11
Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1 , J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods Hole Oceanographic Institution AGU Fall Meeting 10 December 2007

Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

Embed Size (px)

Citation preview

Page 1: Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity

Data

A. L. Llenos1, J. J. McGuire2

1 MIT/WHOI Joint Program in Oceanography2 Woods Hole Oceanographic Institution

AGU Fall Meeting10 December 2007

Page 2: Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

Aseismic processes trigger seismicity

Recent studies show that aseismic deformation can trigger large amounts of seismicity. Examples include:

Bourouis & Bernard (2007)

Afterslip of subduction zone earthquakes

Magmatic intrusion

Toda et al. (2002)

Aseismic creep

Lohman & McGuire (2007)

Hsu et al. (2006)

Fluid flow

Page 3: Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

• Seismicity rate R(t) related to stressing rate S(t)

• S can be integrated from observed seismicity rate R

• But: R = RC +RA +RT

– RC = coseismic (earthquake-earthquake)

– RT = tectonic (background rate)– RA = aseismic (dike intrusions,

creep)• Catalogs with many aftershocks

– In high branching ratio n catalogs (Helmstetter & Sornette, 2002), RC obscures RA

– S then reflects primarily coseismic stress rates, not aseismic

Seismicity to stress rates: Rate-state model(Dieterich, 1994)

)(1

dSdtA

d

S

rR

r

Catalog 1 (n=0.1)

Catalog 2 (n=0.95)

Page 4: Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

ETAS model can isolate aseismic part (Ogata, 1988; Helmstetter and Sornette, 2002)

• Epidemic-Type Aftershock Sequence model– Stochastic point process model– Omori’s Law – seismicity rate decays exponentially

following a main shock– Each aftershock can produce its own aftershocks

• For an earthquake catalog, observed times ti and magnitudes mi are used to make maximum likelihood estimates of the ETAS parameters (K, c, p, , )

• Aseismic transient (RA) reflected in

ttp

i

mm

i

i

ctt

KttR

)(

10),(),(

)( 0

xx

RCRA+RT

Page 5: Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

• State-space model– Measurement equation

• Relates observed data to underlying process

– State transition equation• Describes evolution of state variables

• State variables: background stress rate, stress, aseismic stress rate, and seismicity state variable (rate-state)

• Estimate time history of x using the extended Kalman filter – Important assumption: Gaussian observation and process noise

• Maximum likelihood estimation (Ogata et al., 1993)– Model parameters: K, c, p, , A– Point process likelihood function– Gridsearch over parameters to find MLE using 64-processor Linux

cluster

Approach: Combine ETAS and rate-state models

krkttt

mmp

ik

kk S

r

ctt

KRd

ki

ci

:

10

11 kkk xtx SSS p x

T

i

N

i

dtttAcKpL0

1

log,,,,,log

Page 6: Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

Synthetic Test

n = 0.2

n = 0.9 = 0.8

p = 1.2

c = 0.0001 day

A = 0.1 MPa

S = 0.2 MPa/yr

S max = 20 MPa/yr

Page 7: Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

Synthetic Test Results

n = 0.2

n = 0.9

Can resolve stress rate changes of 1-2 orders of magnitude even in high branching ratio catalogs

Page 8: Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

Data Application: Salton Trough

• Transition from strike-slip to divergent plate boundaries– High heat flow (Kisslinger &

Jones, 1991)• Earthquake swarms driven by

aseismic creep (Lohman & McGuire, 2007)

• Test detection of stress rate transients in 20-yr catalog

Lohman & McGuire (2007)

Page 9: Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

Stress Rate Inversion Results

Lohman & McGuire (2007)

Binned seismicity

Stress rate estimate

=> constant stressing rate

=> Jump of ~3 orders of

magnitude in 2005

Page 10: Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

Obsidian Buttes swarm, 2005(Lohman & McGuire, 2007)

• >1000 events over the course of 2 weeks in 2005

• Combination of geodetic and seismicity data suggest swarm driven by aseismic creep

• Magnitude and duration of stress transient

Lohman & McGuire (2007)

Page 11: Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data A. L. Llenos 1, J. J. McGuire 2 1 MIT/WHOI Joint Program in Oceanography 2 Woods

Future work

• Synthetic tests show that combining the ETAS and rate-state models into a single algorithm removes the effects of aftershock (coseismic) rates and can resolve changes in aseismic stressing rate of 1-2 orders of magnitude even in high branching ratio catalogs

• Salton Trough results demonstrate its potential use as an aseismic stress transient detector

Ozawa et al. (2003)

Summary

• Find stress rate transients (and compare to geodetic studies)

• Extend to spatial dimensions• Estimates of rate-state

parameters (A)• Evaluate rate-state model (by

comparing to geodetic data)• Evaluate seismicity triggering

due to aseismic processes