363
PROJECT ---- ACROPOLIS TOWER, KOLKATA. CLIENT ---- MERLIN PROJECTS LTD. REPORT NUMBER : NAP / BS / ACP / 001 NITSON AND AMITSU PRIVATE LIMITED Project Office: 2/1 Dover Terrace , 2 nd Floor, Kolkata-700019. Phone: 033-2486-3842.Fax: 033-2486-3858 DATE PREPARED BY CHECKED BY APPROVED BY 23 05 2013 MR. D. C. DAS ( Design Engg.) MR. AMITABHA DAS (Sr. Manager Design) MR. S. NAHAROY (Technical Advisor)

Design Report for Acropolis Tower

Embed Size (px)

Citation preview

Page 1: Design Report for Acropolis Tower

PROJECT ---- ACROPOLIS TOWER, KOLKATA.

CLIENT ---- MERLIN PROJECTS LTD.

REPORT NUMBER : NAP / BS / ACP / 001

NITSON AND AMITSU PRIVATE LIMITED

Project Office: 2/1 Dover Terrace , 2nd

Floor, Kolkata-700019.

Phone: 033-2486-3842.Fax: 033-2486-3858

DATE PREPARED BY CHECKED BY APPROVED BY

23 05 2013 MR. D. C. DAS

( Design Engg.)

MR. AMITABHA

DAS

(Sr. Manager Design)

MR. S. NAHAROY

(Technical Advisor)

Page 2: Design Report for Acropolis Tower

SL. NO. PARTICULARS PAGE NO.

1 EAST SIDE ZCP PORTAL (CLADDING) 1 - 72

2 PE - 02 & WEST SIDE (PORTAL) CLADDING 73 - 195

3 STRUCTURAL CALCULATION FOR PE - 04 196 - 229

4 ZCP CLADDING AT SLAB BOTTOM 230 - 250

5 STRUCTURAL CALCULATION FOR PE – 05 & 06 251 - 272

6 STRUCTURAL CALCULATION FOR PE - 07 273 - 278

7 STRUCTURAL CALCULATION FOR PE - 08 279 - 323

8 STRUCTURAL CALCULATION FOR PE - 10 324 - 361

CONTENTS

Page 3: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

EAST SIDE ZCP (PORTAL) CLADDING

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 4: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

STAAD REPORT FOR ZCP CLADDING (EAST SIDE) R2

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 5: Design Report for Acropolis Tower

21/05/2013

STAAD.Pro Report

To: ACCROPOLIS,

KOLKATA

From: NITSON AND AMITSU PRIVATE LIMITED

Copy to: Date: 21/05/2013

12:53:00

Ref: DRG NO. :

NAP/BS/ACROPOLIS-T /

032-01

Job Information

Engineer Checked Approved

Name:

Date: 29-May-12

Structure Type SPACE FRAME

Number of Nodes 964 Highest Node 1162

Number of Elements 2120 Highest Beam 2516

Number of Basic Load Cases 4

Number of Combination Load Cases 3

Included in this printout are data for:

All The Whole Structure

Included in this printout are results for load cases:

Type L/C Name

Primary 1 DL

Primary 2 LL

Primary 3 -VE WL

Primary 4 +VE WL

Combination 5 COMBINATION LOAD CASE 5

Combination 6 COMBINATION LOAD CASE 6

Combination 7 COMBINATION LOAD CASE 7

Page 6: Design Report for Acropolis Tower

21/05/2013

Whole Structure

3D Rendered View

Page 7: Design Report for Acropolis Tower

21/05/2013

LOADS CONSIDERED :

1) DEAD LOAD :

a. Self Weight of Structure b. Dead load of Double Layered 4 mm thk. ACP Sheeting (10 Kg/m2)

2) LIVE LOAD :

a. Live Load = 750 N/m2 (Refer IS: 875 – (Part-2) - 1987, Table-2,i), b), Page-14) 3) WIND LOAD :

a. Negative Wind Load = 2520 N/m2 (As given in Tender Specification)

Section Properties Prop Section Area

(cm2)

Iyy (cm

4)

Izz (cm

4)

J (cm

4)

Material

1 TUBE 5.760 12.595 12.595 18.662 STEEL

2 TUBE 8.806 69.625 69.625 104.211 STEEL

3 TUBE 20.870 585.567 238.030 517.300 STEEL

4 TUBE 12.658 244.748 81.791 189.165 STEEL

5 TUBE 10.880 84.139 84.139 125.773 STEEL

Materials

Mat Name E (kN/mm

2)

Density (kg/m

3)

(/°C)

1 STEEL 205.000 0.300 7.83E 3 12E -6

Supports Node X

(kN/mm) Y

(kN/mm) Z

(kN/mm) rX

(kN-m/deg)

rY (kN

-m/deg)

rZ (kN

-m/deg)

31 Fixed Fixed Fixed Fixed Fixed Fixed

32 Fixed Fixed Fixed Fixed Fixed Fixed

33 Fixed Fixed Fixed Fixed Fixed Fixed

34 Fixed Fixed Fixed Fixed Fixed Fixed

35 Fixed Fixed Fixed Fixed Fixed Fixed

36 Fixed Fixed Fixed Fixed Fixed Fixed

55 Fixed Fixed Fixed Fixed Fixed Fixed

56 Fixed Fixed Fixed Fixed Fixed Fixed

73 Fixed Fixed Fixed Fixed Fixed Fixed

74 Fixed Fixed Fixed Fixed Fixed Fixed

91 Fixed Fixed Fixed Fixed Fixed Fixed

92 Fixed Fixed Fixed Fixed Fixed Fixed

109 Fixed Fixed Fixed Fixed Fixed Fixed

110 Fixed Fixed Fixed Fixed Fixed Fixed

127 Fixed Fixed Fixed Fixed Fixed Fixed

128 Fixed Fixed Fixed Fixed Fixed Fixed

145 Fixed Fixed Fixed Fixed Fixed Fixed

Page 8: Design Report for Acropolis Tower

21/05/2013

146 Fixed Fixed Fixed Fixed Fixed Fixed

191 Fixed Fixed Fixed Fixed Fixed Fixed

192 Fixed Fixed Fixed Fixed Fixed Fixed

193 Fixed Fixed Fixed Fixed Fixed Fixed

194 Fixed Fixed Fixed Fixed Fixed Fixed

195 Fixed Fixed Fixed Fixed Fixed Fixed

196 Fixed Fixed Fixed Fixed Fixed Fixed

213 Fixed Fixed Fixed Fixed Fixed Fixed

214 Fixed Fixed Fixed Fixed Fixed Fixed

231 Fixed Fixed Fixed Fixed Fixed Fixed

232 Fixed Fixed Fixed Fixed Fixed Fixed

249 Fixed Fixed Fixed Fixed Fixed Fixed

250 Fixed Fixed Fixed Fixed Fixed Fixed

267 Fixed Fixed Fixed Fixed Fixed Fixed

268 Fixed Fixed Fixed Fixed Fixed Fixed

285 Fixed Fixed Fixed Fixed Fixed Fixed

286 Fixed Fixed Fixed Fixed Fixed Fixed

303 Fixed Fixed Fixed Fixed Fixed Fixed

304 Fixed Fixed Fixed Fixed Fixed Fixed

511 Fixed Fixed Fixed Fixed Fixed Fixed

512 Fixed Fixed Fixed Fixed Fixed Fixed

513 Fixed Fixed Fixed Fixed Fixed Fixed

514 Fixed Fixed Fixed Fixed Fixed Fixed

515 Fixed Fixed Fixed Fixed Fixed Fixed

516 Fixed Fixed Fixed Fixed Fixed Fixed

517 Fixed Fixed Fixed Fixed Fixed Fixed

518 Fixed Fixed Fixed Fixed Fixed Fixed

519 Fixed Fixed Fixed Fixed Fixed Fixed

520 Fixed Fixed Fixed Fixed Fixed Fixed

521 Fixed Fixed Fixed Fixed Fixed Fixed

522 Fixed Fixed Fixed Fixed Fixed Fixed

523 Fixed Fixed Fixed Fixed Fixed Fixed

524 Fixed Fixed Fixed Fixed Fixed Fixed

525 Fixed Fixed Fixed Fixed Fixed Fixed

526 Fixed Fixed Fixed Fixed Fixed Fixed

527 Fixed Fixed Fixed Fixed Fixed Fixed

528 Fixed Fixed Fixed Fixed Fixed Fixed

585 Fixed Fixed Fixed Fixed Fixed Fixed

590 Fixed Fixed Fixed Fixed Fixed Fixed

947 Fixed Fixed Fixed Fixed Fixed Fixed

948 Fixed Fixed Fixed Fixed Fixed Fixed

949 Fixed Fixed Fixed Fixed Fixed Fixed

950 Fixed Fixed Fixed Fixed Fixed Fixed

1048 Fixed Fixed Fixed Fixed Fixed Fixed

1052 Fixed Fixed Fixed Fixed Fixed Fixed

1056 Fixed Fixed Fixed Fixed Fixed Fixed

1061 Fixed Fixed Fixed Fixed Fixed Fixed

1066 Fixed Fixed Fixed Fixed Fixed Fixed

1071 Fixed Fixed Fixed Fixed Fixed Fixed

1075 Fixed Fixed Fixed Fixed Fixed Fixed

1079 Fixed Fixed Fixed Fixed Fixed Fixed

1084 Fixed Fixed Fixed Fixed Fixed Fixed

1089 Fixed Fixed Fixed Fixed Fixed Fixed

1094 Fixed Fixed Fixed Fixed Fixed Fixed

1098 Fixed Fixed Fixed Fixed Fixed Fixed

1102 Fixed Fixed Fixed Fixed Fixed Fixed

1107 Fixed Fixed Fixed Fixed Fixed Fixed

1112 Fixed Fixed Fixed Fixed Fixed Fixed

1117 Fixed Fixed Fixed Fixed Fixed Fixed

1121 Fixed Fixed Fixed Fixed Fixed Fixed

1125 Fixed Fixed Fixed Fixed Fixed Fixed

1130 Fixed Fixed Fixed Fixed Fixed Fixed

1135 Fixed Fixed Fixed Fixed Fixed Fixed

Page 9: Design Report for Acropolis Tower

21/05/2013

Basic Load Cases

Number Name

1 DL

2 LL

3 -VE WL

4 +VE WL

Combination Load Cases

Comb. Combination L/C Name Primary Primary L/C Name Factor

5 COMBINATION LOAD CASE 5 1 DL 1.00

2 LL 1.00

6 COMBINATION LOAD CASE 6 1 DL 1.00

3 -VE WL 1.00

7 COMBINATION LOAD CASE 7 1 DL 1.00

4 +VE WL 1.00

Statics Check Results

L/C FX (N)

FY (N)

FZ (N)

MX (kNm)

MY (kNm)

MZ (kNm)

