39
Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Embed Size (px)

Citation preview

Page 1: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Designer:Fatma Al-Turkait

Supervised by: Prof.M.Fahim

Eng.Yusuf Ismail

Page 2: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Agenda

Distillation column design

Compressor design

Valve design

Page 3: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Distillation column design

Page 4: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Introduction:Distillation unit is used to separate the components by their volatilities (Boiling point Temperature).

Objective: To separate CO and CO2 from propane and propene

Page 5: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Types of distillation columns

One way of classifying distillation column type is to look at how they are operated .

Thus we have:

Continuous Columns

Batch Columns

Page 6: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Continuous Columns

Page 7: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Batch Columns

1 -Regular batch column.

2 -It is also possible to locate the feed vessel at the top of a stripping column and to operate the column as an inverted batch column.

3 -Middle vessel column

Page 8: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

The type of column Internals:

Bubble cap trays ,valve trays ,and sieve trays.

The best type for our process Is continuous distillation and sieve trays.

Page 9: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Material construction

The material chosen for our equipments is carbon steel due to its low cost and ease fabrication . In addition, it resists corrosion.

Page 10: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Main design parametersA- Number of stages

B- Dimensions:

1-Diameter

2-Height

3-Tray Design

4-Wier

5-Thickness

6-Cost

Page 11: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

A- Minimum and Actual number of stages

)1(Number of stagesCalculate vapor pressure of the light and heavy key components by Antoine equation.

Where: a, b, c, d, e & f are Antoine Coefficient.

)2(Determine the values of liquid-gas constant (K) for both the light and heavy key components.

)3(Calculate the average relative volatility of the light key with respect to the heavy key.

Where,

feTTdcT

baP

)ln()ln(

P

PK i

bCtCC)()(

222

3

2

2,)(

C

CbC K

K

Page 12: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

)4(Obtain the minimum number of stages by Fenske equation

)5(Estimate the plate efficiency.Plate efficiency = 0.6

Obtain the actual number of stages

)(Log

x

x

x

xLog

N2

2

3

3

2

C

bC

C

tC

C

m

efficiencyplate

NN m

Page 13: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Detailed calculation for Nm,N

• Open File

Page 14: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Diameter

5.0// LVWWLV VLF

liquid vapor flow rate

1975.076.585/601.21066.2/104.4 5.044

2.011 20/tensionSurfaceKK

140347.020/014005.06.0 2.0

Correction for surface tension

5.0

1 / VVLF Ku

sm /118274.2601.2/601.276.585140347.0

.

The flooding vapor velocity (m/s).

Page 15: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

The actual velocity based on net area.

Maximum volumetric flow rate

Net area required

As first trial take down comer area as %12 of the total column cross sectional areaA@12%

= net area required / 0.88

smUU Fn /800533.1118274.285.085.0

sm /886184.2601.23600/074.285.947 3

VMwtVV 3600/max

nnet urateflowvolumetricA /max2602961.1800533.1/886184.2 m

2821547.188.0/602961.1 m

Page 16: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Column diameter

5./4 netAD

m522936.1/4821547.1 5.0

Page 17: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Height

H=N*Spacing

H=30*.9=27 m

Page 18: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Tray design

Column area (m2) 24/ DAc

Down comer area (m2) ActotalofareacomerdownofPercentAd

The net area (m2) AdAcAn

AdAcAa 2The active area (m2)

2603009.1218592.0821601.1 m

234416.1218592.02821601.1 m

2218592.0821601.112.0 m

22 821601.1522936.14/ m

Page 19: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

weir

Ad/Ac=0.21859/1.82*100

= 12%

Iw/Dc=0.76

Dc=1.522936m

Iw=1.157431m

Page 20: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

weir height=50mm

Hole diameter=5mm

Plate thickness=5mm

Page 21: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Check weeping

K2=30.9 from graph @Minimum rate (hw + how)

