Desulfurare chime

Embed Size (px)

Citation preview

  • 8/12/2019 Desulfurare chime

    1/9

    Hydrogen production from carbon dioxide

    reforming of methane over highly active and stable

    MgO promoted CoeNi/g-Al2O3catalyst

    In Hyuk Son a,**, Seung Jae Lee a, Hyun-Seog Roh b,*aEnvironment Group, Energy & Environment Research Center, Samsung Advanced Institute of Technology (SAIT),

    Samsung Electronics Co. LTD, Gyounggi-Do 446-712, Republic of Koreab Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 220-710,

    Republic of Korea

    a r t i c l e i n f o

    Article history:

    Received 5 July 2013

    Received in revised form

    18 December 2013

    Accepted 24 December 2013

    Available online 25 January 2014

    Keywords:

    Carbon dioxideReforming

    Methane

    Magnesia

    Intimate interaction

    a b s t r a c t

    CoNi/Al2O3and MgCoNi/Al2O3catalysts are investigated for hydrogen production from CO2reforming of CH4reaction at the gas hourly space velocity of 40,000 mL g

    1 h1. The MgO

    promoted CoNi/Al2O3 catalyst shows much higher conversions (97% for CO2 and 95% for

    CH4at 850 C) than the CoNi/Al2O3catalyst. In addition, the stability is maintained for 200 h

    in CO2reforming of CH4. The outstanding catalytic activity and stability of the MgO pro-

    moted CoNi/Al2O3catalyst is mainly due to the basic nature of MgO, an intimate interac-

    tion between Ni and the support, and rapid decomposition/dissociation of CH4 and CO2,

    resulting in preventing coke formation in CO2reforming of CH4.

    Copyright 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rightsreserved.

    1. Introduction

    The production of H2

    or synthesis gas from carbon dioxide

    reforming of methane (CDR: CH4 CO2 / 2H2 2CO) is an

    emerging and challenging issue for the chemical utilization of

    green house gases such as carbon dioxide and methane[1e4].

    The CDR reaction becomes industrially advantageous

    compared to steam reforming of methane (SRM:

    CH4H2O/ 3H2CO) in synthesis gas production since H2/

    CO ratio of product is close to 1.0. The synthesis gas with low

    H2/CO ratio is suitable for direct use in FeT synthesis or oxo-

    synthesis, and both of which require lower H2/CO ratio than

    that obtained from conventional SRM.

    Supported Ni catalysts have been employed for the target

    reaction from an economical point of view [5e8]. However,supported Ni catalysts easily deactivate on account of either

    coke formation and/or sintering of Ni metal. Therefore, the

    primary difficultyin CDR is developing nano-sizedNi catalysts

    with high activity and stability under severe conditions. Ac-

    cording to the literature, the nature of supports affects the

    catalytic performance of supported Ni catalysts in CDR[9e11].

    Many commercial Ni/Al2O3-based catalysts are available

    for fuel reforming[12]. These catalysts are more economical

    * Corresponding author. Tel.:82 33 760 2834; fax: 82 33 760 2571.** Corresponding author. Tel.: 82 31 280 1852; fax: 82 31 280 9359.

    E-mail addresses:[email protected](I.H. Son),[email protected](H.-S. Roh).

    Available online atwww.sciencedirect.com

    ScienceDirect

    j o u r n a l h o m e p a g e : w w w . e l s e v i er . c o m / l o c a t e / he

    i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 9 ( 2 0 1 4 ) 3 7 6 2 e3 7 7 0

    0360-3199/$ e see front matter Copyright 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.ijhydene.2013.12.141

    http://-/?-mailto:[email protected]:[email protected]://www.sciencedirect.com/science/journal/03603199http://www.elsevier.com/locate/hehttp://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://www.elsevier.com/locate/hehttp://www.sciencedirect.com/science/journal/03603199http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhydene.2013.12.141&domain=pdfmailto:[email protected]:[email protected]://-/?-
  • 8/12/2019 Desulfurare chime

    2/9

    than noble metals and can operate stably with high activity

    under excess steam. However, severe carbon deposition is

    observed on the Ni/Al2O3catalyst in CDR, which does not use

    excess steam[13].

    Recently, extensive research has been performed to develop

    a highly active and stable catalyst. A Ni alloy with precious

    metals suchas Pt, Rh, Ru,and Pd showed excellent performance

    in CDR resulting from preventing coke formation [14e18]. Inaddition, it wasreported that thestrong interaction between Ni

    and supports such as TiO2, CeO2, and ZrO2enhanced the resis-

    tance against sintering of Ni and coke formation[19e24].

    However, the typical catalyst for reforming reaction is

    composed of Ni particles deposited on an alumina support

    [25e29]. This is due to the lower cost and availability of Al2O3.

    Likewise, many commercial catalysts for reforming are Ni/

    Al2O3-based catalysts, such as Ni-0309S (Engelhard Company),

    ICI-46-1 (Imperial Chemical Industries), and FCR-4 (Sud-

    Chemie). However, the problem of coke formation and sin-

    tering could not be addressed completely.

    For this reason, Ni/Al2O3 catalyst compositions have been

    intensively investigated to minimize coke formation by prepar-ing a Nialloy with othertransition metalssuchas Cu,Co, and Sn

    [30e34]. Especially, researchers have been interested in bime-

    tallicNieCo systems due to thefactthatthe addition of cobalt to

    nickel catalysts reduces coke formation in CDR [35e39]. They

    ascribed the enhanced performance to the improved catalyst

    resistance to metal oxidation. Therefore, it is possible that

    bimetallic catalysts may exhibit superior performance for CDR

    compared with the corresponding monometallic catalysts[40].

    Considerable studies also have been conducted on the

    modification of catalyst supports using promoters to over-

    come the catalyst deactivation[40e47]. Choudhary et al. [41]

    reported that the catalyst precoated with MgO and CaO

    showed high activity compared to that of catalyst withoutprecoating. Koo et al.[42]reported that the MgO promoted Ni/

    Al2O3catalyst forms MgAl2O4spinel phase, which is stable at

    high temperature and effectively prevents coke formation by

    increasing the CO2 adsorption due to the increase in base

    strength on the surface of catalyst.