1:DL Loads -0.000 -231E 3 0.000 -2.7E 3 0.000 -280.778

1:DL Reactions 0.000 231E 3 -0.000 2.7E 3 -0.000 280.778

Difference -0.000 -0.000 -0.000 0.000 0.000 0.000

2:LL Loads 0.000 -57.7E 3 0.000 -672.403 0.000 -95.192

2:LL Reactions -0.000 57.7E 3 -0.000 672.403 0.000 95.192

Difference -0.000 -0.000 -0.000 0.000 0.000 0.000

3:-VE WL Loads -805E 3 285E 3 -695E 3 -20.1E 3 10.4E 3 23.4E 3

3:-VE WL Reactions 805E 3 -285E 3 695E 3 20.1E 3 -10.4E 3 -23.4E 3

Difference -0.000 0.000 0.000 0.001 -0.000 -0.001

4:+VE WL Loads -805E 3 -285E 3 -695E 3 -26.7E 3 10.4E 3 22.5E 3

4:+VE WL Reactions 805E 3 285E 3 695E 3 26.7E 3 -10.4E 3 -22.5E 3

Difference -0.000 -0.000 0.000 0.001 -0.000 -0.000

Node Displacement Summary

Node L/C X (mm)

Y (mm)

Z (mm)

Resultant (mm)

rX (rad)

rY (rad)

rZ (rad)

Max X 379 3:-VE WL 1.339 2.547 -1.350 3.179 -0.000 -0.000 -0.002

Min X 754 3:-VE WL -10.550 0.047 -2.944 10.953 0.000 0.000 -0.002

Max Y 423 3:-VE WL -0.661 7.946 -2.895 8.483 0.000 -0.000 -0.001

Min Y 344 7:COMBINATION LOAD CASE 7

-3.822 -12.882 -2.737 13.713 0.000 -0.000 0.002

Max Z 1091 7:COMBINATION LOAD CASE 7

-3.699 -0.010 0.349 3.716 0.000 -0.003 0.000

Min Z 118 7:COMBINATION LOAD CASE 7

-2.180 -0.003 -6.646 6.995 0.001 0.000 -0.000

Max rX 204 3:-VE WL 0.048 -0.002 -4.670 4.670 0.004 0.000 0.000

Min rX 1158 4:+VE WL -0.024 -0.011 -2.597 2.597 -0.006 0.000 0.000

Max rY 738 7:COMBINATION LOAD CASE 7

-7.254 -0.082 -2.958 7.834 0.000 0.006 -0.001

Min rY 657 7:COMBINATION LOAD CASE 7

-7.579 -0.090 -2.940 8.130 0.000 -0.005 -0.001

Max rZ 548 7:COMBINATION LOAD CASE 7

-0.060 -3.787 -0.992 3.915 0.000 -0.001 0.005

Min rZ 755 3:-VE WL -6.531 0.060 -1.735 6.758 0.000 0.000 -0.004

Max Rst 343 7:COMBINATION LOAD CASE 7

-3.820 -12.877 -2.808 13.722 0.000 -0.000 0.002

Page 10: Design Report for Acropolis Tower

21/05/2013

Beam Displacement Detail Summary Displacements shown in italic indicate the presence of an offset

Beam L/C d (m)

X (mm)

Y (mm)

Z (mm)

Resultant (mm)

Max X 659 3:-VE WL 0.207 1.379 2.539 -1.352 3.190

Min X 1510 3:-VE WL 0.578 -11.141 0.040 -3.008 11.540

Max Y 777 3:-VE WL 0.519 -0.679 7.981 -2.873 8.510

Min Y 623 7:COMBINATION LOAD CASE 7

0.622 -3.849 -12.922 -2.766 13.764

Max Z 2419 3:-VE WL 0.553 -3.382 -0.004 0.361 3.401

Min Z 1609 7:COMBINATION LOAD CASE 7

0.900 -2.107 -0.002 -6.809 7.128

Max Rst 623 7:COMBINATION LOAD CASE 7

0.622 -3.849 -12.922 -2.766 13.764

A maximum deflection of (22.92-5.962) mm i.e. 16.958 mm is observed in Y direction for Beam No. 343 for Combination Load Case 6. Therefore, ∂max = 16.958 mm Allowable Deflection is, ∂allow = 3300/150 = 22.000 mm > 16.958 mm The ∂max is smaller than the allowable hence ok.

Reaction Summary

Horizontal Vertical Horizontal Moment

Node L/C FX (N)

FY (N)

FZ (N)

MX (kNm)

MY (kNm)

MZ (kNm)

Max FX 109 3:-VE WL 57.4E 3 -1.05E 3 28.4E 3 -0.015 0.442 -0.203

Min FX 56 3:-VE WL -32.5E 3 -1.36E 3 19.1E 3 -0.493 0.373 -0.495

Max FY 32 7:COMBINATION LOAD CASE 7

836.790 34E 3 576.555 0.738 0.007 -0.078

Min FY 191 3:-VE WL 3.13E 3 -14.4E 3 5.97E 3 3.146 -0.137 0.007

Max FZ 267 7:COMBINATION LOAD CASE 7

57.3E 3 1.06E 3 28.4E 3 0.007 0.442 -0.486

Min FZ 1121 3:-VE WL 14.8E 3 3.68E 3 -2.52E 3 -0.018 0.544 0.006

Max MX 33 4:+VE WL 1.85E 3 597.294 6.35E 3 3.237 0.033 -0.020

Min MX 947 3:-VE WL 12E 3 3.45E 3 10.6E 3 -1.196 1.581 1.643

Max MY 145 4:+VE WL 11.4E 3 2.48E 3 5.07E 3 1.417 3.027 -0.130

Min MY 191 3:-VE WL 3.13E 3 -14.4E 3 5.97E 3 3.146 -0.137 0.007

Max MZ 519 3:-VE WL 7.34E 3 -12.6E 3 2.87E 3 0.213 1.450 17.098

Min MZ 520 7:COMBINATION LOAD CASE 7

7.26E 3 16E 3 2.87E 3 0.209 1.451 -29.763

Utilization Ratio Beam Analysis

Property Design Property

Actual Ratio

Allowable Ratio

Ratio (Act./All

ow.)

Clause L/C

Ax (cm

2)

Iz (cm

4)

Iy (cm

4)

Ix (cm

4)

