Designed Detailed

Embed Size (px)

Citation preview

  • 8/12/2019 Designed Detailed

    1/31

    For a worldwide and up-todate literaturesearch Ofl any aspectofconcrete design or construction and related topics, contact theBCAs Centre forConcrete Informationon Dl 344762676.

    43.501 First published 1973Secondedition 1986Third edition 1998ISBN 07210 1541 7PriceGroupF BritishCement Association 1998

    Published byBritish CementAssociationCentury House. Telford AvenueCrowihorne.BerksRG45 YSTel:01344 762676 Fax:01344 761214

    Website:www.bca.org.uk

    All advice or information from the British Cement Association is intended for those who will evaluate the signiticance and limitations ol itscontents and take responsibility or ts useand application.No liability(including hat for negligence) forany loss resulting from such advice rinformationsaccepted.Readers should note thatall BCA publicationsare subject orevision rom imeto imeand should therefore ensure thatthey are inpossessionof he latest version.

  • 8/12/2019 Designed Detailed

    2/31

    Designed and detailed(BS 8110: 1997)J. B. Higgins and B. R. Rogers MA. CFng, MI(IContents Foreword2 Introduction This third editionofDesignedand detailed has been revised toBS 8110 : Part I:1997, and theamendment dated 15 September 1998.Although here havebeen3 BS 8110and limitstate design several amendments tothe code since 1985, the latest and most significant changehas been thereduction in thepartial safety factor for reinforcement m rom 1.156 Design information . .to 1 .05. Withhigher stresses, less steel isrequired. However, the otal saving may

    7 Structural summary sheet not be fully realised because here are otherconsiderations such as choosingapractical arrangement ofbars,and the deflection in the caseofshallower8 Floorslab members.10 First-floormainbeam The calculations have alsobeen revised for the oading requirements ofBS 6399Part 1: 1996and Part 2: 1995.16 Edgebeam .Designchartsin BS 8110 Part3: 1985 maystill be usedto providea18 Columns conservative solution, and oneof hese chartshas been included or the design ofcolumns. Lap lengths for these members have also been taken from BS 8110,22 Foundation Table 3.27,but adjusted for thedesign stress of087f.24 Shearwall The tiereinforcement for robustness isdesigned atitscharacteristic strength. If thecharacteristic bondstress isused for calculating lapsandanchorage engths, then26 Staircase the values in Table 3.27 may be multiplied by I 05/l4. This publication takes aconservative practical approach and usesdirectlythe values given inTable3.27.28 Columndesignchart Observant usersofprevious editionswill appreciate the skill that is evident n the29 Furtherinformation setting outof thecalculations and the drawings. This is thework of the ateJimHiggins, whose care in theproduction of theoriginal artworkwasmeticulous.Sadly, henever saw the second edition in print. I hope thatmy amendments to

    this third editionwill not detract from his fine workmanship.Special thanks are due to Tony Threlfall for his advice and suggestions for thisedition.Railton Rogers

  • 8/12/2019 Designed Detailed

    3/31

    IntroductionThe purposeof this publication is to apply theprinciples of limit stale design givenin BS 8110 by means ofasimpleworked example fora einforced concretebuilding frame. Thecalculations and details arc presented in a form suitable fordesign office purposes and are generally in accordance with thefollowingpLihI cations.BRITISHSTANDARDS INSTITtJTIONSiructuraluse0/concrete.Part I Codeofpractice/or esign andconstruction. Milton Keynes,BSI. 1997. 120 pp. BS 8110Part I: 1997.H MSTATIONERY OFFICE. Buildingandbuildings. The BuildingRegnlation.v1991(Amended 1994). HMSO, London. 21 pp. Statutory Instruments No. 2768.BRITISHSTANDARDS INSTITUTION Loading/or buildings.Part I . Code0/practicebrdeadand inposed loads. Milton Keynes. BSI. 1996. It) pp. BS 6399 : Part I1996.BRITISH STANDARDS NSTITUTION.Loading/or buildings.Part2. Code0/practiceJiir wind loads. Milton Keynes,BSI. 1995.82 pP BS 6399 : Part 2: 1995.BRITISHSTANDARDS INSTITUTION.Loading/irbuildings.Part3. (ode0/practice/r mposed roo/ loads. Milton Keynes. BSI. 1988. 23 pp. BS 6399 : Part 3: 1988.BRITISH STANDARDS INSTlThTIO'J.Specification /orscheduling, dimensioning,bendin' (111(1cutiin' steel ein/irceinent/r concrete. Milton Keynes, BSI. 1989.20 PP BS 4466 : 1989.IIIEC( NCRVIESOCIETY. Modelprocedure/ir he presentation0/calculation,r.London (now Slough). 1981. Technical Report 5, second edition. 18 pp.THE CONCRETE SOCIETY ANDTHE INSTITUTIONOF STRUCTURAL F.NGINEERS,5iandard methodo/detailnig structuralconcrete. London. The Institution. 1989.138 pp.

  • 8/12/2019 Designed Detailed

    4/31

    BS 8110 and limit state designc:)bjective To serve its purpose, a structure must be safeagainst collapseand beserviceable n use. Calculations alone do not produce safe, serviceableanddurable structures.Equally important are thesuitability of thematerials,quality control and supervisionof the workmanship.Limit state design admits that a structure may become unsatisfactorythrough a number ofways which all have to be consideredindependentlyagainst defined limitsofsatisfactorybehaviour. It admits that thereis aninherent variabilityin loads, materials and methods ofdesign andconstruction which makes it impossible to achievecomplete safety againstany possible shortcoming.By providing sufficientmargins ofsafety, theaimof limit state design is to provide an acceptable probability that thestructurewill perform satisfactorilyduring its intended life.