    In this study, we have designed a MgO promoted CoNi/g-

    Al2O3catalyst to enhance coke resistance and have found that

    this catalyst showed much higher activity and stability than

    CoNi/g-Al2O3 catalystat 800 C for 200h in CDR. Detailedstudies

    on the characterization and catalytic activity for CDR are fur-

    nished in this study. Namely, the beneficial effects of MgO on

    the performance over CoNi/g-Al2O3catalyst for CDR were sys-

    tematically investigated. Especially, we tried to explain excel-lent catalytic performance of MgCoNi/g-Al2O3catalyst with the

    location of each element by using the SEM-EDS elemental

    mapping technique for the first time. Moreover, we confirmed

    that the adsorbed chemical species strongly affects on catalytic

    performance using the in situ DRIFTS analysis.

    2. Experimental procedures

    2.1. Catalyst preparation

    Magnesium (MgN2O6$6H2O, Aldrich), Cobalt (Co(NO3)2$6H2O,

    Aldrich) and Nickel (Ni(NO3)2$6H2O, Aldrich) were co-

    impregnated over g-Al2O3 (SBET 150 m2/g, w3 mm 4;

    Aldrich) using the incipient wetnessmethod with quantitative

    loading (Mg 3 wt.%, Ni 3 wt.%, and Co 3 wt.%)[48e51].

    The prepared catalysts were dried at 120 C for 24 h and

    calcined in air (300 ml/min) at 500 C for 5 h. The calcined

    catalyst was reduced in pure H2with increasing temperature

    (10 C/min) and maintained at 850 C for 1 h.

    2.2. CDR reaction test unit

    The reaction temperature was changed from 700 to 850 C.

    The reaction pressure was fixed at 1 atm. CDR reaction was

    conducted in a micro-tubular quartz reactor. Prior to each

    catalytic measurement, the catalyst was reduced in pure H2at

    850 C for 1 h. The detailed procedure for theCDR reaction was

    explained in the literature[12]. The reactant feed comprised a

    gaseous mixture of CH4:CO2:N2(1:1:1). N2was employed as a

    reference for calculating CH4and CO2conversions. To screen

    the catalysts effectively, a gas hourly space velocity (GHSV) of

    40,000 mL g1 h1 was used in this study. The conversions of

    CH4and CO2were calculated using the following formulas.

    CH4conversion% CH4inCH4out

    CH4in100

    CO2conversion% CO2in CO2out

    CO2in100

    2.3. Characterization

    The BET surface area of support and catalyst was measured by

    N2 adsorption at 196 C using a BET instrument (BELsorp,

    BEL, Japan). X-ray diffraction (XRD) patterns were obtained by

    a Philips Xpert Pro X-ray diffractometer. The crystalline sizeof the Ni particle was estimated using the DebyeeScherrers

    equation [52]. CO2 temperature-programmed desorption (TPD)

    was performed on a Chemisorption Analyzer (Micrometrics

    ASAP 2010). The detailed procedure for CO2-TPD was

    described earlier [12]. To check coke amount of the used

    samples, TGA study was carried out from 30 to 850 C in air

    using a METTLER TOLEDO TGA/DSC1 with a heating rate of

    5 C/min. Temperature-programmed reduction (TPR) experi-

    ments were conducted in a Chemisorption Analyzer

    (AutoChem II 2920). The detailed procedure for TPR was

    described in the previous paper[12,53]. In situ diffuse reflec-

    tance infrared Fourier transform spectroscopy (DRIFTS) study

    was carried out on a Nicolet 5700 FTIR spectrometer with aMCT detector. A powder catalyst sample was put into a reac-

    tion cell (Harricks, Praying Mantis) and reduced in situ at

    800 C for 30 min in H2flow. For in situ reaction monitoring,

    the reaction temperature was set to 300 C. A mixture flow of

    100 ml/min (CH4:CO2:N2 1:1:1) was introduced at that tem-

    perature. For all the spectra recorded, a 32-scan data accu-

    mulation was carried out at a resolution of 4 cm1. The

    catalysts were also examined using the ultra-high-resolution

    field emission scanning electron microscopy (UHR-FE-SEM;

    Hitachi S-5500, resolution 0.4 nm) with transmission electron

    microscopy operating at 30 kV. Elemental composition was

    assessed using an energy dispersive X-ray spectroscopy (EDS)

    in conjunction with UHR-FE-SEM.

    i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 9 ( 2 0 1 4 ) 3 7 6 2 e3 7 7 0 3763

    http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141
  • 8/12/2019 Desulfurare chime

    3/9

    3. Results and discussion

    Table 1 summarizes physical properties of CoNi/Al2O3(marked as CoNi in figures) and MgCoNi/Al2O3 (marked as

    MgCoNi in figures) catalysts (Mg 3 wt.%, Ni 3 wt.%, and

    Co 3 wt.%). The BET surface area of reduced CoNi/Al2O3is

    relatively lower than that of reduced MgCoNi/Al2O3. However,the decrease of the BET surface area is ca. 50% (from 156.3 m2/

    g to 78.8 m2/g) for used CoNi/Al2O3catalyst after the CDR re-

    action, while only ca. 30% decrease (from 167.3 m2/g to

    117.4 m2/g) is measured for the catalyst with MgO. Likewise,

    the pore volume of CoNi/Al2O3 decreased from 0.44 m2/g to

    0.32 m2/g. On the contrary, there was no change of the pore

    volume for the MgCoNi/Al2O3catalyst. The crystallite size of

    Ni was estimated using XRD. The crystallite size of Ni

    increased significantly after the CDR reaction. In the case of

    MgCoNi/Al2O3, the Ni crystallite size of used MgCoNi/Al2O3(9.5 nm) is slightly bigger than that of reduced MgCoNi/Al2O3(6.9 nm). In the case of CoNi/Al2O3, however, the reduced

    catalyst shows 5.8 nm but the used catalyst 18.9 nm. Thus, ithas been confirmed that sintering took place severely for the

    CoNi/Al2O3 catalyst. On the contrary, sintering of Ni crystallite

    could be prevented effectively for the MgCoNi/Al2O3catalyst

    due to the beneficial role of MgO.