1 TUBE TUBE 0.439 1.330 0.330 IS-7.1.2 3 8.806 69.625 69.625 104.211

4 TUBE TUBE 0.370 1.330 0.279 IS-7.1.2 7 8.806 69.625 69.625 104.211

5 TUBE TUBE 0.523 1.330 0.393 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

6 TUBE TUBE 0.486 1.330 0.365 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

9 TUBE TUBE 0.368 1.330 0.277 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

10 TUBE TUBE 0.566 1.330 0.425 IS-7.1.2 7 8.806 69.625 69.625 104.211

13 TUBE TUBE 0.510 1.330 0.383 IS-7.1.2 7 8.806 69.625 69.625 104.211

14 TUBE TUBE 0.625 1.330 0.470 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

Page 11: Design Report for Acropolis Tower

21/05/2013

15 TUBE TUBE 0.605 1.330 0.455 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

18 TUBE TUBE 0.541 1.330 0.406 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

19 TUBE TUBE 0.604 1.330 0.454 IS-7.1.2 3 8.806 69.625 69.625 104.211

22 TUBE TUBE 0.559 1.330 0.421 IS-7.1.2 7 8.806 69.625 69.625 104.211

23 TUBE TUBE 0.835 1.330 0.628 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

24 TUBE TUBE 0.822 1.330 0.618 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

27 TUBE TUBE 0.664 1.330 0.499 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

28 TUBE TUBE 0.646 1.330 0.486 IS-7.1.2 7 8.806 69.625 69.625 104.211

31 TUBE TUBE 0.591 1.330 0.444 IS-7.1.2 7 8.806 69.625 69.625 104.211

32 TUBE TUBE 0.948 1.330 0.713 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

33 TUBE TUBE 0.953 1.330 0.716 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

36 TUBE TUBE 0.764 1.330 0.575 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

37 TUBE TUBE 0.678 1.330 0.509 IS-7.1.2 7 8.806 69.625 69.625 104.211

40 TUBE TUBE 0.554 1.330 0.416 IS-7.1.2 3 8.806 69.625 69.625 104.211

41 TUBE TUBE 0.730 1.330 0.549 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

42 TUBE TUBE 0.738 1.330 0.555 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

45 TUBE TUBE 0.628 1.330 0.472 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

46 TUBE TUBE 0.709 1.330 0.533 IS-7.1.2 3 8.806 69.625 69.625 104.211

49 TUBE TUBE 0.611 1.330 0.459 IS-7.1.2 7 8.806 69.625 69.625 104.211

52 TUBE TUBE 0.044 1.330 0.033 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

53 TUBE TUBE 0.003 1.330 0.003 IS-7.1.1(A) 1 8.806 69.625 69.625 104.211

54 TUBE TUBE 0.044 1.330 0.033 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

55 TUBE TUBE 0.003 1.330 0.003 IS-7.1.1(A) 1 8.806 69.625 69.625 104.211

56 TUBE TUBE 0.530 1.330 0.399 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

57 TUBE TUBE 0.523 1.330 0.393 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

60 TUBE TUBE 0.705 1.330 0.530 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

61 TUBE TUBE 0.935 1.330 0.703 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

62 TUBE TUBE 0.370 1.330 0.279 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

63 TUBE TUBE 0.903 1.330 0.679 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

64 TUBE TUBE 0.280 1.330 0.210 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

65 TUBE TUBE 0.667 1.330 0.502 IS-7.1.2 7 8.806 69.625 69.625 104.211

66 TUBE TUBE 0.268 1.330 0.201 IS-7.1.2 7 8.806 69.625 69.625 104.211

67 TUBE TUBE 0.325 1.330 0.244 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

70 TUBE TUBE 0.209 1.330 0.157 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

73 TUBE TUBE 0.231 1.330 0.174 IS-7.1.2 7 8.806 69.625 69.625 104.211

74 TUBE TUBE 0.222 1.330 0.167 IS-7.1.2 7 8.806 69.625 69.625 104.211

75 TUBE TUBE 0.210 1.330 0.158 IS-7.1.2 7 8.806 69.625 69.625 104.211

76 TUBE TUBE 0.152 1.330 0.114 IS-7.1.2 7 8.806 69.625 69.625 104.211

77 TUBE TUBE 0.156 1.330 0.118 IS-7.1.2 7 8.806 69.625 69.625 104.211

78 TUBE TUBE 0.141 1.330 0.106 IS-7.1.2 7 8.806 69.625 69.625 104.211

79 TUBE TUBE 0.571 1.330 0.430 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

80 TUBE TUBE 0.657 1.330 0.494 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

81 TUBE TUBE 0.661 1.330 0.497 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

82 TUBE TUBE 0.540 1.330 0.406 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

83 TUBE TUBE 0.610 1.330 0.458 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

84 TUBE TUBE 0.540 1.330 0.406 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

85 TUBE TUBE 0.698 1.330 0.525 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

86 TUBE TUBE 0.629 1.330 0.473 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

87 TUBE TUBE 0.615 1.330 0.462 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

88 TUBE TUBE 0.190 1.330 0.143 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

89 TUBE TUBE 0.121 1.330 0.091 IS-7.1.2 3 8.806 69.625 69.625 104.211

90 TUBE TUBE 0.343 1.330 0.258 IS-7.1.2 3 8.806 69.625 69.625 104.211

91 TUBE TUBE 0.128 1.330 0.096 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

92 TUBE TUBE 0.446 1.330 0.335 IS-7.1.2 3 8.806 69.625 69.625 104.211

93 TUBE TUBE 0.305 1.330 0.230 IS-7.1.1(B) 3 8.806 69.625 69.625 104.211

94 TUBE TUBE 0.120 1.330 0.090 IS-7.1.2 3 8.806 69.625 69.625 104.211

95 TUBE TUBE 0.179 1.330 0.134 IS-7.1.2 3 8.806 69.625 69.625 104.211

96 TUBE TUBE 0.511 1.330 0.384 IS-7.1.2 3 8.806 69.625 69.625 104.211

97 TUBE TUBE 0.651 1.330 0.490 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

98 TUBE TUBE 0.560 1.330 0.421 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

99 TUBE TUBE 0.608 1.330 0.457 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

100 TUBE TUBE 0.647 1.330 0.486 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

101 TUBE TUBE 0.611 1.330 0.459 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

102 TUBE TUBE 0.717 1.330 0.539 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

103 TUBE TUBE 0.720 1.330 0.541 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

104 TUBE TUBE 0.582 1.330 0.438 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

105 TUBE TUBE 0.247 1.330 0.186 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

106 TUBE TUBE 0.202 1.330 0.152 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

107 TUBE TUBE 0.237 1.330 0.178 IS-7.1.2 7 8.806 69.625 69.625 104.211

Page 12: Design Report for Acropolis Tower

21/05/2013

108 TUBE TUBE 0.208 1.330 0.156 IS-7.1.2 7 8.806 69.625 69.625 104.211

109 TUBE TUBE 0.252 1.330 0.190 IS-7.1.2 7 8.806 69.625 69.625 104.211

110 TUBE TUBE 0.179 1.330 0.134 IS-7.1.2 7 8.806 69.625 69.625 104.211

111 TUBE TUBE 0.178 1.330 0.134 IS-7.1.2 7 8.806 69.625 69.625 104.211

112 TUBE TUBE 0.125 1.330 0.094 IS-7.1.2 7 8.806 69.625 69.625 104.211

113 TUBE TUBE 0.635 1.330 0.477 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

114 TUBE TUBE 0.731 1.330 0.550 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

115 TUBE TUBE 0.704 1.330 0.530 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

116 TUBE TUBE 0.709 1.330 0.533 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

117 TUBE TUBE 0.716 1.330 0.538 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

118 TUBE TUBE 0.745 1.330 0.560 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

119 TUBE TUBE 0.775 1.330 0.583 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

120 TUBE TUBE 0.686 1.330 0.516 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

121 TUBE TUBE 0.552 1.330 0.415 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

122 TUBE TUBE 0.167 1.330 0.125 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

123 TUBE TUBE 0.131 1.330 0.099 IS-7.1.2 6 8.806 69.625 69.625 104.211

124 TUBE TUBE 0.327 1.330 0.246 IS-7.1.2 3 8.806 69.625 69.625 104.211

125 TUBE TUBE 0.079 1.330 0.059 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

126 TUBE TUBE 0.487 1.330 0.366 IS-7.1.2 7 8.806 69.625 69.625 104.211

127 TUBE TUBE 0.304 1.330 0.229 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

128 TUBE TUBE 0.088 1.330 0.067 IS-7.1.2 3 8.806 69.625 69.625 104.211

129 TUBE TUBE 0.137 1.330 0.103 IS-7.1.2 3 8.806 69.625 69.625 104.211

130 TUBE TUBE 0.676 1.330 0.508 IS-7.1.2 3 8.806 69.625 69.625 104.211

131 TUBE TUBE 0.806 1.330 0.606 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

132 TUBE TUBE 0.792 1.330 0.596 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

133 TUBE TUBE 0.733 1.330 0.551 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

134 TUBE TUBE 0.733 1.330 0.551 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

135 TUBE TUBE 0.775 1.330 0.582 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

136 TUBE TUBE 0.804 1.330 0.605 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

137 TUBE TUBE 0.944 1.330 0.710 7.1.2 BEND C 4 8.806 69.625 69.625 104.211

138 TUBE TUBE 0.816 1.330 0.613 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

139 TUBE TUBE 0.171 1.330 0.129 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

140 TUBE TUBE 0.188 1.330 0.141 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

141 TUBE TUBE 0.240 1.330 0.180 IS-7.1.2 7 8.806 69.625 69.625 104.211

142 TUBE TUBE 0.212 1.330 0.159 IS-7.1.2 7 8.806 69.625 69.625 104.211

143 TUBE TUBE 0.254 1.330 0.191 IS-7.1.2 7 8.806 69.625 69.625 104.211

144 TUBE TUBE 0.177 1.330 0.133 IS-7.1.2 7 8.806 69.625 69.625 104.211

145 TUBE TUBE 0.152 1.330 0.114 IS-7.1.2 7 8.806 69.625 69.625 104.211

146 TUBE TUBE 0.119 1.330 0.090 IS-7.1.2 4 8.806 69.625 69.625 104.211

147 TUBE TUBE 0.817 1.330 0.614 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

148 TUBE TUBE 0.887 1.330 0.667 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

149 TUBE TUBE 0.906 1.330 0.681 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

150 TUBE TUBE 0.872 1.330 0.656 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

151 TUBE TUBE 0.796 1.330 0.598 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

152 TUBE TUBE 0.906 1.330 0.682 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

153 TUBE TUBE 0.846 1.330 0.636 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

154 TUBE TUBE 0.855 1.330 0.643 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

155 TUBE TUBE 0.702 1.330 0.528 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

156 TUBE TUBE 0.143 1.330 0.107 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

157 TUBE TUBE 0.087 1.330 0.065 IS-7.1.2 6 8.806 69.625 69.625 104.211

158 TUBE TUBE 0.341 1.330 0.256 IS-7.1.2 3 8.806 69.625 69.625 104.211

159 TUBE TUBE 0.076 1.330 0.057 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

160 TUBE TUBE 0.514 1.330 0.387 IS-7.1.2 7 8.806 69.625 69.625 104.211

161 TUBE TUBE 0.347 1.330 0.261 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

162 TUBE TUBE 0.110 1.330 0.083 IS-7.1.2 7 8.806 69.625 69.625 104.211

163 TUBE TUBE 0.138 1.330 0.104 IS-7.1.2 7 8.806 69.625 69.625 104.211

164 TUBE TUBE 0.716 1.330 0.539 IS-7.1.2 3 8.806 69.625 69.625 104.211

165 TUBE TUBE 0.798 1.330 0.600 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

166 TUBE TUBE 0.811 1.330 0.610 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

167 TUBE TUBE 0.805 1.330 0.605 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