    Limit states can he classified into two main groups:(I) the ultimate limit state, which is concerned with the provision ofadequate safety;(2) the serviceability limit states, which areessentiallyconcerned withdurability.Generally, in practice, there are threelimit states whichare normallyconsideredfor reinforced concrete and these are given in the Table below.

    Serviceability imit statesUltimatelimit state Deflection Cracking

    Objective Provision ofadequate safetyStructure shouldnot deflect so asto impair useofstructure

    Cracking shouldnot besuch asto damage finishesor otherwise.impair usageLoading regime Design ultimateloads Design service load

    Performancelimit Structure shouldnot failDeflection shouldnot exceedspecifiedlimits

    Crack widthshould notexceed03 mmgenerally

    Characteristicvalues For the testingofmaterials, a statisticalapproach can beapplied to thevariations within materials which occur in practice.A normal or Gaussiandistribution curve is assumed to represent the resultsof the testsand a valueknown as the characteristic value can be chosen below which notmore than5% of the test results may be expectedto lie.The characteristicstrength is given by theequation:Characteristicstrength=MeanorAveragestrength L64XStandarddeviationIdeally,a characteristic load should be similarly defined,as a load witha 5%probabilityof being exceededduring the lifetime of thestructure.Flowever, itis not yetpossible to-express oadingin statisticalterms, so theCode uses theloads definedin BS 6399: Parts 1, 2 and 3. 3

  • 8/12/2019 Designed Detailed

    5/31

    Desiqn toads The designload is given by the equation:Design load = Characteristicload X

    where 'r isa partial safety factor for loading. This factor takes intoaccountthe possibility that the loads acting on thestructure may be greater than thecharacteristicvalues. It also takes intoaccount theassumptionsmade in themethod of analysis, and the seriousnessoffailure to meet the design criteriafor a particular limit state. The consequence of collapse is much moreserious than exceeding the serviceability limitsand so this is reflected in thehigher values of thepartial safety factors. Components of load have to heconsidered in theirmost unfavourable combinations, Sc) sets ofvalues offor minimum and maximumdesign loads are required.For example,theworst situation for a structure being checked for overturning under theaction of wind load will he where themaximum wind load is combinedwiththe minimum verticaldead load. Lower valuesof ;' are used for thecombinationofwind, imposed and dead loads than for thecombinationsofwind and dead, and dead and imposed loads, as theprobability Dfthreeindependentdesignloads achievingtheirmaximum value at the same time isless. The table belowgives the partial load factors for theultimate limitstate.

    Combinationof loadsPartial safety factor to be applied to

    dead load imposed load windwhen effect of load is loadadverse beneficial adverse heneficEal

    1 Dead and imposed2 Dead and wind3 Dead and windwith imposed141412

    1010121612

    1)12

    1412

    Deiin strenqths Thedesign trengths given by theequation:Characteristicstrength[)esign strength = ______________________

    where is a partial safety actor on thematerial strength. This factor takesintoaccount thevariation in workmanship and qualitycontrol that maynormally be expectedto occur in the manufacture of thematerials. Thevaluesof to heused for the two materials when designingfor the ultimatelimit state aregiven below:

    Valuesof, or theultimate limit stateReinforcement I .05(oncreteFlexureor axial load ISShearstrength without shear reinforcement 125Bond strength 14Others (e.g. bearingstress) 15

    iOLisiuest In addition to providinga structure that is capableofcarrying thedesignloads, the layout should be such that damage to small areas ofa structure orfailureofsingle elementswill not lead to a major collapse.TheCode requires that in all buildingsthestructural members should belinked together in thefollowingmanner:(a) by effectively continuousperipheral tiesat each floor and roof level:4

  • 8/12/2019 Designed Detailed

    6/31

    (b) by internal ties in two directions approximately at right-angles,effectively continuous throughout theirlength and anchored to theperipheral ties at each end (unless continuing as horizontal ties tocolumnsor walls);(c) by external column and wall ties anchored or tied horizontallyinto thestructure at each floor and roof level;(d) by continuous vertical ties from foundation to the rooflevel in allcolumnsand walls carriingvertical loads.In the design of the ties, the reinforcementmay be assumed to be acting atits characteristicstrength with no otherforcespresent but thetie forces.Reinforcementprovided for otherpurposes canoften be used to form partor the wholeof these ties, so that in thedesign process,when the requiredreinforcementfor theusual dead, imposed and wind loading has been found,a checkcan bemade to see whether modificationsor additions to thereinforcementare required to fulfil the tie requirements.

    Durabfltyand re resislance At thecommencementof thedesign, the following should be considered: the climate and environmentalconditions to which theconcrete will beexposed; the concrete quality; the cover to the reinforcement.It should also be noted that thequality of theconstruction processand theIirst hours aftercasting of theconcrete have a majorinfluenceuponthesubsequentdurability of thestructure.The cover for protection against corrosion may not besufficient for fireprotection, so this should be consideredat the onset of thedesign,and alsothe dimensionsof the members.The Code givesmaximum water/cement ratios, minimum cement contentsand minimum characteristic strengthsfor concretes suitable for use invarious environments with specified covers and using 20 mm nominalmaximumsize aggregate. The minimumgrades will generallyensure that thelimits on free water/cement ratio andcement content will be met withoutfurther checking.