    XRD patterns of reduced catalysts are shown inFig. 1. XRD

    patterns of both CoNi/Al2O3and MgCoNi/Al2O3show diffrac-

    tion lines associated with pseudo-amorphousgamma alumina

    (JCPDS 750921) with a slight shift to lower angle. This in-

    dicates the presence of Ni aluminate (JCPDS 100339) [54]. The

    XRD patterns of MgCoNi/Al2O3 show the formation of Mg

    spinel (MgAl2O4, JCPDS 705187) because a shift in the

    diffraction lines of alumina is observed. The MgAl2O4is stable

    and efficient support, due to its spinel structure and basicproperty [32]. In addition,both metallic Co andNi peaks appear

    at 51.4 and 76.0. Other peaks originate from the support[54].

    Fig. 2shows H2-TPR patterns of CoNi/Al2O3 and MgCoNi/

    Al2O3 catalysts. The CoNi/Al2O3 catalyst shows two major

    peaks. The first peak appears at 360 C and the other at 750 C.

    The first reduction peak is due to the reduction of relatively

    free NiO species, which have weak interaction with the sup-

    port[55]. The peak appearing at 750 C can be assigned to the

    reduction of NiAl2O4[33]. In addition, the reduction of Co ox-

    ides occurs with the two-step process: Co3O4/ CoO/ Co0.

    The reduction peaks of Co3O4 and CoOappear at ca. 400 Cand

    at ca. 700 C, respectively[56]. However, it is hard to distin-

    guish theCo3O4 peak from the relatively free NiO peak and theCoO peak from the NiAl2O4peak because peaks overlap each

    other.

    The TPR pattern of MgCoNi/Al2O3is different from that of

    CoNi/Al2O3. The reduction peak of NiAl2O4 is remarkablydecreased. This result indicates that NiAl2O4 formation is

    effectively prevented due to the addition of MgO. In addition,

    the first peak shifts toward lower temperature. It is known

    that the addition of MgO has a beneficial effect in the reduc-

    tion of free NiO species[57e59].

    Fig. 3shows CO2-TPD patterns of reduced CoNi/Al2O3and

    MgCoNi/Al2O3catalysts. Compared with CoNi/Al2O3, MgCoNi/

    Al2O3shows higher peak intensity from 150 to 400 C. This is

    mainly due to the increase of basicity resulting from the

    addition of MgO. It has been reported that the basic catalyst

    supplies the surface oxygen by acidic CO2gas to prevent coke

    formation [60e63]. Choudhary et al. [64] reported that the

    catalytic performance depends significantly on the basicityand strength of basic sites of the catalyst. Thus, it is expected

    that the MgCoNi/Al2O3 catalyst can have strong resistance

    against coke formation due to the beneficial effect of MgO.

    Fig. 4illustrates the results of ultra-high-resolution SEM/

    TEM dual mode microscopy showing images in both the

    scanning and transmission modes and energy-dispersive X-

    ray analysis in the same position. MgCoNi particles are visible

    both in the SEM image and in the TEM image. According to

    Fig.4(c), Mgis presenton CoNi particles. Dueto this structure,it

    is expected that MgCoNi/Al2O3 canhave enhancedactivityand

    strong resistance against coke formation in CDR. In addition,

    the surface of the MgCoNi particles is partially covered by

    alumina. Alumina is located at the same position as theMgCoNi particles. This result indicates that MgCoNi particles

    are not isolated, but surrounded with alumina supports.

    Table 1ePhysical properties of the catalysts. The used catalysts indicate after 200 h of CDR reaction (Reaction conditions:T[ 850 C, P [ 1 atm, GHSV [ 40,000 mL gL1 hL1, CH4:CO2:N2 [ 1:1:1).

    Catalyst description BET surface area (m2/g) Pore volume (cm3/g) Pore diameter (nm) Ni crystallite diameter (nm)a

    Reduced CoNi/Al2O3 156.3 0.44 11.18 5.8

    Used CoNi/Al2O3 78.8 0.32 16.15 18.9

    Reduced MgCoNi/Al2O3 167.3 0.40 9.48 6.9

    Used MgCoNi/Al2O3 117.4 0.40 13.49 9.5

    a

    Data obtained from Ni(220) diffraction peak broadening using the Scherrer equation.

    Fig. 1 e XRD patterns of reduced CoNi/Al2O3and MgCoNi/

    Al2O3catalysts.

    i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 9 ( 2 0 1 4 ) 3 7 6 2 e3 7 7 03764

    http://-/?-http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://-/?-
  • 8/12/2019 Desulfurare chime

    4/9

    Fig. 5depicts the in-situ DRIFT spectra of CO2 reforming

    over CoNi/Al2O3and MgCoNi/Al2O3catalysts. In CH4eCO2co-

    feeding conditions, large amount of formate (nS,

    C]O1588 cm1) and carbonate (nS, C]O1431 cm

    1) species

    were formed. It was reported that the adsorption of CO2 on

    basic support forms carbonate CO23 /hydrocarbonate HCO3

    species which react with H atoms produced from CH4decomposition to form formate (HCOO) intermediates [65],

    which are subsequently decomposed into CO and adsorbed

    OH groups. Efstathiou et al. [66] found that the formate species

    on Al2O3surface was stable under CH4/CO2reforming condi-

    tions. Generally, the spectra of CoNi/Al2O3are similar to those

    of MgCoNi/Al2O3. Interestingly, with the addition of MgO, the

    adsorption of formate species was clearly increased. This

    result indicates that the addition of MgO helps to accelerate

    the decomposition/dissociation of CH4 and CO2, resulting in

    increasing the formation of formate intermediate.

    The CO2reforming reaction was performed with the feed

    ratio of CH4:CO2:N2 1:1:1 at gas hourly space velocity

    (GHSV) 40,000 mL g1 h1 from 700 to 850 C. CDR reaction

    data with reaction temperature over CoNi/Al2O3and MgCoNi/

    Fig. 3e CO2-TPD patterns of reduced CoNi/Al2O3and

    MgCoNi/Al2O3catalysts.

    Fig. 4 e (a) SEM, (b) TEM and (c) line-scan EDX analysis for

    reduced MgCoNi/Al2O3catalyst at the same position.

    Fig. 2e TPR patterns of CoNi/Al2O3and MgCoNi/Al2O3catalysts.

    i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 9 ( 2 0 1 4 ) 3 7 6 2 e3 7 7 0 3765

    http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141
  • 8/12/2019 Desulfurare chime

    5/9

    Al2O3catalysts are presented inFig. 6. MgCoNi/Al2O3catalyst

    exhibited much higher CH4 and CO2 conversion than CoNi/

    Al2O3catalyst within the temperature range between 700 and

    850 C. It is very interesting to see that CO2 conversion is

    relatively higher than CH4conversion for both catalysts. This

    is due to the reverse water gas shift reaction. As a result, the

    H2/CO ratio is less than unity for both catalysts. However, with

    increasing the temperature, CH4 conversion is close to CO2conversion.