168 TUBE TUBE 0.721 1.330 0.542 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

169 TUBE TUBE 0.861 1.330 0.648 IS-7.1.2 3 8.806 69.625 69.625 104.211

170 TUBE TUBE 0.807 1.330 0.607 IS-7.1.2 3 8.806 69.625 69.625 104.211

171 TUBE TUBE 0.907 1.330 0.682 7.1.2 BEND C 4 8.806 69.625 69.625 104.211

172 TUBE TUBE 0.781 1.330 0.587 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

173 TUBE TUBE 0.168 1.330 0.126 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

174 TUBE TUBE 0.197 1.330 0.148 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

175 TUBE TUBE 0.242 1.330 0.182 IS-7.1.2 7 8.806 69.625 69.625 104.211

176 TUBE TUBE 0.220 1.330 0.166 IS-7.1.2 7 8.806 69.625 69.625 104.211

Page 13: Design Report for Acropolis Tower

21/05/2013

177 TUBE TUBE 0.260 1.330 0.196 IS-7.1.2 7 8.806 69.625 69.625 104.211

178 TUBE TUBE 0.188 1.330 0.142 IS-7.1.2 7 8.806 69.625 69.625 104.211

179 TUBE TUBE 0.155 1.330 0.116 IS-7.1.2 7 8.806 69.625 69.625 104.211

180 TUBE TUBE 0.119 1.330 0.090 IS-7.1.2 3 8.806 69.625 69.625 104.211

181 TUBE TUBE 0.810 1.330 0.609 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

182 TUBE TUBE 0.879 1.330 0.661 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

183 TUBE TUBE 0.904 1.330 0.680 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

184 TUBE TUBE 0.867 1.330 0.652 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

185 TUBE TUBE 0.792 1.330 0.596 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

186 TUBE TUBE 0.905 1.330 0.681 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

187 TUBE TUBE 0.846 1.330 0.636 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

188 TUBE TUBE 0.850 1.330 0.639 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

189 TUBE TUBE 0.698 1.330 0.524 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

190 TUBE TUBE 0.141 1.330 0.106 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

191 TUBE TUBE 0.100 1.330 0.075 IS-7.1.2 3 8.806 69.625 69.625 104.211

192 TUBE TUBE 0.345 1.330 0.259 IS-7.1.2 3 8.806 69.625 69.625 104.211

193 TUBE TUBE 0.084 1.330 0.063 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

194 TUBE TUBE 0.526 1.330 0.396 IS-7.1.2 7 8.806 69.625 69.625 104.211

195 TUBE TUBE 0.368 1.330 0.277 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

196 TUBE TUBE 0.112 1.330 0.085 IS-7.1.2 7 8.806 69.625 69.625 104.211

197 TUBE TUBE 0.138 1.330 0.104 IS-7.1.2 7 8.806 69.625 69.625 104.211

198 TUBE TUBE 0.714 1.330 0.537 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

199 TUBE TUBE 0.777 1.330 0.584 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

200 TUBE TUBE 0.814 1.330 0.612 IS-7.1.2 3 8.806 69.625 69.625 104.211

201 TUBE TUBE 0.801 1.330 0.602 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

202 TUBE TUBE 0.714 1.330 0.537 IS-7.1.2 3 8.806 69.625 69.625 104.211

203 TUBE TUBE 0.864 1.330 0.649 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

204 TUBE TUBE 0.821 1.330 0.618 IS-7.1.2 3 8.806 69.625 69.625 104.211

205 TUBE TUBE 0.919 1.330 0.691 7.1.2 BEND C 4 8.806 69.625 69.625 104.211

206 TUBE TUBE 0.792 1.330 0.595 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

207 TUBE TUBE 0.173 1.330 0.130 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

208 TUBE TUBE 0.219 1.330 0.164 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

209 TUBE TUBE 0.244 1.330 0.183 IS-7.1.2 7 8.806 69.625 69.625 104.211

210 TUBE TUBE 0.229 1.330 0.172 IS-7.1.2 7 8.806 69.625 69.625 104.211

211 TUBE TUBE 0.266 1.330 0.200 IS-7.1.2 7 8.806 69.625 69.625 104.211

212 TUBE TUBE 0.198 1.330 0.149 IS-7.1.2 7 8.806 69.625 69.625 104.211

213 TUBE TUBE 0.156 1.330 0.117 IS-7.1.2 7 8.806 69.625 69.625 104.211

214 TUBE TUBE 0.120 1.330 0.090 IS-7.1.2 3 8.806 69.625 69.625 104.211

215 TUBE TUBE 0.788 1.330 0.593 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

216 TUBE TUBE 0.852 1.330 0.640 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

217 TUBE TUBE 0.886 1.330 0.666 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

218 TUBE TUBE 0.833 1.330 0.627 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

219 TUBE TUBE 0.753 1.330 0.566 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

220 TUBE TUBE 0.865 1.330 0.650 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

221 TUBE TUBE 0.803 1.330 0.604 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

222 TUBE TUBE 0.872 1.330 0.656 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

223 TUBE TUBE 0.721 1.330 0.542 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

224 TUBE TUBE 0.210 1.330 0.158 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

225 TUBE TUBE 0.144 1.330 0.108 IS-7.1.2 7 8.806 69.625 69.625 104.211

226 TUBE TUBE 0.321 1.330 0.241 IS-7.1.2 3 8.806 69.625 69.625 104.211

227 TUBE TUBE 0.101 1.330 0.076 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

228 TUBE TUBE 0.512 1.330 0.385 IS-7.1.2 7 8.806 69.625 69.625 104.211

229 TUBE TUBE 0.384 1.330 0.289 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

230 TUBE TUBE 0.154 1.330 0.115 IS-7.1.2 7 8.806 69.625 69.625 104.211

231 TUBE TUBE 0.146 1.330 0.110 IS-7.1.2 7 8.806 69.625 69.625 104.211

232 TUBE TUBE 0.649 1.330 0.488 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

233 TUBE TUBE 0.700 1.330 0.526 IS-7.1.2 3 8.806 69.625 69.625 104.211

234 TUBE TUBE 0.746 1.330 0.561 IS-7.1.2 3 8.806 69.625 69.625 104.211

235 TUBE TUBE 0.729 1.330 0.548 IS-7.1.2 3 8.806 69.625 69.625 104.211

236 TUBE TUBE 0.620 1.330 0.466 IS-7.1.2 3 8.806 69.625 69.625 104.211

237 TUBE TUBE 0.779 1.330 0.586 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

238 TUBE TUBE 0.714 1.330 0.537 IS-7.1.2 3 8.806 69.625 69.625 104.211

239 TUBE TUBE 0.749 1.330 0.563 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

240 TUBE TUBE 0.589 1.330 0.443 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

241 TUBE TUBE 0.210 1.330 0.158 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

242 TUBE TUBE 0.259 1.330 0.194 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

243 TUBE TUBE 0.242 1.330 0.182 IS-7.1.2 7 8.806 69.625 69.625 104.211

244 TUBE TUBE 0.232 1.330 0.175 IS-7.1.2 7 8.806 69.625 69.625 104.211

245 TUBE TUBE 0.271 1.330 0.204 IS-7.1.2 7 8.806 69.625 69.625 104.211

Page 14: Design Report for Acropolis Tower

21/05/2013

246 TUBE TUBE 0.216 1.330 0.163 IS-7.1.2 7 8.806 69.625 69.625 104.211

247 TUBE TUBE 0.187 1.330 0.141 IS-7.1.2 7 8.806 69.625 69.625 104.211

248 TUBE TUBE 0.139 1.330 0.105 IS-7.1.2 7 8.806 69.625 69.625 104.211

249 TUBE TUBE 0.545 1.330 0.409 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

250 TUBE TUBE 0.716 1.330 0.538 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

251 TUBE TUBE 0.655 1.330 0.493 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

252 TUBE TUBE 0.586 1.330 0.440 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

253 TUBE TUBE 0.550 1.330 0.414 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

254 TUBE TUBE 0.588 1.330 0.442 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

255 TUBE TUBE 0.604 1.330 0.454 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

256 TUBE TUBE 0.651 1.330 0.489 7.1.2 BEND C 6 8.806 69.625 69.625 104.211

257 TUBE TUBE 0.595 1.330 0.447 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

258 TUBE TUBE 0.069 1.330 0.052 IS-7.1.1(A) 3 12.658 81.791 244.748 189.165

259 TUBE TUBE 0.126 1.330 0.095 IS-7.1.2 7 12.658 81.791 244.748 189.165

260 TUBE TUBE 0.105 1.330 0.079 IS-7.1.2 7 20.870 238.030 585.567 517.300

261 TUBE TUBE 0.092 1.330 0.069 IS-7.1.2 7 20.870 238.030 585.567 517.300

262 TUBE TUBE 0.380 1.330 0.286 IS-7.1.2 7 20.870 238.030 585.567 517.300

263 TUBE TUBE 0.364 1.330 0.274 IS-7.1.2 7 20.870 238.030 585.567 517.300

264 TUBE TUBE 0.088 1.330 0.067 IS-7.1.2 3 20.870 238.030 585.567 517.300

265 TUBE TUBE 0.079 1.330 0.059 IS-7.1.2 7 20.870 238.030 585.567 517.300

266 TUBE TUBE 0.157 1.330 0.118 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

268 TUBE TUBE 0.185 1.330 0.139 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

269 TUBE TUBE 0.207 1.330 0.155 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

270 TUBE TUBE 0.179 1.330 0.135 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

271 TUBE TUBE 0.223 1.330 0.168 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

272 TUBE TUBE 0.175 1.330 0.131 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

273 TUBE TUBE 0.244 1.330 0.184 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

274 TUBE TUBE 0.232 1.330 0.175 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

275 TUBE TUBE 0.080 1.330 0.060 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

276 TUBE TUBE 0.166 1.330 0.125 IS-7.1.2 7 8.806 69.625 69.625 104.211

277 TUBE TUBE 0.128 1.330 0.097 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

278 TUBE TUBE 0.264 1.330 0.199 IS-7.1.2 7 8.806 69.625 69.625 104.211

279 TUBE TUBE 0.143 1.330 0.108 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

280 TUBE TUBE 0.283 1.330 0.213 IS-7.1.2 7 8.806 69.625 69.625 104.211

281 TUBE TUBE 0.310 1.330 0.233 IS-7.1.2 7 8.806 69.625 69.625 104.211

282 TUBE TUBE 0.246 1.330 0.185 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

283 TUBE TUBE 0.255 1.330 0.192 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

284 TUBE TUBE 0.246 1.330 0.185 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

287 TUBE TUBE 0.150 1.330 0.113 IS-7.1.2 3 8.806 69.625 69.625 104.211

288 TUBE TUBE 0.073 1.330 0.055 IS-7.1.2 3 8.806 69.625 69.625 104.211

291 TUBE TUBE 0.073 1.330 0.055 IS-7.1.2 7 8.806 69.625 69.625 104.211

292 TUBE TUBE 0.439 1.330 0.330 IS-7.1.2 3 8.806 69.625 69.625 104.211

295 TUBE TUBE 0.370 1.330 0.278 IS-7.1.2 7 8.806 69.625 69.625 104.211

296 TUBE TUBE 0.523 1.330 0.394 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

297 TUBE TUBE 0.486 1.330 0.365 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

300 TUBE TUBE 0.368 1.330 0.277 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

301 TUBE TUBE 0.565 1.330 0.425 IS-7.1.2 7 8.806 69.625 69.625 104.211

304 TUBE TUBE 0.510 1.330 0.383 IS-7.1.2 7 8.806 69.625 69.625 104.211

305 TUBE TUBE 0.625 1.330 0.470 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

306 TUBE TUBE 0.605 1.330 0.455 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

309 TUBE TUBE 0.540 1.330 0.406 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

310 TUBE TUBE 0.604 1.330 0.454 IS-7.1.2 3 8.806 69.625 69.625 104.211

313 TUBE TUBE 0.560 1.330 0.421 IS-7.1.2 7 8.806 69.625 69.625 104.211

314 TUBE TUBE 0.835 1.330 0.628 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

315 TUBE TUBE 0.823 1.330 0.619 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

318 TUBE TUBE 0.665 1.330 0.500 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

319 TUBE TUBE 0.645 1.330 0.485 IS-7.1.2 7 8.806 69.625 69.625 104.211

322 TUBE TUBE 0.592 1.330 0.445 IS-7.1.2 7 8.806 69.625 69.625 104.211

323 TUBE TUBE 0.948 1.330 0.713 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

324 TUBE TUBE 0.954 1.330 0.717 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