    Appflcation Durabilityand fire resistancerequirementsareconsidered at theonset of thedesign processbecause this determinesthegrade ofconcrete,the cover, andthe size of themembers. Usually,for most structures, Part 1 of the Code willbe used in which it is assumedthat theultimate limitstatewill be themostcritical limit state. Design will thereforebe carried out at this limitstate,followedby checksto ensure that theserviceability imit states ofdeflectionand crackingare not reached. In specialcircumstances,other limit states,such as vibration or theeffectsof fatigue, may require consideration. Shouldit be necessary to calculate deflectionsand crack widths, methodsare givenin Part 2 of theCode. The serviceability limit stateofdeflectionmay be thelimiting requirementfor floor slabs with large span/effective-depthratios.Thiscanhechecked before the reinforcementisdetermined,althoughsomeengineers may prefer to followtheprocedurewhere thecheck is made afterthereinforcement has been found.Simplifieddetailingrequirementsfor the curtailmentof the reinforcementmay be used for beams and slabs which fulfil certaindesign conditions.Nowever,for othersituations, the curtailments should be taken from abendingmoment envelopeand be inaccordance with thegeneralrecommendationsof the Code.

    5

  • 8/12/2019 Designed Detailed

    7/31

    Design informationClient W Co#.airchitect Engineer responsibleBRJZers/j, Building Regulation uthorityor other andDateof submission

    TLe. LIL14'a, 5SiO T tnj L of Cocre.tc Past 'j. S7Pout P 2 IO5)ckr PCU B8 Relevant BuildingRegulationsandDesignCodesLbon Intended useof structureFire resistance reqLnrements

    Roof 5-F1'oo irvoecj C) &ct tL3r 4.QkW/Sjr- 4Ok4/Fors aLXc Co4General loadingconditions

    Speed 2 a/ec (basicFactors 105 Sb= 171, S 1.0 S = 1 O SCo'84, C +O(*r.') ,., O3((),C_r=QO2S Wind loadingccnditronse.'Jere. 4 (Vd ('ixaS) (S6llOTcie3.2) Exposureconditions

    - v\OAoLjo, beac rreure 2ooSubsoil conditions

    R1c fs o k4 ov wcik Foundation ype,r-A4e. 4o wt '20. , (IIOTcIb3.) Material dataL. strek - fL 4o- 1iJ'c 'Sdf wet 4'ok4/AU S-oir,. ov ore

    Other relevant information

  • 8/12/2019 Designed Detailed

    8/31

  • 8/12/2019 Designed Detailed

    9/31

    Floor slabinterior-spansolid slab

    1755000

    BS 8110ref. CALCULATIONS OUTPUT3.?,T c3 334 DugPB%t.vr' ct FR.E REITA4CW.L4S4ovhr U4CovCt.ov of ik cover .. '2osi.3.r.2,4Tb(3,12

    LoA O.17E x 24 4.2F (G4t) 0.rtoc.d = 4.7kt{/

    Cpa.ge c) = 4.okN/Dgvtoati t.1r47+ 1.x4) 50 3k 4.7kN/2401F32.4Iable3i2 ULXIMATE /VsIraror r.spo. o.oC,3F =0.OCx,43x5O = 2O.4kh/ct 4.DrtS4.44

    Tb(e8

    FCEfrT k 2o.4 0 0Th4o-1ox4S24 ppor.oc'23= i4s(o.S+J(o.Z ) = i buto.x1494s:A5- PA 204x1&O.95 O.9546Ox14l5 -Cdr5cearo.S4.91O3' 0.22 M/wc?x 14S =Top&otowT12.0o(iiJ)ok.

    TQ6kTok3IO

    DLaC.T(oi.4 6k /4faeq rio =PA 2o4d0',. 031 2x4(O33OI4 ) - 3 x 317cr or WOr e.L.'.ft. 1 5.Atlte '21.5I 5000 - 33 $(o149 , r4o oc.2U.27 CR.Acl(ii 447p-cj bt.twee. bo.r OC 12 34k 11, ( 2oO ., rttQ.cJck.4 .c.*j ak..k.

    3.12.3.4

    TAbteZ7 r PV(op..J o..ct4We5ITR..iALii Ft = 3kN/.wdTorce 4t( 7 (4t)_ 4r.Lw>Ft4S.x lo44,0 -'fl' :#3oo. T12.e3oo(377

  • 8/12/2019 Designed Detailed

    10/31

    I

    tso.l.5T10.-41 2)00

    i1loo4T "

    '

    - C3*'Z)

    5T10-41r2It,IS-rto--3GO'r2 I L I (2+3)I

    .J

    Commentaryon bar arrangementBS 8110 ref Bar marks Notes

    All bars are labelled in the form described in the Standard methodofdetailing structural concrete,e.g. 45T12-l-300B1 means that in the bottom outer layer there are45Grade 460 Fype 2 deformed12 mm nominal size bars at 300 mm centres and the bar mark is -I-.The bars arenumbered in the ikely sequence ot fixing; the positionsof he first andlast bars inastringareindicatedin plan and section. Intermediatebars have been omitted for clarity.Table3.25 Minimumarea oftension reinforcement= 00013 X 1000 >< 175 = 228 mm2/m.3.12.11.2.7 Maximum clear spacingof tension bars = esser of750 mm or 3d, i.e. 3d= 3 )< 149 = 447 mm.h < 200, thereforeno further checkon spacing

    1 Main tension bars Tl2@ 300,A= 377 mm2 > minimum228 mm2/m. OK.Ifcurtailed,A= 377/2 = 189 mm2< minimum 228 mm2/m not OK.3.12.3.4 Bars lapped 300 mm at bottom support to provide continuous tie.Table3.25 2,3 Secondarybars use T10@ 300 (262 mm2/m).3.12.8.11 4,5 Minimum lap= 300mm > IS )< 10= 150mm. Lapping reducesbar lengthsfor easierhandlingon site. 7 Laps are shown staggeredfor effectivecrack control.3.4.1.5 6 Minimum transverse reinforcement is placed across the full flangewidth of the edge beam (minimumwidth= 650 mm, see page 16).Table3.25 Minimum area = 00015 )< 1000 >< 175 = 263 mm2/m use TlO @ 300 (262 mm2/m).