uh=[K2-0.90(25.4-dh)]/g0.5

Actual min vap=145.9 m/s

3/2/max750 lengthweirrateliquidhMax low

liquid mm 51.69409

3/2L/min750 lengthweirrateliquidhMin ow

liquid mm 40.75425

liquid mm 90.75425 40.7542550

sm /8.75601.2/54.259.09.30 5.0

Page 22: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Downcomer backup

owtdcwb hhhhh

51.69409 260.3317 33.97246 50 mm998.395

hb < .475(.5*(plate spacing +weir height)

m395998.0

Page 23: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Number of holes

Area of one holes=

Number of holes=Ah/Ahole=

Holes on one plate= Numbers of holes/actual number of plates =705.1

23-105/4 -5101.964

-510.9640.138442/1

7051

Page 24: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Shell thickness

Where;t: shell thickness (in)P: internal pressure (psig)ri: internal radius of shell (in)EJ: efficiency of jointsS: working stress (psi)Cc: allowance for corrosion (in)

cJ

i CPSE

t

6.0

Pr

11025.139.296.085.013700/97905.2939.29 t

mmt 1.5

Page 25: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Cost

Cost=Vessel cost+ Trays cost+ Reboile Cost+ Condenser unit cost

Cost=$21800+12000+36200+49800

$= 119800

Page 26: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Results: Equipment nameT-101

TypeContinuous distillation LocationAfter T-100 distillation

Material of Construction Carbon steel

Insulation Glass wool

Cost ($) 119800

Number of stages (hysis)10

Tray spacing0.9

Type of tray Sieve tray

Diameter (m) 1.522936

Height (m) 10.5

Number of Holes 705

Page 27: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Compressor design

Page 28: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Procedure

1 -Select centrifugal compressor (single stage) according to this figure.

Page 29: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

1 .Calculate the adiabatic head for a compressor(k100)

2 .Calculate the adiabatic power for single stage compression.

3 .Calculate the adiabatic discharge temperature.

9 .Calculate the adiabatic efficiency .

1/1/ /1121

' kkad PPkkTRH N.m/kg 0.247129

hpKW 38.24107.180 adP adHm

kkPPTT /11212 /

K35.860

1/1//1/1/ 1212 nnPPkkPPad = 72.02%

Page 30: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Cost

K101= 49300

K100= 53800

Page 31: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Specification for compressor K100

Equipment nameCompressor

TypeCentrifugal Compressor, single stage

LocationAfter CRV-103/ propylene process

Material of Construction Carbon steel

Insulation Glass wool objectiveTo increase the pressure of stream

12

Cost $49300

Power (Hp)8.0757

Efficiency (%)73.693

Inlet Temperature485.7 (C°)

Outlet Temperature626.1 (C°)

Inlet Pressure

Outlet Pressure

14.7 (psia)

44.09

Page 32: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Equipment nameCompressor

TypeCentrifugal Compressor, single stage

LocationAfter V-101/ amine process

Material of Construction Carbon steel

Insulation Glass wool objectiveTo increase the pressure of stream

1

Cost $53800 Power (Hp)35.66

Efficiency (%)89.418

Inlet Temperature25 (C°)

Outlet Temperature695.3 (C°)

Inlet Pressure

Outlet Pressure

14.7 (psia)

734.8

Specification for compressor K101

Page 33: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Valve design

Page 34: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Introduction:A valve is a device that regulates the flow of substances either gases, fluidized solids, slurries, or liquids) by opening, closing, or partially obstructing various passageways.

Objective: to reduce the pressure of flow rates.

Page 35: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Main design parameter

Valve Type

Pipe Diameter

Cost

Page 36: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Valve Type globe valve

Best Suited Control : Linear and Equal percentage.Recommended Uses:  Throttling service/flow regulation, Frequent operation.Applications: Liquids, vapors, gases, corrosive substances, slurries. Advantages:

1 .Efficient throttling2 .Accurate flow control

3 .Available in multiple ports.

Disadvantages:1 .High pressure drop

2.More expensive than other valves.

Page 37: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Pipe diameter

A=V/v

A=2.177E-3 m2

D=(A*4/ )0.5

D=0.526 m

Page 38: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Cost

Page 39: Designer: Fatma Al-Turkait Supervised by: Prof.M.Fahim Eng.Yusuf Ismail

Thank you for listening