - 0:5648Q ~ - O. 152104 + 1.738Q I In 0 - - 1.129o. = In2 O) Qo raH w ~ 1 . 3 + 0.70= Eha '

(13) Mr Qor. 0.7 (02 - - 1) -{- 2.6 In 0

--~ 2 1,3 -{- 0.70 =

4. We found the p r i n c i p a l p a r a m e t e r s of the s t r e s s - s t r a i n s t a te of the d i sk

u/' = Klw; w' = K2w"; Mp = K3Mr; M~ =K4Mr. (14)

5. The m a x i m u m s t r e s s e s in the d i sk and r i b w e r e ca l cu l a t ed a c c o r d i n g to the f o r m u l a s

6M r 6Mp (15) 0 d= - - ~ ; ~p = bH= �9

As an example le t us c o n s i d e r the computa t ion for a d i sk with the fo l lowing d i m e n s i o n s : r H = 50 cm. r B =20 cm, h = 2 cm, H =18 cm, b = 2 cm, n u m b e r of r i b s m = 4 (with a d i s t r i b u t i v e t r a n s v e r s e fo rce Q0 = 20 k g / c m on the ou te r r i m ) .

1. We compute the m o m e n t of i n e r t i a of the r ib I = 972 cm 4, the p a r a m e t e r t = 1.215, l o g t = 0.085, and the r a t i o p = 0.4.

1028

o, kg/cm 2

o , 8 /2 76 gcm a

o, kg/cm 2

\ ~ _ _ .

200

0 4 8 b 72 ]6 ~cm

Fig. 7. Dependence of m a x i m u m s t r e s s e s in the d i sk (dashed l ines) and r i b s (sol id l ines) on d i m e n s i o n s of the r i b s .

2. F r o m the g raphs of Fig. 6 for p = 0.4, m = 4, and l o g t = 0.085 we f ind K 1 = 0.52, K 2 = 0.10, K 3 = 6 5 , a n d K 4 =0 .48 .

3. F r o m the f o r m u l a s of (13) we d e t e r m i n e w = 0.143 cm and M r = 1050 k g - c m / c m .

4. F r o m Eq. (14) we have

w" = 0.52.0.143 = 0.0745 cm; w' = 0.1,0.0745 = 0.00745 crn;

Mp = 65. 1050 = 68 200kg-cm; M~ = 0.48. 1050 = 505 kg-cm/cm.

5. The m a x i m u m s t r e s s e s in the d i sk and r i b a c c o r d i n g to Eq. (15) a r e

r d = 760 kg/cm 2 ; ap = 630 kg/cm 2.

The con t ro l compu ta t i ons of the d i sks made by m e a n s of the ~.TsVM compu te r showed that the e r r o r of ca l cu l a t i on f r o m Eq. (14) does not exceed 10-15%.

T h e r e i s p r a c t i c a l i m p o r t a n c e in the i nves t i ga t i on of the dependence of m a x i m u m s t r e s s e s in the d i sk and r i b on the height and width of r i b s with d i f fe ren t n u m b e r s of r i b s . Th i s i n v e s t i g a t i o n was made for a d i sk with r H = 100 cm, r B = 40 cm, h = 1 cm, and d i s t r i b u t i v e load of Q0 = 1 k g / c m . F i g u r e 7 shows the dependence of the m a x i m u m s t r e s s e s in the d i sk a d and the r i b Crp on he ight of a r i b H at d i f fe ren t t h i ck - n e s s for four (Fig. 7a) and s ix (Fig. 7b) r i b s . F r o m these g raphs i t a p p e a r s that r e i n f o r c e m e n t of the d~sk by tow and thin r i b s i s i n a d v i s a b l e , tt i s d e s i r a b l e to s e l e c t r i b d i m e n s i o n s such that a des ign of u n i f o r m s t r e n g t h is obta ined. In the i n v e s t i g a t e d example , u n i f o r m s t r e n g t h is ach ieved in a d i sk with four r i b s of b = 2 c m a n d H = 8 cm.

F o r computa t ion of d i sks with o ther d i m e n s i o n s , i t i s r e c o m m e n d e d that, u s i ng F igs . 5 or 6, g raphs s i m i l a r to those in Fig. 7 be c o n s t r u c t e d , and, a f t e r c o m p a r i n g r e s u l t s , d i m e n s i o n s of r i b s be se lec ted .

1.

2.

3.

4.

5.

6.

L I T E R A T U R E C I T E D

V. M. Agranov ich , D. V. Va inbe rg , and E. S. U ma nsk i i , "The bend ing of a c i r c u l a r p la te by t r a n s - v e r s e f o r c e s d i s t r i b u t e d in s t eps at poin ts of s e p a r a t e r a d i i , " in: The S t r e s s State of Wheels in Rol l ing Mills and Mining Equipment [in Russian], Izd. AN UkrSSR, Kiev (1959). I. A. Birger, B. F. Shorr, and R. M. Shneiderovich, Rating the Strength of Machine Parts [in Rus- sian], Mashgiz, Moscow (1959). D. V. Vainberg and E. D. Vainberg, Plates, Disks, and Wall Beams [in Russian], Gosstroiizdat, Kiev (1959). D. V. Vainberg, "Methods of rating circular ribbed plates," in: Calculation of Three-Dimensional Designs [in Russian], No. 5, Moscow (1959). A. N. Dukhovnyi, Criteria of the Axisymmetrical Character of the Strain State of Circular and Ring Plates Reinforced with Radial Ribs [in Russian], Trudy Vses. In-ta Gidromash., No. 31 (1962). A. N. Dukhovnyi, An Approximation Solution of the Problem of Bending Circular and Ring Plates Reinforced with Radial Ribs [in Russian], Trudy Vses. In-ta Gidromash., No. 30 (1962).

1029

7. A . N . Dukhovnyi, An Approximation Method of Determining S t resses when Bending Circular and Ring Plates Reinforced with Radial Ribs [in Russian], Trudy Vses. In-ta Gidromash. , No. 30 (1962).

8. K . A . Kitover, Thin Circular Plates [in Russian], Gosstroi izdat , Moscow (1953). 9. S . D . Ponomarev et al., Computations of Strength in Mechanical Engineering [in Russian], Vol. 2,

Mashgiz, Moscow (1958). 10. O. M. Rubach, ~The bending of c i rcu la r plates r e in fo rced with radial r i b s , " in. Collection of Works

of the Institute of Mechanical Engineering of the Academy of Sciences, UkrSSR, No. 20. Methods of Rating Wheels of Rolling Mills and Mining Equipment [in Russian], Izd. AN UkrSSR, Kiev (1955).

1030