    8 Main tension bars over support 112 @ 300 as bar mark I.3.12.10.3 One curtailment shown at 03 effective span from face ofsupport. Further curtailments preventedbyminimum area and spacing requirementssimilar to mark I.9

    i,TIOc30OTQt

    Al1.

    )

    5Tt0-5JT'Mt.B I

    IIU- '2 .1

    L

    ST O -51

    1oo1

    30O

    I L%o'13

    8T1O-2.00'7T1O-3)2Mt.

    4

    1

    21

    @_Th Fi_ (2) _i T10-13007TI0- z)e2AlL

    4T'2-1- 300P LA.1 (r4 2 ovfte4r c[ti)AIt

    AR. = alecY4J &r5.45s Att

    A-A,z tt.

    - CovE.R toote5= 20 $cale; i;o-

  • 8/12/2019 Designed Detailed

    11/31

    First-floor main beamtwo-span flanged beam

    BS 8110ref. CALCULATIONS OUTPJT.2.I.21 Su.FR.P1ME. AL'-t'5A taa.r ett. Ljs .LLa.r ro4kcgd e' ber rMrv S C tDforces. F-or t -1oo be co(s.bosje&iiiwecL to be xed. 4 se be(oi c1ve. Ti. t'i.ov,. w ot prove rot rcd rert.Lart* 1L4 to -re. akcrb sc-ur wcAk.3To.bk63,34 D ' Ri TACGCOVW for vt co t.ov of eposurc 2o.ov1 cove ?OOwbefor - covert Ii4K520.2122 LAPD4Gp4 toc o75o.b CPe&) 5c4.7 2.Sse-ieLt(o.o.r7s)o.3 x 24 = '23oGa.w 2B.kW/,(.B) = x4 2o.Ok4/,Mv ce o4 i4 +'(2 + 32 'i& k/s 103K 2S&k4/.Oc 2OOk/t.t.4 .i2k/M+tBi Moie.m ()O ve4tl.Q% uie.4: BA 1'cZUIL4 rowv AvJI 12 ------Ctk I 1oo4wpLtperCowC.Lower IIScur (k)

    CASEJ1CM IS%tLij*-Cokiv v#owersc-0- (1)CDiLAIstf,Lerse (-!)

    - 17$ 2O + 4o2 - 348k + Qc+ ba+ ii -24 oo 22(8't'2-19 2.7( 4- 4$ 2So 28 - 44-it7 + 'a-34 #1's2$2 i'2o 3iii.54 e4 + 2o4 -1- 33+ 2' + 17 - 52- 4

    1% 1010

    f =460.............tto000 6000 300

  • 8/12/2019 Designed Detailed

    12/31

    CALCULATIONS

    MDN-E'JT ..NvLOPE

    RrntoV FogcE E1LOPE

    40rCASE I 17S o .5S (SQ..e ii')402 2&L ( O')II 1 2o'J')II 34 S2 (I)II o{1 eatA.

    wecoc 32SL

    -UI

    La6t I rbut&i

    2?I22 I

    EveLop.

    3511

    oao00m.

    1 I 2BBR I3001 L

  • 8/12/2019 Designed Detailed

    13/31

    = 282

    i55k10.4

    0.s46o w1

    =0

    &s2

    0

    s'. t&or(. 3 a4T251 .. I,

    440J__ Lj4co2T 2BCo

    :vta.-vt Supor:BS8110ref. CALCULATIONS OUTPUT

    Fcor. ?JL Q1= 0.7K O.4o2(0.7O.4 )_01(O.7_Q.4)2K Ot21 > O1o4bd2 = 4oxooi4.4

    42O0.02'3

    Mu 3EAM., t.FLOof E )322t /ct3.4.4.4 = o.io4efoe 50 O > O7/O.4,):. /c -04

  • 8/12/2019 Designed Detailed

    14/31

    BS 8110ref CALCULATIONS OUTPUT34.GT.6te3'BTIe72 45.5Tbe37Tobe7

    SkEAR REll4PORcMEJTCcve. tior, re.L,, 2T2 (82 w2)4ooA - 100x2 073, \!c 0S7(-OO4SO /t'vvk A 6 0.4 OOx04OSS(2O' = 075 ' 4B0 00TrR2oo.(vO7O4.o59/2v 3oo 0'd.4SO

    SkctR12Lk oo io2 A/ o.7s j 2 J .50 j 1tT61374StO Loao8LM V.f.d2t V/N/j(oo vv0% AytlS LksR'l2C. 175R.2 3- i2R 1 300R..t'2. @ 3oo,,L.H 252M '32jsc O.o tSSj.14R.L V1G875 k..N .o32S 37O.'9 p.51O.734..1T.bIe93.4,bkto FLECTION1 b-Lo=M 2x4(oOic I75i2723/242Ox4SO2 3x 1%O 325ctor i..5 224Acto - &000- 450 . ,'2.t1.2.

