Detailed report of processing gdv images in the gdv scientific laboratory program 050709

  • View
    295

  • Download
    0

Embed Size (px)

DESCRIPTION

 

Text of Detailed report of processing gdv images in the gdv scientific laboratory program 050709

  • 1. Detailed report of processing GDV images in the GDV Scientific Laboratory program
    Date and time of processing: 5/7/2009 4:05:18 PM
    The following GDV parameters of GDV images were calculated during processing:
    Area
    Average intensity
    Entropy intervals count
    Statistical comparison of 3 samples of dynamic GDV images is performed:
    Sample1
    C:GDVDATANEWWater StudyClaytons Water Study 042409LDW 05.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409LDW 01.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409LDW 02.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409LDW 03.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409LDW 04.avi
    Sample2
    C:GDVDATANEWWater StudyClaytons Water Study 042409CCU 05.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409CCU 01.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409CCU 02.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409CCU 03.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409CCU 04.avi
    Sample3
    C:GDVDATANEWWater StudyClaytons Water Study 042409CMPU 05.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409CMPU 01.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409CMPU 02.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409CMPU 03.avi
    C:GDVDATANEWWater StudyClaytons Water Study 042409CMPU 04.avi
    Time series of GDV parameters:
    Area
    The plots legend:
    Sample1
    Mean + confidence interval
    Sample2
    Mean + confidence interval
    Sample3
    Mean + confidence interval
    Average intensity
    The plots legend:
    Sample1
    Mean + confidence interval
    Sample2
    Mean + confidence interval
    Sample3
    Mean + confidence interval
    Entropy intervals count
    The plots legend:
    Sample1
    Mean + confidence interval
    Sample2
    Mean + confidence interval
    Sample3
    Mean + confidence interval
    Trends of time series of GDV parameters:
    Area
    The plots legend:
    Sample1
    Mean + confidence interval
    Sample2
    Mean + confidence interval
    Sample3
    Mean + confidence interval
    Average intensity
    The plots legend:
    Sample1
    Mean + confidence interval
    Sample2
    Mean + confidence interval
    Sample3
    Mean + confidence interval
    Entropy intervals count
    The plots legend:
    Sample1
    Mean + confidence interval
    Sample2
    Mean + confidence interval
    Sample3
    Mean + confidence interval
    The results of statistical comparison
    Statistical comparison of 3 independent samples performed. Used parametric test: ANOVA one way test
    ANOVA one way test
    Area
    By frame statistical comparison of time series
    RankOfSample1RankOfSample2RankOfSample3criterionp-valueframe 140163.5261.54.4460.1085frame 240163.5261.54.4460.1085frame 340163.5261.54.4460.1085frame 440162.5262.54.4760.1068frame 540163.5261.54.4460.1085frame 640161.5263.54.510.105frame 740167.5257.54.3680.1127frame 840164.5260.54.420.1099frame 940165.5259.54.3980.111frame 1040165.5259.54.3980.111frame 1140165.5259.54.3980.111frame 1240167.5257.54.3680.1127frame 1340162.5262.54.4760.1068frame 1440163.5261.54.4460.1085frame 1540167.5257.54.3680.1127frame 1640167.5257.54.3680.1127frame 17401672584.3740.1124frame 1840166.5258.54.3810.112frame 1940167.5257.54.3680.1127frame 2040167.5257.54.3680.1127frame 2140167.5257.54.3680.1127frame 2240167.5257.54.3680.1127frame 2340167.5257.54.3680.1127frame 2440164.5260.54.420.1099frame 2540167.5257.54.3680.1127frame 2640167.5257.54.3680.1127frame 2740167.5257.54.3680.1127frame 2840166.5258.54.3810.112frame 2940163.5261.54.4460.1085frame 3040167.5257.54.3680.1127frame 3140167.5257.54.3680.1127frame 3240165.5259.54.3980.111frame 3340167.5257.54.3680.1127frame 3440167.5257.54.3680.1127frame 3540167.5257.54.3680.1127frame 3640167.5257.54.3680.1127frame 3740167.5257.54.3680.1127frame 3840167.5257.54.3680.1127frame 3940167.5257.54.3680.1127frame 4040167.5257.54.3680.1127frame 4140167.5257.54.3680.1127frame 4240166.5258.54.3810.112frame 4340167.5257.54.3680.1127frame 4440167.5257.54.3680.1127frame 4540167.5257.54.3680.1127frame 4640167.5257.54.3680.1127frame 4740167.5257.54.3680.1127frame 4840167.5257.54.3680.1127frame 4940165.5259.54.3980.111frame 5040162.5262.54.4760.1068frame 5140167.5257.54.3680.1127frame 5240167.5257.54.3680.1127frame 5340166.5258.54.3810.112frame 5440166.5258.54.3810.112frame 5540165.5259.54.3980.111frame 5640167.5257.54.3680.1127frame 5740167.5257.54.3680.1127frame 5840167.5257.54.3680.1127frame 5940167.5257.54.3680.1127frame 6040167.5257.54.3680.1127frame 6140167.5257.54.3680.1127frame 6240167.5257.54.3680.1127frame 6340167.5257.54.3680.1127frame 6440167.5257.54.3680.1127frame 6540167.5257.54.3680.1127frame 6640167.5257.54.3680.1127frame 6740167.5257.54.3680.1127frame 