10
Laura Evangelio 1,2 , Matteo Lorenzoni 1 , Jordi Fraxedas 2 , Francesc Pérez-Murano 1 , 1 Institut de Microelectrònica de Barcelona (IMB-CNM, CSIC) 2 Institut Català de Nanociència i Nanotecnologia (ICN2, CSIC) Campus UAB, 08193-Bellaterra, Barcelona Determination of the interfacial energies in chemical guiding patterns for directed self-assembly of block co-polymers MNE2015 The Hague , Sept 2015 A B A B A Diblock – AB – Triblock – ABA – The morphology of the BCP depends on the ratio between the molecular weights of both blocks: Block co-polymer self-assembly Disordered Ordered Thermal Annealing A B

Determination of the interfacial energies in chemical guiding … · Introductionto the DirectedSelf-Assembly (DSA) of BlockCopolymers (BCP) Lithography resist Si Almostneutral area

  • Upload
    lamtu

  • View
    216

  • Download
    2

Embed Size (px)

Citation preview

Laura Evangelio1,2, Matteo Lorenzoni1, Jordi Fraxedas2, Francesc Pérez-Murano1,

1Institut de Microelectrònica de Barcelona (IMB-CNM, CSIC)2Institut Català de Nanociència i Nanotecnologia (ICN2, CSIC)

Campus UAB, 08193-Bellaterra, Barcelona

Determination of the interfacial

energies in chemical guiding patterns

for directed self-assembly

of block co-polymers

MNE2015

The Hague , Sept 2015

A B

A B A

Diblock – AB –

Triblock – ABA –

� The morphology of the BCP depends on the ratio between the molecular weights of both blocks:

Block co-polymer self-assembly

Disordered Ordered

Thermal

Annealing

A B

3

� The block copolymer pitch (L0) depends on its molecular weight.

Polymer chain length = Polymer period

PMMA PS

BC

P m

ole

cula

r w

eig

ht

BLOCK CO-POLYMER SELF ASSEMBLY

4

Intrinsic property of

BCP to self-assemble

Traditional lithographic

techniquesGuiding of the BCP

+ =n·L0L0

PS-b-PMMA

PS-b-PEO

PS-b-PDMS

EBL

DUV

EUV

Chemical epitaxy

Graphoepitaxy

DIRECTED SELF – ASSEMBLY OF BLOCK COPOLYMERS

� Introduction to the Directed Self-Assembly (DSA) of Block Copolymers (BCP)

Lithography resist

Si

Almost neutral

area Preferential area for

one of the blocks

Si

SiSi

Graphoepitaxy

Chemical epitaxy

DIRECTED SELF-ASSEMBLY METHODS

6

CHEMICAL EPITAXY METHODS

C.-C.Liu, E. Han, M.S.Onses,C.J.Thode, S. Ji, P. Gopalan, P.F. Nealey “Fabrication of

Lithographically Defined Chemically Patterned Polymer Brushes and Mats“

Macromolecules, 44, 1876, 2011

LINE Process (Wisconsin) IBM Process

J. Y., Sanders, D. P., Truong, H. D., Harrer, S., Friz, A., Holmes, S., ...

& Hinsberg, W. D.“Simple and versatile methods to integrate

directed self-assembly with optical lithography using a polarity-

switched photoresist“ ACS Nano, 4(8), 4815-4823, 2010

SMART Process

Jihoon Kim, Jingxiu Wan, Shinji Miyazaki, Jian Yin, Yi Cao, Young Jun Her, Hengpeng Wu, Jianhui Shan,

Kazunori Kurosawa, Guanyang Lin.

"The SMART(TM) Process for Directed Block Co-Polymer Self-assembly“

Journal of Photopolymer Science and Technology 26, 573-579, 2013

→ BCP: PS-b-PMMA

(hp = L0/2 = 18.5 nm, 14 nm,11 nm) and thermal annealing

→ Brush layer: PS-OH, PS-r-PMMA using several annealing conditions

→ Chemical functionalization: Exposure to O2 plasma (two conditions: soft, strong)

7

1. Brush (grafting) to

the silicon substrate

3. O2 plasma

functionalization

4. DSA of PS-b-PMMA

2. Electron beam

lithography

PS-b-PMMA 11 nm hp

(From ARKEMA)

PROCESS AND MATERIALS

L. Oria,, A.R. de Luzuriaga, J, Alduncin, F. Perez-Murano,

“Polystyrene as a brush layer for directed self-assembly of block co-polymers”

/Microelectronic Engineering,/ 113,234, 2013,

BA

SIA Lithography Roadmap 2013

8

DENSITY MULTIPLICATION AND CHEMICAL EPITAXY

MNE2015

The Hague , Sept 2015

9

∆γ=γSA- γSB is the main driving force in directed self-assembly by chemical epitaxy