    Tk32g3ViII23 I21242i2

    CAC t k bapa1 :c-.k ct;J

    1V\T'VLOY. \'L4. I 0/ f& xtr-.f sport T 2o+ 18I.e.raS $..4por-t T 300e,

  • 8/12/2019 Designed Detailed

    15/31

    153kNnExtntot QIon4 T.C.P(3.1,Sa. cL450.2) b = 300. (.C t.Lo.ct.5 =/IT.C.Pto pt,we4- M 2

    Commentaryon bar arrangementUS 8110 ref Bar marks Noicsliusbeam shows loosesplicebarsateach column ntersection.Ihismethodsimplifiesdetailine and 0singand the span cage can readily he prefabricated. I Tension bars arc stopped 50 mm from each column lace to avoid clashingwith the column bars3.3.1.2 shown in section A--A. Nominal cover 20+ 12 32 mm > 25mm, say 35 mm.3.12.9.1 2 Remaining ension bars stoppedoff as shown in the curtailment diagram above.3.12.8.14 ('heck masimum amount of reinforcementat laps < 25 = 100 mm < 0-4 X 300 = 12)) mm OK. 3 loosebars arc fixed inside column bars as shown in section BB. Although designed as compression3.12.3.4 bars, these bars also act as internal ties and lap 1000mm with the adjacentspan bars for continuity. 4 The two tensioil bars are stopped 51) mni from the column Oice to avoid the column bars beyond. 5,10 loose bars are bxcd insidcthe column bars and provide continuitS for column and internal ties.3.12.11.1 ('heck minimum distancebetween tensionbars 25 mm (aggregate si/c f 5 mm).30)) 200 - 100mm ' 5 mm OK.3.12.9.1 Top legs propect from centre-line into span.minimum dimensions shown in the curtailment diagram.'4

    c,2R12 - 11

    5

    i4eoO A 'ZTi6- Gt '12 t

    24A-A ___

    - :O '2T2,-2ELE VAI 1For o ba.c 4 .stcxxce M o 2T2S ('3&2= c1_ xO.95[j] M= O.5fx4x, (3.4.4.4.)a bdxO a=Top: b=300, /4o.9i2)MJ7Bt,n: b 1420> =0.,M13'5km. 4LYMo Ev.ve1opii.& ____o l_o.I_ _____1s

    CURTA1LMT DIAGRAM.

    '75bOO

  • 8/12/2019 Designed Detailed

    16/31

    M A1P4 EAM

    cerLNK DARAIY\

    3.12.3.6

    3.12.8.143.12.8.3 10

    3.12.8.3 6.9

    3.12.9.13.12.4.1

    7.8

    Bottom lcts lap minimum 00)) mm with span bars to provide continuity for the internal tie.'lop legs 5 + 450 1315 mm ) let both legsBottom lees 200 100)) 1200mm ) project 350 mm. say.Note that the bottom ees are raised to avoid the 40i rule in the lower layer.('heck hearingstress insidebends. Jy ' 55 br each radius to simplify bending.'lop legs 535 - 450 05mm ) let both legsBottom legs 20(1 4- 1001) 1200mm ) project 1200mm. say.Else r 4d minimum radnis bends.link hangerbars arcsame lengthas bar marks I and4. Bar s onesize larger han links n' inimum 12 mm).'Ihe tension bars over the support stop as shownin the curtailment diagram.These hai's arc Oxed insidethe column reinforcement as shownin section BB.'Ihese bars arebundled vertically inpairstoreducecongestion and hisalso allowsagap(ninimuni75mm)for insertmii of a vibrator. II ('hosed links, shapecode hi. are arranged tosuit the link diagramabove. Open op links,shapecode 77.arc not suitable for the sites shown.3.12.8.12 Note that links it laps are spiLedat ilot greater than 200 mm since cover I'S barsize.

    15

  • 8/12/2019 Designed Detailed

    17/31

    Edge beaminterior-span langedbeam1=t f '3505000 300

    BS 8110ref. CALCULATIONS OUTPUTTo.bIe33,34

    DL,RAILITY FIRE. 'S1iCENDw2aJ Cver tjqr Ovc cf ex?oure = 4OA..3OOwde.be.4 for ir.ero /vLLMtA Co/e.r4O%W%LoAiIe44 CooA 4!rov 2x2 2946-325.0o-7kL' ose4 i osab(p.t W'25 2.sokM.byi o.4 544o 125.0kg. k= QO.7kJk= 2Ok.F =i'zsok.TAb(e..35

    ULTtMATE .M'SIrorsorC M.oo8F OO&xt?x5 O.OkWWtt4. a: M E O.07 12Sx 4S4443.415Ta'54;,IoTcbk7

    5Qx0' OO5t.rLor os: bd2 4oxoox'2So(o.s+a;-0'O) A: 0Xi0 442.5,46OxO'S7x2&DM4-Ltcuy; e.fewi4t =- 43.9xCu 40X650x2902 002., ASrorceO5SF*12S6875kN, fc'ot eforea.rc2T20'Larforce G8'75_D.I+0.28)2S1oo4 o.is 5BxD = 0.G3N)d 3oo,'2PO / 3oox2.BOvo3)M - 43.SIo' 2 x4o2 5ox29O - 3x 4o2 272N/rn. Moft.a,. fi*4or 153,1Aow*bLe. s&r/cff.dLprto = 22 x

    1 ooo 17.22O .'. k.l2cI.2ATcbe)

    3.12 (.2.4

    CAc OFOrs 27/ (sedeco)7o \9>1s CC(oJb d&rcpczc 2gT0p 2 ar5ochkC=41000 220,coc rdtsre O0vJLQ CtE'oe 5.Cj'% 2L,1

    I

    okoiIc273..U TIE. PR.oVl,O4 -eLF4.A5j .U'L'Tt2, 4t= . x74 45 3oc To -'ZTVZ.