6840163.5261.54.4460.1085frame 6940167.5257.54.3680.1127frame 7040166.5258.54.3810.112frame 7140167.5257.54.3680.1127frame 7240167.5257.54.3680.1127frame 7340167.5257.54.3680.1127frame 7440167.5257.54.3680.1127frame 75401612644.5290.104frame 7640167.5257.54.3680.1127frame 7740167.5257.54.3680.1127frame 7840167.5257.54.3680.1127frame 7940167.5257.54.3680.1127frame 8040167.5257.54.3680.1127frame 81401652604.4090.1105frame 8240167.5257.54.3680.1127frame 8340167.5257.54.3680.1127frame 8440167.5257.54.3680.1127frame 8540166.5258.54.3810.112frame 8640167.5257.54.3680.1127frame 8740167.5257.54.3680.1127frame 8840167.5257.54.3680.1127frame 8940167.5257.54.3680.1127frame 9040167.5257.54.3680.1127frame 9140167.5257.54.3680.1127frame 9240167.5257.54.3680.1127frame 9340167.5257.54.3680.1127frame 9440167.5257.54.3680.1127frame 9540167.5257.54.3680.1127frame 9640165.5259.54.3980.111frame 9740167.5257.54.3680.1127frame 9840167.5257.54.3680.1127frame 9940164.5260.54.420.1099frame 10040167.5257.54.3680.1127frame 10140167.5257.54.3680.1127frame 10240165.5259.54.3980.111frame 10340167.5257.54.3680.1127frame 10440167.5257.54.3680.1127frame 10540167.5257.54.3680.1127frame 10640167.5257.54.3680.1127frame 10740167.5257.54.3680.1127frame 10840167.5257.54.3680.1127frame 10940165.5259.54.3980.111frame 11040167.5257.54.3680.1127frame 11140167.5257.54.3680.1127frame 11240167.5257.54.3680.1127frame 11340167.5257.54.3680.1127frame 11440167.5257.54.3680.1127frame 11540167.5257.54.3680.1127frame 11640167.5257.54.3680.1127frame 11740167.5257.54.3680.1127frame 11840167.5257.54.3680.1127frame 11940167.5257.54.3680.1127frame 12040167.5257.54.3680.1127frame 12140167.5257.54.3680.1127frame 12240164.5260.54.420.1099frame 12340167.5257.54.3680.1127frame 12440167.5257.54.3680.1127frame 12540166.5258.54.3810.112frame 12640167.5257.54.3680.1127frame 12740167.5257.54.3680.1127frame 12840167.5257.54.3680.1127frame 12940164.5260.54.420.1099frame 13040167.5257.54.3680.1127frame 13140167.5257.54.3680.1127frame 13240167.5257.54.3680.1127frame 13340163.5261.54.4460.1085frame 13440166.5258.54.3810.112frame 13540166.5258.54.3810.112frame 13640167.5257.54.3680.1127frame 13740165.5259.54.3980.111frame 13840167.5257.54.3680.1127frame 13940167.5257.54.3680.1127frame 14040167.5257.54.3680.1127frame 14140167.5257.54.3680.1127frame 14240167.5257.54.3680.1127frame 14340166.5258.54.3810.112frame 14440167.5257.54.3680.1127frame 14540165.5259.54.3980.111frame 14640167.5257.54.3680.1127frame 14740167.5257.54.3680.1127frame 14840167.5257.54.3680.1127frame 14951164.5249.52.1770.3368frame 15077.5155232.500
    Statistical comparison of time series characteristics
    By ANOVA one way test samples have no statistically significant differences; p = 0.999976
    By ANOVA one way test samples are statistically dissimilar; p = 1.86507e-020
    By ANOVA one way test samples have no statistically significant differences; p = 0.999976
    By ANOVA one way test samples are statistically dissimilar; p = 9.93592e-013
    By ANOVA one way test samples are statistically dissimilar; p = 1.86507e-020
    By ANOVA one way test samples are statistically dissimilar; p = 2.2312e-008
    By ANOVA one way test samples are statistically dissimilar; p = 1.75251e-022
    By ANOVA one way test samples are statistically dissimilar; p = 4.62229e-022
    By ANOVA one way test samples are statistically dissimilar; p = 1.00285e-020
    By ANOVA one way test samples have no statistically significant differences; p = 0.231245
    By ANOVA one way test samples have no statistically significant differences; p = 0.235804
    By ANOVA one way test samples are statistically dissimilar; p = 2.22285e-008
    By ANOVA one way test samples have no statistically significant differences; p = 0.792295
    By ANOVA one way test samples have no statistically significant differences; p = 0.711759
    By ANOVA one way test samples have no statistically significant differences; p = 0.666705
    By ANOVA one way test samples have no statistically significant differences; p = 0.699627
    RankOfSample1RankOfSample2RankOfSample3criterionp-valueCount40404000Sum15654012.50.002269Min40404000Max15614410.820.00477Mean15654012.50.002269RMS1552539.380.009446Median15654012.50.00226925 percentile15654012.50.00226975 percentile15654012.50.002269Skewness5631333.860.1453Excess2449473.860.1453Confidence interval1552539.380.009446Time entropy35.54143.50.3350.8458Entropy intervals33.543.5430.6350.728Time fractality4742311.340.5118Fractality RMS3631532.660.2646
    Statistical comparison of time series trends - Polynomial trend coefficients
    By ANOVA one way test samples are statistically dissimilar; p = 7.87323e-012
    By ANOVA one way test samples are statistically dissimilar; p = 0.047689
    By ANOVA one way test samples are statistically dissimilar; p = 0.00697544
    By ANOVA one way test samples are statistically dissimilar; p = 0.00172604
    RankOfSample1RankOfSample2RankOfSample3criterionp-valueK015654012.50.002269K16426308.720.01303K21554519.420.00927K36527289.380.009446
    Statistical comp