327 TUBE TUBE 0.766 1.330 0.576 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

328 TUBE TUBE 0.673 1.330 0.506 IS-7.1.2 7 8.806 69.625 69.625 104.211

331 TUBE TUBE 0.557 1.330 0.419 IS-7.1.2 3 8.806 69.625 69.625 104.211

332 TUBE TUBE 0.729 1.330 0.548 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

333 TUBE TUBE 0.739 1.330 0.556 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

336 TUBE TUBE 0.631 1.330 0.475 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

337 TUBE TUBE 0.699 1.330 0.525 IS-7.1.2 3 8.806 69.625 69.625 104.211

340 TUBE TUBE 0.620 1.330 0.466 IS-7.1.2 7 8.806 69.625 69.625 104.211

343 TUBE TUBE 0.044 1.330 0.033 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

Page 15: Design Report for Acropolis Tower

21/05/2013

344 TUBE TUBE 0.003 1.330 0.003 IS-7.1.1(A) 1 8.806 69.625 69.625 104.211

345 TUBE TUBE 0.044 1.330 0.033 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

346 TUBE TUBE 0.003 1.330 0.003 IS-7.1.1(A) 1 8.806 69.625 69.625 104.211

347 TUBE TUBE 0.534 1.330 0.401 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

348 TUBE TUBE 0.521 1.330 0.392 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

349 TUBE TUBE 0.719 1.330 0.540 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

350 TUBE TUBE 0.977 1.330 0.735 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

351 TUBE TUBE 0.346 1.330 0.260 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

352 TUBE TUBE 0.917 1.330 0.689 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

353 TUBE TUBE 0.261 1.330 0.196 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

354 TUBE TUBE 0.666 1.330 0.501 IS-7.1.2 7 8.806 69.625 69.625 104.211

355 TUBE TUBE 0.259 1.330 0.195 IS-7.1.2 7 8.806 69.625 69.625 104.211

356 TUBE TUBE 0.311 1.330 0.234 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

357 TUBE TUBE 0.220 1.330 0.165 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

358 TUBE TUBE 0.243 1.330 0.182 IS-7.1.2 7 8.806 69.625 69.625 104.211

359 TUBE TUBE 0.209 1.330 0.157 IS-7.1.2 7 8.806 69.625 69.625 104.211

360 TUBE TUBE 0.216 1.330 0.162 IS-7.1.2 7 8.806 69.625 69.625 104.211

361 TUBE TUBE 0.145 1.330 0.109 IS-7.1.2 7 8.806 69.625 69.625 104.211

362 TUBE TUBE 0.143 1.330 0.108 IS-7.1.2 7 8.806 69.625 69.625 104.211

363 TUBE TUBE 0.147 1.330 0.111 IS-7.1.2 7 8.806 69.625 69.625 104.211

364 TUBE TUBE 0.616 1.330 0.463 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

365 TUBE TUBE 0.618 1.330 0.465 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

366 TUBE TUBE 0.653 1.330 0.491 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

367 TUBE TUBE 0.587 1.330 0.441 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

368 TUBE TUBE 0.558 1.330 0.419 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

369 TUBE TUBE 0.565 1.330 0.424 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

370 TUBE TUBE 0.662 1.330 0.498 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

371 TUBE TUBE 0.629 1.330 0.473 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

372 TUBE TUBE 0.591 1.330 0.445 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

373 TUBE TUBE 0.174 1.330 0.131 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

374 TUBE TUBE 0.131 1.330 0.098 IS-7.1.2 3 8.806 69.625 69.625 104.211

375 TUBE TUBE 0.347 1.330 0.261 IS-7.1.2 3 8.806 69.625 69.625 104.211

376 TUBE TUBE 0.121 1.330 0.091 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

377 TUBE TUBE 0.450 1.330 0.338 IS-7.1.2 3 8.806 69.625 69.625 104.211

378 TUBE TUBE 0.296 1.330 0.223 IS-7.1.1(B) 3 8.806 69.625 69.625 104.211

379 TUBE TUBE 0.117 1.330 0.088 IS-7.1.2 3 8.806 69.625 69.625 104.211

380 TUBE TUBE 0.183 1.330 0.138 IS-7.1.2 3 8.806 69.625 69.625 104.211

381 TUBE TUBE 0.556 1.330 0.418 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

382 TUBE TUBE 0.634 1.330 0.476 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

383 TUBE TUBE 0.581 1.330 0.437 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

384 TUBE TUBE 0.643 1.330 0.484 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

385 TUBE TUBE 0.616 1.330 0.463 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

386 TUBE TUBE 0.624 1.330 0.469 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

387 TUBE TUBE 0.702 1.330 0.528 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

388 TUBE TUBE 0.719 1.330 0.541 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

389 TUBE TUBE 0.581 1.330 0.437 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

390 TUBE TUBE 0.220 1.330 0.165 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

391 TUBE TUBE 0.218 1.330 0.164 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

392 TUBE TUBE 0.246 1.330 0.185 IS-7.1.2 7 8.806 69.625 69.625 104.211

393 TUBE TUBE 0.199 1.330 0.149 IS-7.1.2 7 8.806 69.625 69.625 104.211

394 TUBE TUBE 0.259 1.330 0.195 IS-7.1.2 7 8.806 69.625 69.625 104.211

395 TUBE TUBE 0.171 1.330 0.128 IS-7.1.2 7 8.806 69.625 69.625 104.211

396 TUBE TUBE 0.174 1.330 0.131 IS-7.1.2 7 8.806 69.625 69.625 104.211

397 TUBE TUBE 0.130 1.330 0.098 IS-7.1.2 7 8.806 69.625 69.625 104.211

398 TUBE TUBE 0.662 1.330 0.498 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

399 TUBE TUBE 0.677 1.330 0.509 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

400 TUBE TUBE 0.672 1.330 0.505 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

401 TUBE TUBE 0.748 1.330 0.563 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

402 TUBE TUBE 0.663 1.330 0.499 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

403 TUBE TUBE 0.771 1.330 0.579 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

404 TUBE TUBE 0.742 1.330 0.558 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

405 TUBE TUBE 0.689 1.330 0.518 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

406 TUBE TUBE 0.551 1.330 0.414 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

407 TUBE TUBE 0.151 1.330 0.114 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

408 TUBE TUBE 0.156 1.330 0.118 IS-7.1.2 7 8.806 69.625 69.625 104.211

409 TUBE TUBE 0.334 1.330 0.251 IS-7.1.2 3 8.806 69.625 69.625 104.211

410 TUBE TUBE 0.071 1.330 0.054 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

411 TUBE TUBE 0.502 1.330 0.378 IS-7.1.2 7 8.806 69.625 69.625 104.211

412 TUBE TUBE 0.289 1.330 0.217 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

Page 16: Design Report for Acropolis Tower

21/05/2013

413 TUBE TUBE 0.088 1.330 0.066 IS-7.1.2 3 8.806 69.625 69.625 104.211

414 TUBE TUBE 0.138 1.330 0.104 IS-7.1.2 3 8.806 69.625 69.625 104.211

415 TUBE TUBE 0.728 1.330 0.547 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

416 TUBE TUBE 0.779 1.330 0.586 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

417 TUBE TUBE 0.825 1.330 0.620 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

418 TUBE TUBE 0.765 1.330 0.575 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

419 TUBE TUBE 0.705 1.330 0.530 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

420 TUBE TUBE 0.796 1.330 0.599 IS-7.1.2 3 8.806 69.625 69.625 104.211

421 TUBE TUBE 0.798 1.330 0.600 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

422 TUBE TUBE 0.946 1.330 0.711 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

423 TUBE TUBE 0.814 1.330 0.612 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

424 TUBE TUBE 0.149 1.330 0.112 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

425 TUBE TUBE 0.193 1.330 0.145 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

426 TUBE TUBE 0.252 1.330 0.190 IS-7.1.2 7 8.806 69.625 69.625 104.211

427 TUBE TUBE 0.199 1.330 0.150 IS-7.1.2 7 8.806 69.625 69.625 104.211

428 TUBE TUBE 0.264 1.330 0.199 IS-7.1.2 7 8.806 69.625 69.625 104.211

429 TUBE TUBE 0.164 1.330 0.124 IS-7.1.2 7 8.806 69.625 69.625 104.211

430 TUBE TUBE 0.146 1.330 0.110 IS-7.1.2 7 8.806 69.625 69.625 104.211

431 TUBE TUBE 0.120 1.330 0.090 IS-7.1.2 3 8.806 69.625 69.625 104.211

432 TUBE TUBE 0.847 1.330 0.637 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

433 TUBE TUBE 0.792 1.330 0.595 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

434 TUBE TUBE 0.858 1.330 0.645 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

435 TUBE TUBE 0.914 1.330 0.688 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

436 TUBE TUBE 0.730 1.330 0.549 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

437 TUBE TUBE 0.933 1.330 0.702 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

438 TUBE TUBE 0.804 1.330 0.604 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

439 TUBE TUBE 0.855 1.330 0.643 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

440 TUBE TUBE 0.698 1.330 0.525 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

441 TUBE TUBE 0.134 1.330 0.101 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

442 TUBE TUBE 0.106 1.330 0.079 IS-7.1.2 7 8.806 69.625 69.625 104.211

443 TUBE TUBE 0.350 1.330 0.263 IS-7.1.2 3 8.806 69.625 69.625 104.211

444 TUBE TUBE 0.063 1.330 0.047 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

445 TUBE TUBE 0.538 1.330 0.405 IS-7.1.2 7 8.806 69.625 69.625 104.211

446 TUBE TUBE 0.324 1.330 0.243 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

447 TUBE TUBE 0.104 1.330 0.078 IS-7.1.2 7 8.806 69.625 69.625 104.211

448 TUBE TUBE 0.141 1.330 0.106 IS-7.1.2 7 8.806 69.625 69.625 104.211

449 TUBE TUBE 0.790 1.330 0.594 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

450 TUBE TUBE 0.775 1.330 0.583 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

451 TUBE TUBE 0.864 1.330 0.650 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

452 TUBE TUBE 0.837 1.330 0.629 IS-7.1.2 3 8.806 69.625 69.625 104.211

453 TUBE TUBE 0.696 1.330 0.523 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

454 TUBE TUBE 0.894 1.330 0.672 IS-7.1.2 3 8.806 69.625 69.625 104.211

455 TUBE TUBE 0.784 1.330 0.590 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

456 TUBE TUBE 0.911 1.330 0.685 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

457 TUBE TUBE 0.778 1.330 0.585 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

458 TUBE TUBE 0.148 1.330 0.112 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

459 TUBE TUBE 0.191 1.330 0.144 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

460 TUBE TUBE 0.259 1.330 0.195 IS-7.1.2 7 8.806 69.625 69.625 104.211

461 TUBE TUBE 0.202 1.330 0.152 IS-7.1.2 7 8.806 69.625 69.625 104.211

462 TUBE TUBE 0.275 1.330 0.207 IS-7.1.2 7 8.806 69.625 69.625 104.211

463 TUBE TUBE 0.171 1.330 0.128 IS-7.1.2 7 8.806 69.625 69.625 104.211

464 TUBE TUBE 0.145 1.330 0.109 IS-7.1.2 7 8.806 69.625 69.625 104.211

465 TUBE TUBE 0.120 1.330 0.091 IS-7.1.2 3 8.806 69.625 69.625 104.211

466 TUBE TUBE 0.843 1.330 0.634 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

467 TUBE TUBE 0.755 1.330 0.568 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

468 TUBE TUBE 0.835 1.330 0.628 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

469 TUBE TUBE 0.911 1.330 0.685 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