    To check the stability of CoNi/Al2O3 and MgCoNi/Al2O3catalysts with time on stream, CO2 reforming reaction data

    were collected for 200 h.Fig. 7shows CH4and CO2conversionand H2/CO ratio with time on stream over CoNi/Al2O3 and

    MgCoNi/Al2O3catalysts. MgCoNi/Al2O3catalyst revealed very

    high CH4and CO2conversion. Surprisingly, the stability was

    maintained for 200 h without detectable catalyst deactivation.

    On the contrary, CoNi/Al2O3 catalyst continuously deactivated

    with time on stream. Both CH4and CO2conversion dropped

    with time on stream.

    Table 2summarizes CH4and CO2 conversion, H2 and CO

    yield, H2/CO ratio and coking rate. In the case of initial data,

    CO2conversion of CoNi/Al2O3was lower than that of MgCoNi/

    Al2O3. After 200 h of CDR, however, the former showed 89.3%

    CO2conversion and the latter 96.7%. These data indicate that

    MgCoNi/Al2O3is more active and stable than CoNi/Al2O3. Thetrend of CH4conversion was similar to that of CO2conversion.

    In the case of CoNi/Al2O3, CH4conversion was decreased from

    88.3 to 85.5%. On the contrary, the MgCoNi/Al2O3 catalyst

    exhibited still high CH4 conversion (95.1%) at the GHSV of

    40,000 mL g1 h1. It is a rare case that a supported Ni catalyst

    shows very high activity as well as stability at the GHSV of

    40,000 mL g1 h1 in CDR for 200 h. H2yield was lower than CO

    yield due to the reverse water gas shift reaction (RWGS:

    H2CO2/H2OCO). As a result, the H2/CO ratio value was

    lower than 1.0.

    To evaluate the effect of coke, used catalysts were charac-

    terized by TGA in air. Fig. 8 depicts the Thermo-gravimetric

    (TG) profiles for the quantitative analysis of carbonaceous

    species in the used catalysts (CoNi/Al2O3and MgCoNi/Al2O3).

    According to previous reports[67e70], up to 300 C, the initial

    weight loss is assigned to the thermal desorption of water and

    removal of easily oxidizable carbonaceous species. Above

    500 C, the large weight loss can be assigned to theoxidationof

    coke to CO and CO2. In other words, the oxidation of amor-

    phous carbonaceous species occurs at low temperature, while

    graphitic carbon is oxidized at high temperature[61,71]. In the

    Fig. 5e In-situ DRIFT spectra of CO2reforming on CoNi/Al2O3and MgCoNi/Al2O3catalysts at 300 C.

    Fig. 6 e CH4and CO2conversion and H2/CO ratio of CoNi/

    Al2O3and MgCoNi/Al2O3catalysts with various

    temperatures (Reaction conditions: P [ 1 atm,

    GHSV [ 40,000 mL gL1 hL1, CH4:CO2:N2 [ 1:1:1).

    i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 9 ( 2 0 1 4 ) 3 7 6 2 e3 7 7 03766

    http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141
  • 8/12/2019 Desulfurare chime

    6/9

    case of MgCoNi/Al2O3, about 5% weight loss was measured due

    to theremoval ofboth amorphousand graphiticcarbon. On the

    contrary, CoNi/Al2O3 showed the drastic weight loss (16%)

    between 450 and660 C. As a consequence, CoNi/Al2O3 showedthe coking rate of0.80mgc/gcat h, while MgCoNi/Al2O3 revealed

    the coking rate of 0.25 mgc/gcath. It should be noted that the

    coking rate of MgCoNi/Al2O3 is 3 timeslowerthanthatof CoNi/

    Al2O3. This clearly confirms that MgCoNi/Al2O3 has much

    stronger coke resistance than CoNi/Al2O3in CDR. It suggests

    that the addition of MgO effectively stabilizes the catalyst in

    CDR. This is possibly related to a strong interaction between Ni

    and MgO, confirmed from TPR. As a result, the MgCoNi/Al2O3catalyst exhibited the outstanding performance under severe

    condition (GHSV of 40,000 mL g1 h1 for 200 h). In addition, to

    elucidatethe beneficial effect of MgOin preventing sintering of

    Ni, used catalysts were characterized by XRD (Fig. 9). At the

    initial stage, the Ni crystallite size of CoNi/Al2O3 is slightlysmaller than that of MgCoNi/Al2O3. After the reactionfor 200h,

    however, the former shows 18.9 nm Ni crystallite size and the

    latter 9.5 nm (Table 1).Thus, itis confirmedthat the additionof

    MgOis highly effective in preventing the sintering of Ni in CDR.

    Nitrogen adsorption/desorption isotherms were used to

    confirm the structural properties of CoNi/Al2O3and MgCoNi/

    Al2O3 catalysts and the results are shown in Fig. 10. All iso-

    therms present a sharp step at intermediate relative pressure

    (P/P0) of 0.5e0.9. All the samples give type IV adsorption iso-

    therms with a hysteresis loop, indicating that the mesoporous

    framework of Al2O3can be well-retained after the impregna-

    tion of Mg, Co, and Ni [72]. It is clear that the pore volume of

    CoNi/Al2O3was significantly decreased, which is due to coke

    formation and sintering, while the pore volume of MgCoNi/

    Al2O3did not change significantly.

    4. Conclusions

    MgCoNi/Al2O3exhibited higher CH4and CO2conversion than

    CoNi/Al2O3with the temperature range from 700 to 850 C at

    the GHSV of 40,000 mL g1 h1 in CDR. In addition, the

    MgCoNi/Al2O3 catalyst showed stable activity at 850 C for

    200 h, while the CoNi/Al2O3catalyst deactivated with time on

    stream. The remarkable catalytic performance of the MgCoNi/

    Al2O3 catalyst is mainly ascribed to the beneficial effect of

    MgO, resulting from the basic nature of MgO, a strong inter-

    action between Ni and MgO, and rapid decomposition/disso-ciation of CH4and CO2. As a result, the MgCoNi/Al2O3catalyst

    can possess stronger resistance againstcoke formation and Ni

    Fig. 7e CH4and CO2conversion and H2/CO ratio of CoNi/

    Al2O3and MgCoNi/Al2O3catalysts over reaction for 200 h

    (Reaction conditions: T[ 850 C, P [ 1 atm,

    GHSV [ 40,000 mL gL1 hL1, CH4:CO2:N2 [ 1:1:1).

