30
Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1 , T. Schmidt 1 , G. Schwarz 2 , L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR IMF, Oberpfaffenhofen, Germany (3) TUM IAPG, Munich, Germany EGU 2012, Vienna, Austria

Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Embed Size (px)

Citation preview

Page 1: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Detailed Analysis of ECMWF Surface Pressure Data

E. Fagiolini1, T. Schmidt1, G. Schwarz2, L. Zenner3

(1) GFZ Department 1, Potsdam, Germany(2) DLR IMF, Oberpfaffenhofen, Germany

(3) TUM IAPG, Munich, Germany

EGU 2012, Vienna, Austria

Page 2: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

• Project Background

• Selected Surface Pressure Data

• Basic Data Characteristics

• Spatial Neighbourhoods

• Temporal Neighbourhoods

• Outlook

Summary of this Presentation

Page 3: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

• Priority Programme ”Mass transport and Mass distribution in the System Earth” of the German Research Foundation (DFG).

• Project IDEAL-GRACE: ”Improved De-Aliasing for Gravity Field Modelling with GRACE”Partners: TUM IAPG, GFZ, DLR IMF, UHH IfM.

• An improved gravity field modelling requires computation of atmospheric contributions (mainly surface pressure).

• How good are available surface pressure data?

Project Background

Page 4: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Selected Surface Pressure Data

• We selected ECMWF surface pressure data from operational analysis,, global coverage, every 6 hours, N48 Gauss grid (192 columns, 96 lines), 29% land / 71% water.

• ECMWF surface pressure = combination of predictive modelling and measurements.

• Time period: 1 year from Sep. 1, 2007 to Aug. 31, 2008366 days, every 6 hours => 1464 data sets.

• Footprint per sample: about 200 * 200 km.

• A few outliers had to be removed by interpolation.

Page 5: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Median Values of 00, 06, 12 and 18 Hour Data

Small differences around Indonesia.

Page 6: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Europe Asia Pacific Ocean N. America Atlantic Ocean

Pressure Profile Along +45 deg. N

Page 7: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Histogram of Global 1 Year Surface Pressure Levels

Mountain areas

Page 8: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Contrast Enhanced Dynamic Pressure Range

Equatorial Regions are quiet

Page 9: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Diurnal Variation in the Tropics

Page 10: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Surface Pressure Time Series Data

Horizontal axis: transect along -30°S

Vertical axis: time (1 year, midnight data)

Principal motion of the pressure areas.

Sept.

Febr.

Aug.

Page 11: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Time Series Data

Horizontal axis: transect along -60°S

Vertical axis: time (1 year, midnight data)

Pressure data Low pass data High pass data

Page 12: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Horizontal axis: time (1 year, midnight data)

Vertical axis: transect along the zero meridian

Zero Meridian Transects versus Time (Contrast Enhanced)

North Pole

South Pole

Equator

Page 13: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Total Variation of 6 Hour Pressure Levels

Longitude-dependent total variation: interpolated time step effects?

Page 14: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Contrast Enhanced Entropy of Pressure Levels

The information content is not constant.

Page 15: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Histogram of East/West 1 Sample Differences

Back-to-back Laplacians visible small fluctuations and noise.

Page 16: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Histogram of North/South 1 Sample Differences

Broader the surface pressure differences are direction-dependent.

Page 17: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Sum of 2 Gaussians two overlapping effects.

Histogram of East/West 2 Sample Differences

Page 18: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Histogram of North/South 2 Sample Differences

Again, direction dependence.

Page 19: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Histogram of East/West 16 Sample Differences

Single Gaussian we see different effects.

Page 20: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Histogram of North/South 16 Sample Differences

the longitude dependence becomes smaller.

Page 21: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Pressure < 990 hPa above Water

The east coast shores of the continents show rather low pressure values. Why?

Page 22: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Differences Between 6 h Time Steps above Land

Single Gaussian very regular distributions above land.

Page 23: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Differences Between 6 h Time Steps above Water

Double peak distribution above water. Due to the microwave instruments?

Page 24: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Distribution of 6 h Biases above Water at 00h

Page 25: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Distribution of 6 h Biases above Water at 06h

The bias locations have changed. Is it a sensor effect, or is it physical reality?

Page 26: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Conclusion and Outlook

• ECMWF data describe a large variety of atmospheric effects in the spatial and temporal domain and at various scales.

• Outlier correction and removal of topographic background allows detailed studies of temporal phenomena (e.g., transects).

• Many open questions.

• A further topic to be discussed is the analysis of estimated errors provided by ECMWF (current activities).

Page 27: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Thank you!

Page 28: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Backslides

Page 29: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Contrast Enhanced Positive Skewness of Pressure Levels

Page 30: Detailed Analysis of ECMWF Surface Pressure Data E. Fagiolini 1, T. Schmidt 1, G. Schwarz 2, L. Zenner 3 (1) GFZ Department 1, Potsdam, Germany (2) DLR

Contrast Enhanced Negative Skewness of Pressure Levels