470 TUBE TUBE 0.714 1.330 0.537 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

471 TUBE TUBE 0.934 1.330 0.702 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

472 TUBE TUBE 0.795 1.330 0.598 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

473 TUBE TUBE 0.849 1.330 0.638 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

474 TUBE TUBE 0.691 1.330 0.520 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

475 TUBE TUBE 0.135 1.330 0.102 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

476 TUBE TUBE 0.111 1.330 0.083 IS-7.1.2 7 8.806 69.625 69.625 104.211

477 TUBE TUBE 0.357 1.330 0.269 IS-7.1.2 3 8.806 69.625 69.625 104.211

478 TUBE TUBE 0.066 1.330 0.050 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

479 TUBE TUBE 0.558 1.330 0.420 IS-7.1.2 7 8.806 69.625 69.625 104.211

480 TUBE TUBE 0.335 1.330 0.252 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

481 TUBE TUBE 0.101 1.330 0.076 IS-7.1.2 7 8.806 69.625 69.625 104.211

Page 17: Design Report for Acropolis Tower

21/05/2013

482 TUBE TUBE 0.142 1.330 0.107 IS-7.1.2 7 8.806 69.625 69.625 104.211

483 TUBE TUBE 0.810 1.330 0.609 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

484 TUBE TUBE 0.755 1.330 0.568 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

485 TUBE TUBE 0.876 1.330 0.658 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

486 TUBE TUBE 0.842 1.330 0.633 IS-7.1.2 3 8.806 69.625 69.625 104.211

487 TUBE TUBE 0.685 1.330 0.515 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

488 TUBE TUBE 0.904 1.330 0.679 IS-7.1.2 3 8.806 69.625 69.625 104.211

489 TUBE TUBE 0.788 1.330 0.593 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

490 TUBE TUBE 0.924 1.330 0.695 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

491 TUBE TUBE 0.790 1.330 0.594 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

492 TUBE TUBE 0.160 1.330 0.120 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

493 TUBE TUBE 0.195 1.330 0.147 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

494 TUBE TUBE 0.268 1.330 0.201 IS-7.1.2 7 8.806 69.625 69.625 104.211

495 TUBE TUBE 0.205 1.330 0.154 IS-7.1.2 7 8.806 69.625 69.625 104.211

496 TUBE TUBE 0.286 1.330 0.215 IS-7.1.2 7 8.806 69.625 69.625 104.211

497 TUBE TUBE 0.174 1.330 0.131 IS-7.1.2 7 8.806 69.625 69.625 104.211

498 TUBE TUBE 0.138 1.330 0.104 IS-7.1.2 7 8.806 69.625 69.625 104.211

499 TUBE TUBE 0.122 1.330 0.091 IS-7.1.2 3 8.806 69.625 69.625 104.211

500 TUBE TUBE 0.835 1.330 0.628 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

501 TUBE TUBE 0.692 1.330 0.521 7.1.2 BEND C 6 8.806 69.625 69.625 104.211

502 TUBE TUBE 0.800 1.330 0.601 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

503 TUBE TUBE 0.895 1.330 0.673 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

504 TUBE TUBE 0.675 1.330 0.507 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

505 TUBE TUBE 0.907 1.330 0.682 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

506 TUBE TUBE 0.751 1.330 0.565 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

507 TUBE TUBE 0.866 1.330 0.651 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

508 TUBE TUBE 0.709 1.330 0.533 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

509 TUBE TUBE 0.196 1.330 0.147 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

510 TUBE TUBE 0.105 1.330 0.079 IS-7.1.2 3 8.806 69.625 69.625 104.211

511 TUBE TUBE 0.349 1.330 0.262 IS-7.1.2 7 8.806 69.625 69.625 104.211

512 TUBE TUBE 0.092 1.330 0.069 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

513 TUBE TUBE 0.569 1.330 0.427 IS-7.1.2 7 8.806 69.625 69.625 104.211

514 TUBE TUBE 0.361 1.330 0.272 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

515 TUBE TUBE 0.137 1.330 0.103 IS-7.1.2 7 8.806 69.625 69.625 104.211

516 TUBE TUBE 0.158 1.330 0.119 IS-7.1.2 7 8.806 69.625 69.625 104.211

517 TUBE TUBE 0.762 1.330 0.573 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

518 TUBE TUBE 0.634 1.330 0.476 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

519 TUBE TUBE 0.802 1.330 0.603 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

520 TUBE TUBE 0.754 1.330 0.567 IS-7.1.2 3 8.806 69.625 69.625 104.211

521 TUBE TUBE 0.555 1.330 0.417 IS-7.1.2 3 8.806 69.625 69.625 104.211

522 TUBE TUBE 0.803 1.330 0.604 IS-7.1.2 3 8.806 69.625 69.625 104.211

523 TUBE TUBE 0.664 1.330 0.499 IS-7.1.2 3 8.806 69.625 69.625 104.211

524 TUBE TUBE 0.725 1.330 0.545 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

525 TUBE TUBE 0.573 1.330 0.431 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

526 TUBE TUBE 0.210 1.330 0.158 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

527 TUBE TUBE 0.178 1.330 0.134 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

528 TUBE TUBE 0.287 1.330 0.215 IS-7.1.2 7 8.806 69.625 69.625 104.211

529 TUBE TUBE 0.193 1.330 0.145 IS-7.1.2 7 8.806 69.625 69.625 104.211

530 TUBE TUBE 0.305 1.330 0.229 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

531 TUBE TUBE 0.176 1.330 0.132 IS-7.1.2 7 8.806 69.625 69.625 104.211

532 TUBE TUBE 0.145 1.330 0.109 IS-7.1.2 7 8.806 69.625 69.625 104.211

533 TUBE TUBE 0.186 1.330 0.140 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

534 TUBE TUBE 0.573 1.330 0.431 IS-7.1.2 3 8.806 69.625 69.625 104.211

535 TUBE TUBE 0.449 1.330 0.338 IS-7.1.2 3 8.806 69.625 69.625 104.211

536 TUBE TUBE 0.565 1.330 0.425 IS-7.1.2 3 8.806 69.625 69.625 104.211

537 TUBE TUBE 0.629 1.330 0.473 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

538 TUBE TUBE 0.343 1.330 0.258 IS-7.1.2 6 8.806 69.625 69.625 104.211

539 TUBE TUBE 0.694 1.330 0.522 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

540 TUBE TUBE 0.476 1.330 0.358 IS-7.1.2 6 8.806 69.625 69.625 104.211

541 TUBE TUBE 0.761 1.330 0.572 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

542 TUBE TUBE 0.561 1.330 0.422 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

543 TUBE TUBE 0.072 1.330 0.054 IS-7.1.1(A) 3 12.658 81.791 244.748 189.165

544 TUBE TUBE 0.143 1.330 0.107 IS-7.1.2 7 12.658 81.791 244.748 189.165

545 TUBE TUBE 0.114 1.330 0.085 IS-7.1.2 7 20.870 238.030 585.567 517.300

546 TUBE TUBE 0.060 1.330 0.045 IS-7.1.2 7 20.870 238.030 585.567 517.300

547 TUBE TUBE 0.461 1.330 0.347 IS-7.1.2 7 20.870 238.030 585.567 517.300

548 TUBE TUBE 0.245 1.330 0.184 IS-7.1.2 7 20.870 238.030 585.567 517.300

549 TUBE TUBE 0.062 1.330 0.047 IS-7.1.2 3 20.870 238.030 585.567 517.300

550 TUBE TUBE 0.083 1.330 0.063 IS-7.1.2 3 20.870 238.030 585.567 517.300

Page 18: Design Report for Acropolis Tower

21/05/2013

552 TUBE TUBE 0.063 1.330 0.047 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

553 TUBE TUBE 0.156 1.330 0.117 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

554 TUBE TUBE 0.336 1.330 0.253 IS-7.1.2 3 8.806 69.625 69.625 104.211

555 TUBE TUBE 0.069 1.330 0.052 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

556 TUBE TUBE 0.272 1.330 0.204 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

557 TUBE TUBE 0.166 1.330 0.125 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

558 TUBE TUBE 0.254 1.330 0.191 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

559 TUBE TUBE 0.126 1.330 0.094 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

560 TUBE TUBE 0.145 1.330 0.109 IS-7.1.2 7 8.806 69.625 69.625 104.211

561 TUBE TUBE 0.095 1.330 0.072 IS-7.1.2 7 8.806 69.625 69.625 104.211

562 TUBE TUBE 0.195 1.330 0.147 IS-7.1.2 3 8.806 69.625 69.625 104.211

563 TUBE TUBE 0.082 1.330 0.062 IS-7.1.2 4 8.806 69.625 69.625 104.211

564 TUBE TUBE 0.257 1.330 0.193 IS-7.1.2 3 8.806 69.625 69.625 104.211

565 TUBE TUBE 0.082 1.330 0.061 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

566 TUBE TUBE 0.110 1.330 0.083 IS-7.1.2 7 8.806 69.625 69.625 104.211

567 TUBE TUBE 0.232 1.330 0.174 IS-7.1.2 7 8.806 69.625 69.625 104.211

568 TUBE TUBE 0.255 1.330 0.192 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

569 TUBE TUBE 0.246 1.330 0.185 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

572 TUBE TUBE 0.150 1.330 0.113 IS-7.1.2 3 8.806 69.625 69.625 104.211

573 TUBE TUBE 0.073 1.330 0.055 IS-7.1.2 3 8.806 69.625 69.625 104.211

576 TUBE TUBE 0.073 1.330 0.055 IS-7.1.2 7 8.806 69.625 69.625 104.211

577 TUBE TUBE 0.636 1.330 0.478 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

578 TUBE TUBE 0.516 1.330 0.388 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

579 TUBE TUBE 0.357 1.330 0.268 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

580 TUBE TUBE 0.231 1.330 0.174 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

581 TUBE TUBE 0.240 1.330 0.180 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

582 TUBE TUBE 0.189 1.330 0.142 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

583 TUBE TUBE 0.305 1.330 0.229 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

584 TUBE TUBE 0.189 1.330 0.142 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

585 TUBE TUBE 0.213 1.330 0.160 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

586 TUBE TUBE 0.470 1.330 0.353 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

587 TUBE TUBE 0.400 1.330 0.301 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

588 TUBE TUBE 0.216 1.330 0.162 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

589 TUBE TUBE 0.220 1.330 0.166 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

590 TUBE TUBE 0.291 1.330 0.219 IS-7.1.2 6 8.806 69.625 69.625 104.211

591 TUBE TUBE 0.304 1.330 0.228 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

592 TUBE TUBE 0.299 1.330 0.224 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

593 TUBE TUBE 0.386 1.330 0.290 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

594 TUBE TUBE 0.419 1.330 0.315 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

595 TUBE TUBE 0.326 1.330 0.245 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

596 TUBE TUBE 0.281 1.330 0.211 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

597 TUBE TUBE 0.137 1.330 0.103 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

598 TUBE TUBE 0.352 1.330 0.265 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

599 TUBE TUBE 0.323 1.330 0.243 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

600 TUBE TUBE 0.184 1.330 0.138 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

601 TUBE TUBE 0.167 1.330 0.126 IS-7.1.1(A) 6 20.870 238.030 585.567 517.300

602 TUBE TUBE 0.365 1.330 0.274 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

603 TUBE TUBE 0.353 1.330 0.266 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

604 TUBE TUBE 0.237 1.330 0.178 IS-7.1.2 3 20.870 238.030 585.567 517.300

605 TUBE TUBE 0.103 1.330 0.077 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

606 TUBE TUBE 0.132 1.330 0.099 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

607 TUBE TUBE 0.231 1.330 0.174 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

608 TUBE TUBE 0.135 1.330 0.102 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

609 TUBE TUBE 0.167 1.330 0.126 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

610 TUBE TUBE 0.247 1.330 0.186 IS-7.1.2 7 8.806 69.625 69.625 104.211