    Table 2e Reaction data of the catalysts. Final data were obtained after 200 h of CDR reaction.

    Catalyst description Conversion (%) Yield (%) H2/CO ratio Coking rate (mgC/gcath)

    CH4 CO2 H2 CO

    Initial CoNi/Al2O3 88.3 92.1 88.9 92.4 0.92 e

    Final CoNi/Al2O3 85.5 89.3 86.6 89.9 0.90 0.80

    Initial MgCoNi/Al2O3 95.0 96.6 94.2 96.9 0.97 e

    Final MgCoNi/Al2O3 95.1 96.7 94.1 97.0 0.96 0.25

    (Reaction conditions:T 850

    C,P 1 atm, GHSV 40,000 mL g

    1

    h

    1

    , CH4:CO2:N2 1:1:1).

    Fig. 8 e Thermogravimetric and differential

    thermogravimetric profile of CoNi/Al2O3and MgCoNi/Al2O3catalysts after reaction for 200 h (Reaction conditions:

    T[ 850 C, P [ 1 atm, GHSV [ 40,000 mL gL1 hL1,

    CH4:CO2:N2 [ 1:1:1).

    i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 9 ( 2 0 1 4 ) 3 7 6 2 e3 7 7 0 3767

    http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141
  • 8/12/2019 Desulfurare chime

    7/9

    sintering than the CoNi/Al2O3 catalyst. Therefore, MgCoNi/

    Al2O3 catalyst can be a promising catalyst for CDR, which

    utilizes two major green house gases (CO2and CH4).

    Acknowledgments

    The authors gratefully acknowledge financial support from

    the Samsung Advanced Institute of Technology (SAIT), Sam-

    sung Electronics Co. Ltd.

    r e f e r e n c e s

    [1] Menegazzo F, Signoretto M, Pinna F, Canton P, Pernicone N.Optimization of bimetallic dry reforming catalysts bytemperature programmed reaction. Appl Catal A Gen

    2012;439440:80e7.

    [2] Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF. Partialoxidation of methane to synthesis gas using carbon dioxide.Nature 1991;352:225e6.

    [3] Valderrama G, Kiennemann A, Goldwasser MR.LaeSreNieCoeO based perovskite-type solid solutions ascatalyst precursors in the CO2reforming of methane. J PowerSources 2010;195:1765e71.

    [4] Jeong DW, Jang WJ, Shim JO, Roh HS, Son IH, Lee SJ. The

    effect of preparation method on the catalytic performanceover superior MgO-promoted NieCe0.8Zr0.2O2catalyst for CO2reforming of CH4. Int J Hydrogen Energy 2013;38:13649e54.

    [5] Stagg-Williams SM, Noronha FB, Fendley G, Resasco DE. CO2reforming of CH4over Pt/ZrO2catalysts promoted with Laand Ce oxides. J Catal 2000;194:240e9.

    [6] Rostrup-Nielsen JR, Bak Hansen JH. CO2-reforming ofmethane over transition metals. J Catal 1993;144:38e49.

    [7] Hegarty MES, OConnor AM, Ross JRH. Syngas productionfrom natural gas using ZrO2-supported metals. Catal Today1998;42:225e32.

    [8] Lercher JA, Bitter JH, Hally W, Niessen W, Seshan K. Design ofstable catalysts for methane-carbon dioxide reforming. StudSurf Sci Catal 1996;101A:463e72.

    [9] Xu Z, Li Y, Zhang J, Chang L, Zhou R, Duan Z. Bound-state Ni

    speciese a superior form in Ni-based catalyst for CH4/CO2reforming. Appl Catal A Gen 2001;210:45e53.

    [10] Wang S, Lu GQ. Role of CeO2in Ni/CeO2eAl2O3catalysts forcarbon dioxide reforming of methane. Appl Catal B Environ1998;19:267e77.

    [11] Luo JZ, Yu ZL, Ng CF, Au CT. CO2/CH4reforming overNieLa2O3/5A: an investigation on carbon deposition andreaction steps. J Catal 2000;194:198e210.

    [12] Son IH, Lee SJ, Soon A, Roh HS, Lee H. Steam treatment on Ni/g-Al2O3 for enhanced carbon resistance in combined steamand carbon dioxide reforming of methane. Appl Catal BEnviron 2013;134135:103e9.

    [13] Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Park SB. A highlyeffective and stable nano-sized Ni/MgOeAl2O3catalyst forgas to liquids (GTL) process. Int J Hydrogen Energy

    2008;33:2036e43.[14] Gokon N, Yamawaki Y, Nakazawa D, Kodama T. Kinetics of

    methane reforming over Ru/g-Al2O3-catalyzed metallic foamat 650e900 C for solar receiver-absorbers. Int J HydrogenEnergy 2011;36:203e15.

    [15] Jakobsen JG, Jrgensen TL, Chorkendorff I, Sehested J. Steamand CO2reforming of methane over a Ru/ZrO2catalyst. ApplCatal A Gen 2010;377:158e66.

    [16] Nagai M, Nakahira K, Ozawa Y, Namiki Y, Suzuki Y. CO2reforming of methane on Rh/Al2O3catalyst. Chem Eng Sci2007;62:4998e5000.

    [17] Oemar U, Hidajat K, Kawi S. Role of catalyst support overPdOeNiO catalysts on catalyst activity and stability for oxy-CO2reforming of methane. Appl Catal A Gen2011;402:176e87.

    [18] Ozkara-AydnoluS , Aksoylu AE. CO2reforming of methaneover PteNi/Al2O3catalysts: effects of catalyst composition,and water and oxygen addition to the feed. Int J HydrogenEnergy 2011;36:2950e9.

    [19] Therdthianwong S, Siangchin C, Therdthianwong A.Improvement of coke resistance of Ni/Al2O3catalyst in CH4/CO2reforming by ZrO2addition. Fuel Process Technol2008;89:160e8.