  • 8/12/2019 Designed Detailed

    18/31

    Barmarks NotesHorizontal bars in this memberprovide the peripheraltie. Minimum lap=300mm.I The two tension barsare stopped 50mm fromthe column lace to avoid clashing with the columnbars shown in sectionA-A.Separate splice hars are fixed nside vertical column bars.Minimumarea = 30%A = 03 x364= 109 rnm. Use2'T12= 226 mrn.Iap= 35 >< 12 >< 109/226= 203 mm > 15 x 12= 180 mm< 300 nim. Use 300 mm lap.3 Link hangerbars also provide support for slab op reinorcenienI.Minimum area =20%A I1pT1 = 02x436 = 87 mm. Use 2T12 = 226 mm.4 Tension einforcement over support is fixed nside vertical column bars.Bars are curtailedat 025 span from ace ofsupport= 025 x 5000 1250mm>45 x21)= 900mm5 Closed linksare shape code61

    '23R405-200 A1je-co

    2T 2O 4n

    AEL EV Ar iot -75ScaL1e1tO 44 3COVE o ks =40

    U Ut 21 iCommentary on bar arrangementItS 8110ref3.12.8.11

    A-ASc4, t:"ZO

    3.12.10.2Figure3.24Table3.273.12.10.2Figure3.243.12.10.2Figure3.24

    17

  • 8/12/2019 Designed Detailed

    19/31

    Columnsslender and short columns

    EW / = O.S (E4o:4.5

    AD TcP

    4.o-boov)

    orO v\

    = I52> iS

    = 40 = 460lst14000 15000 1j 00300

    8000 6000

    BS8110ref CALCULATIONS ouTPur2I2.1 5ue,-FAM A4ALi'$lS - rEje.r to bpMe.iO.UR(L4Tt c4 RsTcacover-or U4 Co 4or4 oexpo're 2o.40oooot kreroj 2o w...Tk'34 cover4 -..k',tvoi 2o(a.3oxr Ovst*w,It4TRAL CoL-u (u..ctaii-- oof)AXtAL LOA o4M*1P'T$ ifrow. ANALXEAML$k.N COLUM Ic oADS CGLMaMJTSkMP0cED E2aa t 2 1. 2. d 2 1 2 1 2oa 49210 244%33 S44 53 5i4 J133 34 4 32. saJ 9 9100 53 3 33aFL 2249 29o117 140U7 t3 SB32 1B4ivj 32 s& 3' ,S37 I9 6G,724.F-(. 298249

    2o117

    14017

    i3 i532 i54117 5 S S9 914 32 b931 FL 3oo252 292120 14liB 37 ts134 ics120 g 34 -

    5. i4 14873 42, 12Th U82

    I 8000 I oooLOADCA1

    1oo1='LoA CASE 2

    (PoLr , 1atfecti.ve = j3&TabI 319

    8l 3

    N-IS (3 D.9 E4coc2.SxA.5 =4 ,0,

  • 8/12/2019 Designed Detailed

    20/31

    1N1RNAL COLL4Mt.J (oo- t)ot.4Ld Ca o.d z. tOO *Q'773 7beo4 i27-M1, 0, M2 S, O.4M. 7.k04M -O.(DW\2 = O+0xi fI4 > 7.21 ( e'y tDSIx0.xl3S .4'"T a kb') 2ooo =DOS3oOqreLe..s o

    U23x S44 2.3S < L.22 (-'b")

    M = 42> 29k,_____ oe 1. bove t oor, cvv.toc4 a2od, oJ:

    C' t'255L76 cN.M 4 1c,0 - 0. x .34 = 2o.4kNr., _______ - __________D ow..t 204 + O-

    M = 4 > 358Ti RO','SiO L0.4 i.os(2i 28i N2 0/460 (10 . Ow

    BS 8110ref. CALCULATIONS OUTPUT

    t4 + 544

    Po_,t t

    324

    33.. t

    Ei 3

    S3'3Prt I

    3. 2.72

    (b M+M 658k.= x si = 2''9k.2 2 L - 5'8xi0_- oo '2-44a 3O-4o-i3 = 247.2.47 - __- - = Q32OO2S 4Qx.OOx47xlci3 74ik... N> t- 4T'S (%oi)=

    K - _______ = O223-741 = .4ioox%O --

    fr\cb cLa.-,Ce.ck , _______

    == _____1v1 0,

    Mt.;5 k.

    CcLrt 9t.2B')3

    k.

    _ c2474T'25

    (tOGOIvw)ok,ok.

    " 51.M

    23.9-75'8 > fr22.o

    19

  • 8/12/2019 Designed Detailed

    21/31

    --ectLiek-S 0'S CercLK= O9x=2ZI 0.9 (evct0.9 xY= 'L15

    b

    CoAcLo;==

    usiv.43 oac -

    BS 8110ref. CALCULATIONS OUTPUTEXTRJAL COLUMt4 (Foo R..ooF)AtALLoA1 cd MME,.iT ALTOTAL

    u-AM LOADSk CoLuMtt b$1QN L0A CLM0MT$k.IMPO$E.D loP oTToA4LDAO C4E t '1 i 2 2. ' 1 2 1 2t. C i92 i.7 4? 4 i05 S49 98 oS

    SW..rt 247 25S U 42 4k2.o S 25Bi1 S 2a15 95

    SW.

    24.eti3er.o-vc4e

    1!5

    2471J2!

    2625il5 it & 13120

    25S5Thl25 t25 G1L5L2$ S 105 95 joSti7SWt. 245 2S3 ii 74 2&.U9 7&&10 E'oO4 '

    SW. 24e t'25 2S 25ii 1: 4.02 1D54 16Ooor)c

    Ft (t)LCLA1)

    SOT CoLM

    e(.rtSQc S4T2BCi90 %

    I3\)top., boo3)D4Ov=

    EO

    S399Por 1.

    PrI I

    N OsxoO+44-cY924O O5S k,fr\ z

    Asu c 300- U8 N11hi7xJO 4.3- 237 - 079-k-- oo0osc. 2'2.3, A5=.2o7oB.o' 1st.c,+fa4 'i

    (4T' i%D2)20

    154, ; iS N.7 k1Lb

  • 8/12/2019 Designed Detailed

    22/31

    I(4TEiNAL COLL..U1M F'2 ExTR.AL COLUMN FlLLv,k, J VertcaS it.rs

    -;------ ----f--

    Ltrvk_J Vt.ai Se4o,?c(1.. -

    4

    Y9J4.COV.R t0k'=40

    .