611 TUBE TUBE 0.328 1.330 0.247 IS-7.1.2 7 8.806 69.625 69.625 104.211

612 TUBE TUBE 0.125 1.330 0.094 IS-7.1.2 6 8.806 69.625 69.625 104.211

613 TUBE TUBE 0.227 1.330 0.170 IS-7.1.2 6 8.806 69.625 69.625 104.211

614 TUBE TUBE 0.251 1.330 0.189 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

615 TUBE TUBE 0.510 1.330 0.384 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

616 TUBE TUBE 0.417 1.330 0.314 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

617 TUBE TUBE 0.350 1.330 0.263 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

618 TUBE TUBE 0.303 1.330 0.228 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

619 TUBE TUBE 0.269 1.330 0.202 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

620 TUBE TUBE 0.245 1.330 0.185 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

621 TUBE TUBE 0.228 1.330 0.172 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

622 TUBE TUBE 0.215 1.330 0.162 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

623 TUBE TUBE 0.204 1.330 0.153 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

624 TUBE TUBE 0.192 1.330 0.144 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

Page 19: Design Report for Acropolis Tower

21/05/2013

625 TUBE TUBE 0.177 1.330 0.133 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

626 TUBE TUBE 0.164 1.330 0.123 IS-7.1.2 3 8.806 69.625 69.625 104.211

627 TUBE TUBE 0.183 1.330 0.138 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

628 TUBE TUBE 0.217 1.330 0.163 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

629 TUBE TUBE 0.265 1.330 0.199 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

630 TUBE TUBE 0.334 1.330 0.251 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

631 TUBE TUBE 0.427 1.330 0.321 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

632 TUBE TUBE 0.589 1.330 0.443 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

633 TUBE TUBE 0.351 1.330 0.264 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

634 TUBE TUBE 0.308 1.330 0.232 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

635 TUBE TUBE 0.284 1.330 0.214 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

636 TUBE TUBE 0.261 1.330 0.196 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

637 TUBE TUBE 0.242 1.330 0.182 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

638 TUBE TUBE 0.227 1.330 0.171 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

639 TUBE TUBE 0.214 1.330 0.161 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

640 TUBE TUBE 0.203 1.330 0.152 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

641 TUBE TUBE 0.192 1.330 0.144 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

642 TUBE TUBE 0.185 1.330 0.139 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

643 TUBE TUBE 0.176 1.330 0.133 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

644 TUBE TUBE 0.168 1.330 0.126 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

645 TUBE TUBE 0.158 1.330 0.119 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

646 TUBE TUBE 0.163 1.330 0.123 IS-7.1.2 3 8.806 69.625 69.625 104.211

647 TUBE TUBE 0.182 1.330 0.137 IS-7.1.2 3 8.806 69.625 69.625 104.211

648 TUBE TUBE 0.205 1.330 0.154 IS-7.1.2 3 8.806 69.625 69.625 104.211

649 TUBE TUBE 0.238 1.330 0.179 IS-7.1.2 3 8.806 69.625 69.625 104.211

650 TUBE TUBE 0.415 1.330 0.312 IS-7.1.2 3 8.806 69.625 69.625 104.211

651 TUBE TUBE 0.284 1.330 0.214 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

652 TUBE TUBE 0.265 1.330 0.199 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

653 TUBE TUBE 0.255 1.330 0.192 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

654 TUBE TUBE 0.246 1.330 0.185 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

655 TUBE TUBE 0.238 1.330 0.179 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

656 TUBE TUBE 0.231 1.330 0.173 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

657 TUBE TUBE 0.224 1.330 0.169 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

658 TUBE TUBE 0.219 1.330 0.164 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

659 TUBE TUBE 0.213 1.330 0.160 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

660 TUBE TUBE 0.207 1.330 0.156 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

661 TUBE TUBE 0.201 1.330 0.151 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

662 TUBE TUBE 0.194 1.330 0.146 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

663 TUBE TUBE 0.186 1.330 0.140 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

664 TUBE TUBE 0.177 1.330 0.133 7.1.2 BEND C 4 8.806 69.625 69.625 104.211

665 TUBE TUBE 0.171 1.330 0.129 IS-7.1.2 4 8.806 69.625 69.625 104.211

666 TUBE TUBE 0.181 1.330 0.136 IS-7.1.2 3 8.806 69.625 69.625 104.211

667 TUBE TUBE 0.194 1.330 0.146 IS-7.1.2 3 8.806 69.625 69.625 104.211

668 TUBE TUBE 0.320 1.330 0.241 IS-7.1.2 3 8.806 69.625 69.625 104.211

669 TUBE TUBE 0.228 1.330 0.172 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

670 TUBE TUBE 0.217 1.330 0.163 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

671 TUBE TUBE 0.204 1.330 0.154 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

672 TUBE TUBE 0.194 1.330 0.146 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

673 TUBE TUBE 0.185 1.330 0.139 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

674 TUBE TUBE 0.178 1.330 0.134 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

675 TUBE TUBE 0.172 1.330 0.129 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

676 TUBE TUBE 0.167 1.330 0.125 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

677 TUBE TUBE 0.162 1.330 0.122 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

678 TUBE TUBE 0.158 1.330 0.119 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

679 TUBE TUBE 0.153 1.330 0.115 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

680 TUBE TUBE 0.147 1.330 0.111 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

681 TUBE TUBE 0.141 1.330 0.106 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

682 TUBE TUBE 0.138 1.330 0.104 IS-7.1.2 3 8.806 69.625 69.625 104.211

683 TUBE TUBE 0.145 1.330 0.109 IS-7.1.2 3 8.806 69.625 69.625 104.211

684 TUBE TUBE 0.151 1.330 0.114 IS-7.1.2 3 8.806 69.625 69.625 104.211

685 TUBE TUBE 0.158 1.330 0.119 IS-7.1.2 3 8.806 69.625 69.625 104.211

686 TUBE TUBE 0.149 1.330 0.112 IS-7.1.2 3 8.806 69.625 69.625 104.211

687 TUBE TUBE 0.101 1.330 0.076 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

688 TUBE TUBE 0.183 1.330 0.138 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

689 TUBE TUBE 0.137 1.330 0.103 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

690 TUBE TUBE 0.381 1.330 0.287 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

691 TUBE TUBE 0.341 1.330 0.256 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

692 TUBE TUBE 0.166 1.330 0.125 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

693 TUBE TUBE 0.193 1.330 0.145 IS-7.1.2 7 8.806 69.625 69.625 104.211

Page 20: Design Report for Acropolis Tower

21/05/2013

694 TUBE TUBE 0.142 1.330 0.107 IS-7.1.2 3 8.806 69.625 69.625 104.211

695 TUBE TUBE 0.200 1.330 0.150 IS-7.1.2 3 8.806 69.625 69.625 104.211

696 TUBE TUBE 0.190 1.330 0.143 IS-7.1.2 3 8.806 69.625 69.625 104.211

697 TUBE TUBE 0.202 1.330 0.152 IS-7.1.2 3 8.806 69.625 69.625 104.211

698 TUBE TUBE 0.216 1.330 0.162 IS-7.1.2 3 8.806 69.625 69.625 104.211

699 TUBE TUBE 0.220 1.330 0.165 IS-7.1.2 3 8.806 69.625 69.625 104.211

700 TUBE TUBE 0.219 1.330 0.165 IS-7.1.2 3 8.806 69.625 69.625 104.211

701 TUBE TUBE 0.217 1.330 0.163 IS-7.1.2 3 8.806 69.625 69.625 104.211

702 TUBE TUBE 0.213 1.330 0.160 IS-7.1.2 3 8.806 69.625 69.625 104.211

703 TUBE TUBE 0.208 1.330 0.156 IS-7.1.2 3 8.806 69.625 69.625 104.211

704 TUBE TUBE 0.202 1.330 0.152 IS-7.1.2 3 8.806 69.625 69.625 104.211

705 TUBE TUBE 0.195 1.330 0.146 IS-7.1.2 3 8.806 69.625 69.625 104.211

706 TUBE TUBE 0.196 1.330 0.147 IS-7.1.2 7 8.806 69.625 69.625 104.211

707 TUBE TUBE 0.205 1.330 0.154 IS-7.1.2 7 8.806 69.625 69.625 104.211

708 TUBE TUBE 0.213 1.330 0.160 IS-7.1.2 7 8.806 69.625 69.625 104.211

709 TUBE TUBE 0.221 1.330 0.166 IS-7.1.2 7 8.806 69.625 69.625 104.211

710 TUBE TUBE 0.229 1.330 0.172 IS-7.1.2 7 8.806 69.625 69.625 104.211

711 TUBE TUBE 0.234 1.330 0.176 IS-7.1.2 7 8.806 69.625 69.625 104.211

712 TUBE TUBE 0.244 1.330 0.183 IS-7.1.2 7 8.806 69.625 69.625 104.211

713 TUBE TUBE 0.288 1.330 0.216 IS-7.1.2 7 8.806 69.625 69.625 104.211

714 TUBE TUBE 0.295 1.330 0.222 IS-7.1.2 7 8.806 69.625 69.625 104.211

715 TUBE TUBE 0.303 1.330 0.228 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

716 TUBE TUBE 0.251 1.330 0.189 IS-7.1.2 3 8.806 69.625 69.625 104.211

717 TUBE TUBE 0.329 1.330 0.247 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

718 TUBE TUBE 0.293 1.330 0.220 IS-7.1.2 3 8.806 69.625 69.625 104.211

719 TUBE TUBE 0.320 1.330 0.240 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

720 TUBE TUBE 0.322 1.330 0.242 IS-7.1.2 7 8.806 69.625 69.625 104.211

721 TUBE TUBE 0.305 1.330 0.229 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

722 TUBE TUBE 0.366 1.330 0.275 IS-7.1.2 7 8.806 69.625 69.625 104.211

723 TUBE TUBE 0.293 1.330 0.220 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

724 TUBE TUBE 0.399 1.330 0.300 IS-7.1.2 7 8.806 69.625 69.625 104.211

725 TUBE TUBE 0.283 1.330 0.213 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

726 TUBE TUBE 0.423 1.330 0.318 IS-7.1.2 7 8.806 69.625 69.625 104.211

727 TUBE TUBE 0.276 1.330 0.208 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

728 TUBE TUBE 0.440 1.330 0.331 IS-7.1.2 7 8.806 69.625 69.625 104.211

729 TUBE TUBE 0.271 1.330 0.204 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

730 TUBE TUBE 0.452 1.330 0.340 IS-7.1.2 7 8.806 69.625 69.625 104.211

731 TUBE TUBE 0.267 1.330 0.201 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

732 TUBE TUBE 0.461 1.330 0.346 IS-7.1.2 7 8.806 69.625 69.625 104.211

733 TUBE TUBE 0.265 1.330 0.199 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

734 TUBE TUBE 0.466 1.330 0.351 IS-7.1.2 7 8.806 69.625 69.625 104.211

735 TUBE TUBE 0.262 1.330 0.197 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

736 TUBE TUBE 0.470 1.330 0.353 IS-7.1.2 7 8.806 69.625 69.625 104.211

737 TUBE TUBE 0.261 1.330 0.196 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

738 TUBE TUBE 0.470 1.330 0.354 IS-7.1.2 7 8.806 69.625 69.625 104.211

739 TUBE TUBE 0.261 1.330 0.196 IS-7.1.2 7 8.806 69.625 69.625 104.211

740 TUBE TUBE 0.468 1.330 0.352 IS-7.1.2 7 8.806 69.625 69.625 104.211

741 TUBE TUBE 0.262 1.330 0.197 IS-7.1.2 7 8.806 69.625 69.625 104.211

742 TUBE TUBE 0.463 1.330 0.348 IS-7.1.2 7 8.806 69.625 69.625 104.211

743 TUBE TUBE 0.264 1.330 0.198 IS-7.1.2 7 8.806 69.625 69.625 104.211

744 TUBE TUBE 0.454 1.330 0.341 IS-7.1.2 7 8.806 69.625 69.625 104.211

745 TUBE TUBE 0.264 1.330 0.198 IS-7.1.2 7 8.806 69.625 69.625 104.211

746 TUBE TUBE 0.438 1.330 0.329 IS-7.1.2 7 8.806 69.625 69.625 104.211

747 TUBE TUBE 0.269 1.330 0.202 IS-7.1.2 7 8.806 69.625 69.625 104.211

748 TUBE TUBE 0.410 1.330 0.308 IS-7.1.2 7 8.806 69.625 69.625 104.211