    [20] Zhang S, Wang J, Wang X. Effect of calcination temperatureon structure and performance of Ni/TiO2eSiO2catalyst forCO2reforming of methane. J Nat Gas Chem 2008;17:179e83.

    [21] Gao J, Hou Z, Liu X, Zeng Y, Luo M, Zheng X. Methaneautothermal reforming with CO2and O2to synthesis gas atthe boundary between Ni and ZrO2. Int J Hydrogen Energy2009;34:3734e42.

    Fig. 10e Nitrogen adsorption/desorption isotherms of

    reduced (filled symbol) and used (open symbol) catalysts

    after reaction for 200 h.

    Fig. 9eXRD patterns of used CoNi/Al2O3and MgCoNi/Al2O3catalysts (Reaction conditions: T[ 850 C, P [ 1 atm,

    TOS [ 200 h).

    i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 9 ( 2 0 1 4 ) 3 7 6 2 e3 7 7 03768

    http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1http://refhub.elsevier.com/S0360-3199(13)03133-9/sref2http://refhub.elsevier.com/S0360-3199(13)03133-9/sref2http://refhub.elsevier.com/S0360-3199(13)03133-9/sref2http://refhub.elsevier.com/S0360-3199(13)03133-9/sref2http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref6http://refhub.elsevier.com/S0360-3199(13)03133-9/sref6http://refhub.elsevier.com/S0360-3199(13)03133-9/sref6http://refhub.elsevier.com/S0360-3199(13)03133-9/sref6http://refhub.elsevier.com/S0360-3199(13)03133-9/sref6http://refhub.elsevier.com/S0360-3199(13)03133-9/sref7http://refhub.elsevier.com/S0360-3199(13)03133-9/sref7http://refhub.elsevier.com/S0360-3199(13)03133-9/sref7http://refhub.elsevier.com/S0360-3199(13)03133-9/sref7http://refhub.elsevier.com/S0360-3199(13)03133-9/sref7http://refhub.elsevier.com/S0360-3199(13)03133-9/sref7http://refhub.elsevier.com/S0360-3199(13)03133-9/sref8http://refhub.elsevier.com/S0360-3199(13)03133-9/sref8http://refhub.elsevier.com/S0360-3199(13)03133-9/sref8http://refhub.elsevier.com/S0360-3199(13)03133-9/sref8http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref21http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref20http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref19http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref18http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref17http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref16http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref15http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref14http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref13http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref12http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref11http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref10http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref9http://refhub.elsevier.com/S0360-3199(13)03133-9/sref8http://refhub.elsevier.com/S0360-3199(13)03133-9/sref8http://refhub.elsevier.com/S0360-3199(13)03133-9/sref8http://refhub.elsevier.com/S0360-3199(13)03133-9/sref8http://refhub.elsevier.com/S0360-3199(13)03133-9/sref7http://refhub.elsevier.com/S0360-3199(13)03133-9/sref7http://refhub.elsevier.com/S0360-3199(13)03133-9/sref7http://refhub.elsevier.com/S0360-3199(13)03133-9/sref7http://refhub.elsevier.com/S0360-3199(13)03133-9/sref7http://refhub.elsevier.com/S0360-3199(13)03133-9/sref6http://refhub.elsevier.com/S0360-3199(13)03133-9/sref6http://refhub.elsevier.com/S0360-3199(13)03133-9/sref6http://refhub.elsevier.com/S0360-3199(13)03133-9/sref6http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref5http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref4http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref3http://refhub.elsevier.com/S0360-3199(13)03133-9/sref2http://refhub.elsevier.com/S0360-3199(13)03133-9/sref2http://refhub.elsevier.com/S0360-3199(13)03133-9/sref2http://refhub.elsevier.com/S0360-3199(13)03133-9/sref2http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1http://refhub.elsevier.com/S0360-3199(13)03133-9/sref1
  • 8/12/2019 Desulfurare chime

    8/9

    [22] Li H, Xu H, Wang J. Methane reforming with CO2to syngasover CeO2-promoted Ni/Al2O3eZrO2catalysts prepared via adirect sol-gel process. J Nat Gas Chem 2011;20:1e8.

    [23] Bachiller-Baeza B, Mateos-Pedrero C, Soria MA, Guerrero-Ruiz A, Rodemerck U, Rodrguez-Ramos I. Transient studiesof low-temperature dry reforming of methane over Ni-CaO/ZrO2eLa2O3. Appl Catal B Environ 2013;129:450e9.

    [24] Jing QS, Zheng XM. Combined catalytic partial oxidation and

    CO2reforming of methane over ZrO2-modified Ni/SiO2catalysts using fluidized-bed reactor. Energy2006;31:1848e56.

    [25] Rahemi N, Haghighi M, Babaluo AA, Jafari MF, Estifaee P. CO2reforming of CH4over CeO2-doped Ni/Al2O3nanocatalysttreated by non-thermal plasma. J Nanosci Nanotechnol2013;13:4896e908.

    [26] Chen W, Zhao G, Xue Q, Chen L, Lu Y. High carbon-resistanceNi/CeAlO3eAl2O3catalyst for CH4/CO2reforming. Appl CatalB Environ 2013;136:260e8.

    [27] Fidalgo B, Arenillas A, Menendez JA. Mixtures of carbon andNi/Al2O3as catalysts for the microwave-assisted CO2reforming of CH4. Fuel Process Technol 2011;92:1531e6.

    [28] Hao Z, Zhu Q, Jiang Z, Hou B, Li H. Characterization of aerogelNi/Al2O3catalysts and investigation on their stability for

    CH4eCO2reforming in a fluidized bed. Fuel Process Technol2009;90:113e21.

    [29] Li H, Wang J. Study on CO2reforming of methane to syngasover Al2O3eZrO2supported Ni catalysts prepared via a directsolegel process. Chem Eng Sci 2004;59:4861e7.

    [30] Chen HW, Wang CY, Yu CH, Tseng LT, Liao PH. Carbondioxide reforming of methane reaction catalyzed by stablenickel copper catalysts. Catal Today 2004;97:173e80.

    [31] Hou ZY, Yokota O, Tanaka T, Yashima T. Surface propertiesof a coke-free Sn doped nickel catalyst for the CO2reformingof methane. Appl Surf Sci 2004;233:58e68.