    ;4

    :-4IcoR t,

    .

    F c-I L,;1SCALES i: 5O j 'ZO- -

    Thepresentationshownaboveisschematic. This tabular method adapts readilyto elementrepetition.Thesections are shown in their relativepositions adjacenttothevertical reinforcement.Mainbars,area> minimum 04%bh.Slopeofcrank at lowerend= 1:10maximum.Crank offset=50 + 10% =55 mm.Minimumcrank length= 350 mm (140).Lengthofshort projection beyondcrank =compression ap +.say, 75 mm for tolerance.Reinforcementareaat aps < 10% bh.Bars projectabove first-floorslab evel to providea compression apabove the kicker.Bar projection=35 x087/095x 25 mm+75 mm for kicker=875 mm, i.e. compressionap= 800mm.2 A singlelink isprovided,since each verticalbar is restrainedby a corner.Minimum size =25/4, use8 mm. Maximumspacing= 12 x25= 300 mm.(R8 @ 300.)Cover tovertical bar=40 mm> 15 x 25 = 375 mm. Linksextend o underside f floor slab.Normally, starterbarsaredetailed with the footing,ascolumnF2. Itcan beeconomictodetail starterswiththecolumnabove as shown. nthiscase tisadvisableoschedule he starter barsso thatthey can beprocessed ogetherwiththefooting.Note with this detailthat he sectionat mid-height alsoappliesto thestarterbararrangement.The starter bars wouldbe shown dotted on the footingdetail together withasuitable cross-reference. Barsprojectabove hetopofthe base oprovideacompression lapabove the kicker= 35 x087/095 x 25 +75 = 875mm, i.e. lap= 800mm.As barmark 1,butbarsprovidea tensionlapabove 1st floor kicker. Cover=50 mm.Cleardistance between adjacentlaps = 100mm

  • 8/12/2019 Designed Detailed

    23/31

    Foundationreinforcedpad footing

    BS 8110ref. CALCULATIONS ourPuTTob{e334 URAbLITY )Assoi.i roder4e*pesire '0.se. ow.sat 4o cover No..sd cover40M,l.r4$LOADI.JC - '1 (ietpaqe19) De.4 I&.e'1 r0t.kN.ICxr CIu-ec 12.7 718 1's1127/i,4=D =443 I58

    /,(toi 0kN/vetr ov roFkconcete4or4.foa4. P,.4 r9uw4 5YC2OO -10) = 7. s.. Acio,t 2'7S rove4 =7.57fwU.L.S. Dtcv. ressu . 2Jo3kP4w.4.4.4

    .6t.v aoco1uw' 63x 'i.7S 2 =Avers c - c,o-4o-z5 =fr\ 3x 0' 0.0174o,27S0xS52543x 10' 244Swo.954xO.9SS35 (Q5122)443.i.3.4(')43 113 4(2)3L7.2

    ULTIP.4ATh SARCo4.or ISk - V4f . t91 fI3751so%s) :ookM1375, r V . SO'IO'i5o s.3SforceV 4n oLa.= x f37s-a'so-2xS3S} i. 42 137512. V 't " 27SOcS3SCo4.or 2 pL4.v S\Qr) *.e ore.cka)V 1O SI

  • 8/12/2019 Designed Detailed

    24/31

    T

    .4A

    _J2O-t-&5OIPLAN4T25 -2Cover=40Mn,. 2aB--3oo

    I ;OVER.BI 4O2\4 -is A A Scak, i:SOCommentary on bar arrangementIt 1 1() ret Bir rnark 1\oles3.12.8.1 1 Straight bars extendfull widthofbase, less end covers.Table 3.27 Bars should projecta minimum tension bond length beyondthecolumn face = 35 >< 20 =700mm< 1150 nim OK.3.3.1.4 The underside of base is concrete blinded,cover= 40 mm.

    Column starterbars are wired to bottommat.Minimumprojection ahose he topofbase isaTable 3.27 compression ap + kicker = 35 x 087/095 x 25 + 75 = 875 mm. i.e. lap = 800 mm (see p. 21). 3 Linksare provided to stahimie and locate he starter bars during construction. Theseare the samesiteas the column linksabove.23

  • 8/12/2019 Designed Detailed

    25/31

    460ist 175-

    40002509004300

    Shear waDexternalplainconcretewallBS 8110ref. CALCULATIONS OUTPUT.94.314. 2> 2 WALL

    T&bk33 )PALtT'( Ft $TACNS ccvr ( vexe. x?ocLsre. 40w, ()LL4 . '20F-y- rest&-e 17 kAI = i.2> t4oLsr 4o2Ow.wt.,lc.rt ye stc ck..C.

    O.S(3Z3+8.S) 49.5k/5Q V3t O.7(24x1E GS.1C&ct.cc4 1t4.kJMa,.r+x4xO.8') 27.8kN/. ;. c4_BS(99 CLf 20