The proper achievement of high density multiplication factors requires considering

multiple parameters simultaneously

Dimensional Parameters

Ls Width of guiding stripe

Lb Width of background stripe

L0 Bulk lamella period

d Film thickness

Material Parameters

χNFlory Huggins parameter ·

degree of polymerization

Reo Mean square distance of BCP chains

κNInverse isothermal compressibility ·

degree of polymerization

D Self-difusion coefficient

γSA, γSB

Surface free energies of the segment

species with the confining boundaries

Density multiplication factor

η=(Lb+Ls)/Lo

ROLE OF INTERFACE ENERGIES IN THE CHEMICAL EPITAXY PROCESS

d d

MNE2015

The Hague , Sept 2015

10

∆γ=γSA- γSB = γAB · cos (φΑΒ) Kim et al., Macromolecules, Vol. 42, 7919, 2009

���: Interfacial tension => Taken from the literature

∆γ is determined from the Young equation by de-wetting experiments

Polymer APolymer BφΑΒ < 90 º : More affinity to block B

φΑΒ = 90 º : Neutral surface

φΑΒ > 90 º : More affinity to block A

1. Brush (grafting) to the

silicon substrate 3. PS-PMMA dewetting

2. PS/PMMA blend

spin-coating

EXPERIMENTAL DETERMINATION OF INTERFACE ENERGIES

Experimental process

cos (φΑΒ) is determined experimentally

MNE2015

The Hague , Sept 2015

11

EXPERIMENTAL DETERMINATION OF INTERFACE ENERGIES

400 nm

Tilted SEM image

Tilted SEM image

Homopolymer blends dewetting on

polymer brush surfaces

MNE2015

The Hague , Sept 2015

SEM characterization

AFM characterization

Topography Young Modulus

Adhesion Deformation

12

Acetic Acid

Φ

Acetic Acid

Φ

PSPMMA PS

PMMA

M. Lorenzoni, L. Evangelio, F. Perez-Murano. JM3 in press.

Un-modified PS-Oh brush Modified PS-OH brush

EXPERIMENTAL DETERMINATION OF INTERFACE ENERGIES

MNE2015

The Hague , Sept 2015

13

∆γ = γS-PMMA - γS-PS [mN/m]

Processing conditions Background

stripe

Guiding stripe

(soft plasma)

Guiding stripe

(hard-plasma)Brush material BCP Annealing

PS-OH230ºC for 10 min

in N2

0.35 -0.38 -0.51

PS-OH200ºC for 20 min

in Hot-Plate0.40 -0.80 -0.91

PS0.69-r-PMMA0.31

230ºC for 10 min

in N2

0.13 -0.50 -0.56

The sets of interface energies are the ones that provide suitable conditions for high

multiplication factors

∆γ=γSA- γSB = γAB · cos (φΑΒ)

EXPERIMENTAL DETERMINATION OF INTERFACE ENERGIES

Kim et al., Macromolecules, Vol. 42, 7919, 2009

MNE2015

The Hague , Sept 2015

14

DENSITY MULTIPLICATION AND INTERFACE ENERGIES

18.5 nm hp L28 L22

200 nm 200 nm

0.35 -0.38 0.40 -0.80 0.13 -0.50

Background Guiding stripe Background Guiding stripe Background Guiding stripe

(Narrow stripes) η=2

200 nm

(Wide stripes) η=6 (Wide stripes) η=514 nm hp 11 nm hp

Optimal conditions for PS-b-PMMA of several pitch dimensions

∆γ[mN/m]

∆γ[mN/m]

1.5 Lo 0.5 Lo 3.5 Lo 2.5 Lo 2.5 Lo 2.5 Lo

MNE2015

The Hague , Sept 2015

15

HIGH DENSITY MULTIPLICATION FACTORS WITH PS-b-PMMA 11 nm hp

300 nm300 nm300 nm

η=3 η=4 η=5

11 nm11 nm11 nm

0.13 -0.50 PS-PMMA 11 nm hp∆γ[mN/m]

MNE2015

The Hague , Sept 2015

16

INFLUENCE OF OXYGEN PLASMA FUNCTIONALIZATION STRENGTH

0.40 -0.80 0.40 -0.91

Soft plasma Hard plasma

Background Guiding stripe Background Guiding stripe

∆γ ∆γPS-PMMA 14 nm hp

MNE2015

The Hague , Sept 2015

17E-MRS Spring Meeting 2015

Lille, May 14th

INFLUENCE OF OXYGEN PLASMA FUNCTIONALIZATION STRENGTH

Soft plasma Hard plasma

PS-PMMA 11 nm hp

100 nm 100 nm

0.13 -0.50 0.13 -0.56

Background Guiding stripe Background Guiding stripe

∆γ ∆γ

1. AFM based nanolithography

2. Electron beam nanolithography direct writing

NOVEL APPROACHES TO CHEMICAL EPITAXY GUIDING PATTERNSNEW METHODS FOR CHEMICAL GUIDING PATTERNS

Fernández-Regúlez, M.; Evangelio, L.; Lorenzoni, M.; Fraxedas, J. and Pérez-Murano, F.,

ACS Appl. Mater. Interfaces 6, 21596 (2014)

xL0

Evangelio, L.; Fernández-Regúlez, M.; Borrise, X.; Lorenzoni, M.; Fraxedas, J. and Pérez-Murano, F.,

J. Micro/Nanolith. MEMS MOEMS 14 (3), 033511 (2015)

MNE2015. The Hague , Sept 201518

19

SUMMARY

• Density multiplication by wide guiding stripes can be achieved by

properly tuning of the interface energies

• Density multiplication factor of x6 has been achieved with PS-b-PMMA of 14 nm hp

• Simulations allow to predict the final DSA pattern, and suggest

that the value of interface energy is lowered by the presence of

residual solvent during the annealing

MNE2015

The Hague , Sept 2015

• Strength of interface energies can be quantified from dewettingexperiments

THANK YOU FOR YOUR ATTENTION

Acknowledgments

CNM Cleanroom staff

Initial work of Marta Fernández-Regúlez