    [32] Seok SH, Choi SH, Park ED, Han SH, Lee JS. Mn-promoted Ni/Al2O3catalysts for stable carbon dioxide reforming ofmethane. J Catal 2002;209:6e15.

    [33] Zhang JG, Wang H, Dalai AK. Development of stable

    bimetallic catalysts for carbon dioxide reforming ofmethane. J Catal 2007;249:300e10.

    [34] Choudhary VR, Mamman AS. Simultaneous oxidativeconversion and CO2or steam reforming of methane tosyngas over CoOeNiOeMgO catalyst. J Chem TechnolBiotechnol 1998;73:345e50.

    [35] Takanabe K, Nagaoka K, Nariai K, Aika KI. Titania-supportedcobalt and nickel bimetallic catalysts for carbon dioxidereforming of methane. J Catal 2005;232:268e75.

    [36] Rahemi N, Haghighi M, Babaluo AA, Jafari MF, Estifaee P.Plasma assisted synthesis and physicochemicalcharacterizations of NieCo/Al2O3nanocatalyst used in dryreforming of methane. Plasma Chem Plasma P2013;33:663e80.

    [37] Chen L, Zhu Q, Wu R. Effect of CoeNi ratio on the activity and

    stability of CoeNi bimetallic aerogel catalyst for methaneoxy-CO2 reforming. Int J Hydrogen Energy 2011;36:2128e36.

    [38] Chen L, Zhu Q, Hao Z, Zhang T, Xie Z. Development of aCoeNi bimetallic aerogel catalyst for hydrogen productionvia methane oxidative CO2reforming in a magnetic assistedfluidized bed. Int J Hydrogen Energy 2010;35:8494e502.

    [39] Takanabe K, Nagaoka K, Aika KI. Improved resistanceagainst coke deposition of titania supported cobalt andnickel bimetallic catalysts for carbon dioxide reforming ofmethane. Catal Lett 2005;102:153e7.

    [40] Dias JAC, Assaf JM. Influence of calcium content in Ni/CaO/g-Al2O3catalysts for CO2-reforming of methane. Catal Today2003;85:59e68.

    [41] Choudhary VR, Uphade BS, Mamman AS. Largeenhancement in methane-to-syngas conversion activity of

    supported Ni catalysts due to precoating of catalyst supportswith MgO, CaO or rare-earth oxide. Catal Lett 1995;32:387e90.

    [42] Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Park SB. Cokestudy on MgO-promoted Ni/Al2O3catalyst in combined H2Oand CO2reforming of methane for gas to liquid (GTL)process. Appl Catal A Gen 2008;340:183e90.

    [43] Yasyerli S, Filizgok S, Arbag H, Yasyerli N, Dogu G. Ruincorporated Ni-MCM-41 mesoporous catalysts for dry

    reforming of methane: effects of Mg addition, feedcomposition and temperature. Int J Hydrogen Energy2011;36:4863e74.

    [44] Aghamohammadi S, Haghighi M, Karimipour S. Acomparative synthesis and physicochemicalcharacterizations of Ni/Al2O3eMgO nanocatalyst viasequential impregnation and sol-gel methods used for CO2reforming of methane. J Nanosci Nanotechnol2013;13:4872e82.

    [45] Fan MS, Abdullah AZ, Bhatia S. Hydrogen production fromcarbon dioxide reforming of methane over NieCo/MgOeZrO2catalyst: process optimization. Int J Hydrogen Energy2011;36:4875e86.

    [46] Garca V, Fernandez JJ, Ruz W, Mondragon F, Moreno A.Effect of MgO addition on the basicity of Ni/ZrO2and on its

    catalytic activity in carbon dioxide reforming of methane.Catal Commun 2009;11:240e6.

    [47] Roh HS, Jun KW. Carbon dioxide reforming of methane overNi catalysts supported on Al2O3modified with La2O3, MgO,and CaO. Catal Surv Asia 2008;12:239e52.

    [48] Jeong DW, Potdar HS, Roh HS. Comparative study on nano-sized 1 wt% Pt/Ce0.8Zr0.2O2and 1 wt% Pt/Ce0.2Zr0.8O2catalystsfor a single stage water gas shift reaction. Catal Lett2012;142:439e44.

    [49] Jeong DW, Potdar HS, Shim JO, Jang WJ, Roh HS. H2production from a single stage water-gas shift reaction overPt/CeO2, Pt/ZrO2, and Pt/Ce(1x)Zr(x)O2catalysts. Int JHydrogen Energy 2013;38:4502e7.

    [50] Jeong DW, Potdar HS, Kim KS, Roh HS. The effect of sodiumin activity enhancement of nano-sized Pt/CeO2catalyst for

    water gas shift reaction at low temperature. Bull Kor ChemSoc 2011;32:3557e8.

    [51] Jeong DW, Jang WJ, Shim JO, Han WB, Roh HS, Jung UH, et al.Low-temperature water-gas shift reaction over supported Cucatalysts. Renew Energy 2013.http://dx.doi.org/10.1016/

    j.renene.2013.07.035.[52] Roh HS, Eum IH, Jeong DW. Low temperature steam

    reforming of methane over NieCe(1x)Zr(x)O2catalysts undersevere conditions. Renew Energy 2012;42:212e6.

    [53] Subramanian V, Gnanakumar ES, Jeong DW, Han WB,Gopinath CS, Roh HS. A rationally designedCuFe2O4mesoporous Al2O3composite towards stableperformance of high temperature wateregas shift reaction.Chem Commun 2013;49:11257e9.

    [54] Garca-Dieguez M, Herrera C, Larrubia MA, Alemany LJ. CO2-

    reforming of natural gas components over a highly stableand selective NiMg/Al2O3nanocatalyst. Catal Today2012;197:50e7.

    [55] Roh HS, Koo KY, Yoon WL. Combined reforming of methaneover co-precipitated NieCeO2, NieZrO2and Ni-Ce0.8Zr0.2O2catalysts to produce synthesis gas for gas to liquid (GTL)process. Catal Today 2009;146:71e5.

    [56] Hermes NA, Lansarin MA, Perez-Lopez OW. Catalyticdecomposition of methane over MeCoeAl catalysts (MMg,Ni, Zn, Cu). Catal Lett 2011;141:1018e25.

    [57] Ruckenstein E, Hu YH. The effect of precursor andpreparation conditions of MgO on the CO2reforming of CH4over NiO/MgO catalysts. Appl Catal A Gen 1997;154:185e205.