  • 8/12/2019 Designed Detailed

    26/31

    B 8110ref Bar marks Notesfable 3.273.3.1.4Table 3.25 23.9.4.19

    Table 3.27

    3

    4,5,6

    3.12.3.4 7,8 9

    Wall starters match vertical reinforcement.Minimumprojectionofhorizontal legs beyond hewall face is a design tension bond ength = 35 x 182/377 < 12=203 mm < 287 mm. Thisprovidesthe footing reinforcement.Minimumprojection above topofbase isa compression ap + kicker= 35 x 2 + 75 =495 mm, say 525 mm, i.e. lap=450 mm.Undersideof footing is concreteblinded, cover= 4(1 mm.Minimum longitudal reinforcementprovided.Minimum vertical reinforcement.Area= 254 x 1000>< 175 = 438 mrn'Im. (T 2 @ 300EF=754 mm2/m.jT12bars provide reasonable rigidity forhandling and helpstabilize the cage during erection.Minimum projection above top of irstfloor level is a compression lap+ kicker = say 25 mm.Lap =450 mm.Minimum horiiontalreinforcement. Area =438mni7m. (T10 @ 200 EF =786mm'/m.)Provideat least a tension lap =35x 0= 350 mm. say 450 mm tosatisfy shrinkageand thermalrequirements.Bars areplaced outside vertical reinfircenient toprovide maximum control againstshrinkageandthermal cracking.Those bars n the wall 05 n below firstfloor slab act also as interna] ties.Tension ap 6)rtie=35 >< 10= 350 mm, say 450 mm.Peripheral ieat first floor. 1,barsateither end provide continuity with edge beams.Laps. say450mm.Wall spacers maintain locationofeach face of reinforcement.25

    Commentary on bar arrangement

  • 8/12/2019 Designed Detailed

    27/31

    Staircase3500 end-span continuous slab175

    5060

    BS 8110ref. CALCULATIONS OUTPUT3?T.$ e3 4 RLVrt4 RE.1STAI4C. c'-.toor ri)o. z LoA4Ave.rMe ctbL c.e.cc o.k... = 2so.0= 05cZt.c ce4 SoaA .. .5k/= 4.OkJ3/(14GS 1.4.o)5.o = 17.5kN/1k k Q,SkN/k 4.Okt/F

    T3S4'I 1tivtor SLLr= o.itFL= Q'11x77.5x'O 43.TI1AT .Mseo r4et O = 3$. 3Id/M. E2Qw*st44

    To.bte.38

    4FOR.CMeNT 1\jsL. .i-.ter.or sc.pport. , 2 0.049 = 0443.1

  • 8/12/2019 Designed Detailed

    28/31

    Table 3.27 1,5,6Table 3.25 2,,9Fig3.25 3,43.12.10.3.2 7

    Table3.25 10,11

    34 Tio-E

    Main tension reinlorcemcnt. Lap lengths and anchorage bond lengths = 35x 12=420 mm,say 450 mm.Lapsarc ocated to acilitate likely constructionequences.imilar orbarmarks 12, 13 and 15.Secondary reinforcement. Minimum area = 00013 x 1000x 75 = 228 inniim.Use 110 (a) 300=262 mm/rn.Main ension reinlorcement over support50% curtailedat 03 span, remainderat 0 IS span.both measured from laceofsupport.Similar or bar mark 14.libarsprovide 50% midspan einforcementin both topand bottom atend support= 05 >< 571= 286 mmlrn.Use110 @ 15(1=524 mill/ni to match spacing ofspan bars. 1.ap, say450 mm.Optional ruinfoi Lnlent Minimum ULd = 228 mm Simil u forh i maik 16

    27

    Cove.r

    FUCHT '5'CCVE

    Commentary on bararrangementBS 8110 ref Bar marks Notes

  • 8/12/2019 Designed Detailed

    29/31

    Column design chart

    28

    CJEEz0z

    Rectangular columns

    50454035302520151050 1 23 4 5 6 7 8 9 10 11 122 44- 4 3 M/bh 2 N/mm2 fcu 40

    460d/h 080

  • 8/12/2019 Designed Detailed

    30/31

    nformation from the Reinforced Concrete CouncilSpreadsheetsManyof the design principles used in thispublication will becovered by spreadsheets for reinforced concretedesign nowbeing developedbytheReinforced Concrete Council. Versions for bothBS8110and EC2are npreparation. Fordetails write to theRCCatCentury House, Telford Avenue, Crowthorne, Berks RG456YS.Buildabilityand whole building economicsItshouldbestressed hat the structural solution presented in this publication has been chosen or the purpose:ofillustrating analysis, designand reinforcementdetailingprinciples. Atypical building rame accounts for only10%of the wholeconstruction cost, but affectsfoundations, cladding and service provision. The choice and detailsofa building's structure should eflectboth buildability and overallbuilding economics. Analysis of these factorsusing astructural optimisation program* or chartsfromapublication** suggests thataflat slab alternative maysavearound 2%ofoverallbuilding costsand ten days' construction time.Similarly, rationalisation and simplification of einforcement will normally speedconstruction andhence reduceoverallconstruction costs andprogramme ime. Excessive curtailment and tailoring ofreinforcement tosave materialattheexpenseof ationalisation will provecounter-productive.Theseaspects arecurrentlybeing investigatedat heEuropeanConcreteBuildingProjectatCardington, and will resultin thepublication ofbestpracticeguidance.With increasing emphasis on the cost inuseofbuildings, thereisa trend towards the useofexposed soffits forpassive cooling. This moveto whole life costswill modify theoptimum solution, anddeepribbedor cofferecislabsarea favouredoptiontomeet daylighting, thermal mass, ventilation andacoustic requirements.*Concept -acomputer rogramhatallows the rapid semi-automated choice ofconcrete frame while consideringwholebuildingcosts.Produced by theReinforced Concrete Council. Available from the RCC on 01344 725733.** Economic concrete frame elements - apre-scheme design handbook, basedon BS 8110, that helpsdesignerschoose the most viable concreteoptions. Produced by the Reinforced Concrete Council. Available from the ECA on01344 7257U4.

    IBC

  • 8/12/2019 Designed Detailed

    31/31

    Designedand detailed (BS8110: 1997)J. B. Higgins and B. R. RogersBRITISH CEMENT ASSOCIATION PUBLICATION 43.501

    Cl/SfB(28) q4 (K)UDC 624.073.33.012.45:624.04.001.3