    [58] Jang WJ, Jeong DW, Shim JO, Roh HS, Son IH, Lee SJ. H 2andCO production over a stable NieMgOeCe0.8Zr0.2O2catalyst

    i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 9 ( 2 0 1 4 ) 3 7 6 2 e3 7 7 0 3769

    http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref22http://refhub.elsevier.com/S0360-3199(13)03133-9/sref23http://refhub.elsevier.com/S0360-3199(13)03133-9/sref23http://refhub.elsevier.com/S0360-3199(13)03133-9/sref23http://refhub.elsevier.com/S0360-3199(13)03133-9/sref23http://refhub.elsevier.com/S0360-3199(13)03133-9/sref23http://refhub.elsevier.com/S0360-3199(13)03133-9/sref23http://refhub.elsevier.com/S0360-3199(13)03133-9/sref23http://refhub.elsevier.com/S0360-3199(13)03133-9/sref23http://refhub.elsevier.com/S0360-3199(13)03133-9/sref23http://refhub.elsevier.com/S0360-3199(13)03133-9/sref23http://refhub.elsevier.com/S0360-3199(13)03133-9/sref23http://refhub.elsevier.com/S0360-3199(13)03133-9/sref24http://refhub.elsevier.com/S0360-3199(13)03133-9/sref24http://refhub.elsevier.com/S0360-3199(13)03133-9/sref24http://refhub.elsevier.com/S0360-3199(13)03133-9/sref24http://refhub.elsevier.com/S0360-3199(13)03133-9/sref24http://refhub.elsevier.com/S0360-3199(13)03133-9/sref24http://refhub.elsevier.com/S0360-3199(13)03133-9/sref24http://refhub.elsevier.com/S0360-3199(13)03133-9/sref24http://refhub.elsevier.com/S0360-3199(13)03133-9/sref24http://refhub.elsevier.com/S0360-3199(13)03133-9/sref24http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref25http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref26http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref27http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref28http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref29http://refhub.elsevier.com/S0360-3199(13)03133-9/sref30http://refhub.elsevier.com/S0360-3199(13)03133-9/sref30http://refhub.elsevier.com/S0360-3199(13)03133-9/sref30http://refhub.elsevier.com/S0360-3199(13)03133-9/sref30http://refhub.elsevier.com/S0360-3199(13)03133-9/sref31http://refhub.elsevier.com/S0360-3199(13)03133-9/sref31http://refhub.elsevier.com/S0360-3199(13)03133-9/sref31http://refhub.elsevier.com/S0360-3199(13)03133-9/sref31http://refhub.elsevier.com/S0360-3199(13)03133-9/sref31http://refhub.elsevier.com/S0360-3199(13)03133-9/sref31http://refhub.elsevier.com/S0360-3199(13)03133-9/sref32http://refhub.elsevier.com/S0360-3199(13)03133-9/sref32http://refhub.elsevier.com/S0360-3199(13)03133-9/sref32http://refhub.elsevier.com/S0360-3199(13)03133-9/sref32http://refhub.elsevier.com/S0360-3199(13)03133-9/sref32http://refhub.elsevier.com/S0360-3199(13)03133-9/sref32http://refhub.elsevier.com/S0360-3199(13)03133-9/sref32http://refhub.elsevier.com/S0360-3199(13)03133-9/sref32http://refhub.elsevier.com/S0360-3199(13)03133-9/sref33http://refhub.elsevier.com/S0360-3199(13)03133-9/sref33http://refhub.elsevier.com/S0360-3199(13)03133-9/sref33http://refhub.elsevier.com/S0360-3199(13)03133-9/sref33http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref35http://refhub.elsevier.com/S0360-3199(13)03133-9/sref35http://refhub.elsevier.com/S0360-3199(13)03133-9/sref35http://refhub.elsevier.com/S0360-3199(13)03133-9/sref35http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref39http://refhub.elsevier.com/S0360-3199(13)03133-9/sref39http://refhub.elsevier.com/S0360-3199(13)03133-9/sref39http://refhub.elsevier.com/S0360-3199(13)03133-9/sref39http://refhub.elsevier.com/S0360-3199(13)03133-9/sref39http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref41http://refhub.elsevier.com/S0360-3199(13)03133-9/sref41http://refhub.elsevier.com/S0360-3199(13)03133-9/sref41http://refhub.elsevier.com/S0360-3199(13)03133-9/sref41http://refhub.elsevier.com/S0360-3199(13)03133-9/sref41http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://dx.doi.org/10.1016/j.renene.2013.07.035http://dx.doi.org/10.1016/j.renene.2013.07.035http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://dx.doi.org/10.1016/j.ijhydene.2013.12.141http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref58http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref57http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref56http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref55http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref54http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref53http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://refhub.elsevier.com/S0360-3199(13)03133-9/sref52http://dx.doi.org/10.1016/j.renene.2013.07.035http://dx.doi.org/10.1016/j.renene.2013.07.035http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref50http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref49http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref48http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref47http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref46http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref45http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref44http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref43http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref42http://refhub.elsevier.com/S0360-3199(13)03133-9/sref41http://refhub.elsevier.com/S0360-3199(13)03133-9/sref41http://refhub.elsevier.com/S0360-3199(13)03133-9/sref41http://refhub.elsevier.com/S0360-3199(13)03133-9/sref41http://refhub.elsevier.com/S0360-3199(13)03133-9/sref41http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref40http://refhub.elsevier.com/S0360-3199(13)03133-9/sref39http://refhub.elsevier.com/S0360-3199(13)03133-9/sref39http://refhub.elsevier.com/S0360-3199(13)03133-9/sref39http://refhub.elsevier.com/S0360-3199(13)03133-9/sref39http://refhub.elsevier.com/S0360-3199(13)03133-9/sref39http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref38http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref37http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref36http://refhub.elsevier.com/S0360-3199(13)03133-9/sref35http://refhub.elsevier.com/S0360-3199(13)03133-9/sref35http://refhub.elsevier.com/S0360-3199(13)03133-9/sref35http://refhub.elsevier.com/S0360-3199(13)03133-9/sref35http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http://refhub.elsevier.com/S0360-3199(13)03133-9/sref34http