749 TUBE TUBE 0.278 1.330 0.209 IS-7.1.2 7 8.806 69.625 69.625 104.211

750 TUBE TUBE 0.358 1.330 0.269 IS-7.1.2 7 8.806 69.625 69.625 104.211

751 TUBE TUBE 0.237 1.330 0.178 IS-7.1.2 3 8.806 69.625 69.625 104.211

752 TUBE TUBE 0.232 1.330 0.175 IS-7.1.2 4 8.806 69.625 69.625 104.211

753 TUBE TUBE 0.169 1.330 0.127 IS-7.1.2 3 20.870 238.030 585.567 517.300

754 TUBE TUBE 0.158 1.330 0.119 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

755 TUBE TUBE 0.193 1.330 0.145 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

756 TUBE TUBE 0.218 1.330 0.164 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

757 TUBE TUBE 0.218 1.330 0.164 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

758 TUBE TUBE 0.231 1.330 0.173 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

759 TUBE TUBE 0.578 1.330 0.435 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

760 TUBE TUBE 0.413 1.330 0.311 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

761 TUBE TUBE 0.376 1.330 0.282 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

762 TUBE TUBE 0.225 1.330 0.169 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

Page 21: Design Report for Acropolis Tower

21/05/2013

763 TUBE TUBE 0.298 1.330 0.224 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

764 TUBE TUBE 0.312 1.330 0.234 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

765 TUBE TUBE 0.214 1.330 0.161 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

766 TUBE TUBE 0.429 1.330 0.322 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

767 TUBE TUBE 0.495 1.330 0.372 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

768 TUBE TUBE 0.249 1.330 0.187 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

769 TUBE TUBE 0.345 1.330 0.260 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

770 TUBE TUBE 0.271 1.330 0.204 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

771 TUBE TUBE 0.229 1.330 0.172 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

772 TUBE TUBE 0.201 1.330 0.151 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

773 TUBE TUBE 0.181 1.330 0.136 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

774 TUBE TUBE 0.166 1.330 0.125 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

775 TUBE TUBE 0.156 1.330 0.118 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

776 TUBE TUBE 0.149 1.330 0.112 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

777 TUBE TUBE 0.144 1.330 0.108 IS-7.1.2 7 8.806 69.625 69.625 104.211

778 TUBE TUBE 0.148 1.330 0.111 IS-7.1.2 7 8.806 69.625 69.625 104.211

779 TUBE TUBE 0.158 1.330 0.119 IS-7.1.2 7 8.806 69.625 69.625 104.211

780 TUBE TUBE 0.174 1.330 0.131 IS-7.1.2 7 8.806 69.625 69.625 104.211

781 TUBE TUBE 0.197 1.330 0.148 IS-7.1.2 7 8.806 69.625 69.625 104.211

782 TUBE TUBE 0.229 1.330 0.172 IS-7.1.2 7 8.806 69.625 69.625 104.211

783 TUBE TUBE 0.275 1.330 0.207 IS-7.1.2 7 8.806 69.625 69.625 104.211

784 TUBE TUBE 0.341 1.330 0.256 IS-7.1.2 7 8.806 69.625 69.625 104.211

785 TUBE TUBE 0.432 1.330 0.325 IS-7.1.2 7 8.806 69.625 69.625 104.211

786 TUBE TUBE 0.536 1.330 0.403 IS-7.1.2 7 8.806 69.625 69.625 104.211

787 TUBE TUBE 0.293 1.330 0.220 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

788 TUBE TUBE 0.271 1.330 0.204 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

789 TUBE TUBE 0.258 1.330 0.194 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

790 TUBE TUBE 0.244 1.330 0.184 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

791 TUBE TUBE 0.233 1.330 0.175 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

792 TUBE TUBE 0.226 1.330 0.170 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

793 TUBE TUBE 0.222 1.330 0.167 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

794 TUBE TUBE 0.217 1.330 0.163 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

795 TUBE TUBE 0.210 1.330 0.158 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

796 TUBE TUBE 0.204 1.330 0.153 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

797 TUBE TUBE 0.197 1.330 0.148 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

798 TUBE TUBE 0.191 1.330 0.143 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

799 TUBE TUBE 0.190 1.330 0.143 IS-7.1.2 7 8.806 69.625 69.625 104.211

800 TUBE TUBE 0.209 1.330 0.157 IS-7.1.2 7 8.806 69.625 69.625 104.211

801 TUBE TUBE 0.232 1.330 0.175 IS-7.1.2 7 8.806 69.625 69.625 104.211

802 TUBE TUBE 0.263 1.330 0.198 IS-7.1.2 7 8.806 69.625 69.625 104.211

803 TUBE TUBE 0.305 1.330 0.229 IS-7.1.2 7 8.806 69.625 69.625 104.211

804 TUBE TUBE 0.505 1.330 0.380 IS-7.1.2 7 8.806 69.625 69.625 104.211

805 TUBE TUBE 0.291 1.330 0.219 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

806 TUBE TUBE 0.295 1.330 0.222 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

807 TUBE TUBE 0.287 1.330 0.215 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

808 TUBE TUBE 0.279 1.330 0.210 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

809 TUBE TUBE 0.271 1.330 0.204 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

810 TUBE TUBE 0.264 1.330 0.199 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

811 TUBE TUBE 0.257 1.330 0.193 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

812 TUBE TUBE 0.251 1.330 0.188 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

813 TUBE TUBE 0.244 1.330 0.184 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

814 TUBE TUBE 0.238 1.330 0.179 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

815 TUBE TUBE 0.234 1.330 0.176 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

816 TUBE TUBE 0.237 1.330 0.178 IS-7.1.2 3 8.806 69.625 69.625 104.211

817 TUBE TUBE 0.242 1.330 0.182 IS-7.1.2 3 8.806 69.625 69.625 104.211

818 TUBE TUBE 0.249 1.330 0.187 IS-7.1.2 6 8.806 69.625 69.625 104.211

819 TUBE TUBE 0.256 1.330 0.193 IS-7.1.2 6 8.806 69.625 69.625 104.211

820 TUBE TUBE 0.260 1.330 0.196 IS-7.1.2 6 8.806 69.625 69.625 104.211

821 TUBE TUBE 0.271 1.330 0.203 IS-7.1.2 3 8.806 69.625 69.625 104.211

822 TUBE TUBE 0.416 1.330 0.313 IS-7.1.2 3 8.806 69.625 69.625 104.211

823 TUBE TUBE 0.182 1.330 0.137 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

824 TUBE TUBE 0.163 1.330 0.123 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

825 TUBE TUBE 0.147 1.330 0.111 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

826 TUBE TUBE 0.135 1.330 0.102 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

827 TUBE TUBE 0.126 1.330 0.095 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

828 TUBE TUBE 0.119 1.330 0.090 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

829 TUBE TUBE 0.114 1.330 0.086 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

830 TUBE TUBE 0.110 1.330 0.083 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

831 TUBE TUBE 0.107 1.330 0.081 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

Page 22: Design Report for Acropolis Tower

21/05/2013

832 TUBE TUBE 0.106 1.330 0.079 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

833 TUBE TUBE 0.106 1.330 0.080 IS-7.1.2 3 8.806 69.625 69.625 104.211

834 TUBE TUBE 0.108 1.330 0.081 IS-7.1.2 3 8.806 69.625 69.625 104.211

835 TUBE TUBE 0.111 1.330 0.084 IS-7.1.2 3 8.806 69.625 69.625 104.211

836 TUBE TUBE 0.116 1.330 0.087 IS-7.1.2 3 8.806 69.625 69.625 104.211

837 TUBE TUBE 0.123 1.330 0.092 IS-7.1.2 6 8.806 69.625 69.625 104.211

838 TUBE TUBE 0.139 1.330 0.105 IS-7.1.2 7 8.806 69.625 69.625 104.211

839 TUBE TUBE 0.160 1.330 0.120 IS-7.1.2 7 8.806 69.625 69.625 104.211

840 TUBE TUBE 0.297 1.330 0.223 IS-7.1.2 7 8.806 69.625 69.625 104.211

841 TUBE TUBE 0.321 1.330 0.241 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

842 TUBE TUBE 0.463 1.330 0.348 IS-7.1.2 6 8.806 69.625 69.625 104.211

843 TUBE TUBE 0.258 1.330 0.194 IS-7.1.2 7 8.806 69.625 69.625 104.211

844 TUBE TUBE 0.258 1.330 0.194 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

845 TUBE TUBE 0.370 1.330 0.278 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

846 TUBE TUBE 0.282 1.330 0.212 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

847 TUBE TUBE 0.222 1.330 0.167 IS-7.1.2 6 8.806 69.625 69.625 104.211

848 TUBE TUBE 0.250 1.330 0.188 IS-7.1.2 7 8.806 69.625 69.625 104.211

849 TUBE TUBE 0.304 1.330 0.229 IS-7.1.2 7 8.806 69.625 69.625 104.211

850 TUBE TUBE 0.183 1.330 0.138 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

851 TUBE TUBE 0.215 1.330 0.162 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

852 TUBE TUBE 0.256 1.330 0.192 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

853 TUBE TUBE 0.283 1.330 0.213 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

854 TUBE TUBE 0.299 1.330 0.225 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

855 TUBE TUBE 0.309 1.330 0.232 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

856 TUBE TUBE 0.313 1.330 0.235 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

857 TUBE TUBE 0.313 1.330 0.235 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

858 TUBE TUBE 0.310 1.330 0.233 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

859 TUBE TUBE 0.303 1.330 0.228 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

860 TUBE TUBE 0.293 1.330 0.220 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

861 TUBE TUBE 0.278 1.330 0.209 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

862 TUBE TUBE 0.259 1.330 0.195 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

863 TUBE TUBE 0.233 1.330 0.175 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

864 TUBE TUBE 0.198 1.330 0.149 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

865 TUBE TUBE 0.173 1.330 0.130 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

866 TUBE TUBE 0.188 1.330 0.141 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

867 TUBE TUBE 0.198 1.330 0.149 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

868 TUBE TUBE 0.261 1.330 0.196 IS-7.1.2 3 8.806 69.625 69.625 104.211

869 TUBE TUBE 0.414 1.330 0.312 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

870 TUBE TUBE 0.372 1.330 0.280 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

871 TUBE TUBE 0.454 1.330 0.341 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

872 TUBE TUBE 0.457 1.330 0.344 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

873 TUBE TUBE 0.484 1.330 0.364 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

874 TUBE TUBE 0.526 1.330 0.395 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

875 TUBE TUBE 0.502 1.330 0.378 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

876 TUBE TUBE 0.573 1.330 0.431 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

877 TUBE TUBE 0.504 1.330 0.379 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

878 TUBE TUBE 0.605 1.330 0.455 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

879 TUBE TUBE 0.511 1.330 0.385 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

880 TUBE TUBE 0.626 1.330 0.471 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

881 TUBE TUBE 0.515 1.330 0.387 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

882 TUBE TUBE 0.639 1.330 0.480 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

883 TUBE TUBE 0.517 1.330 0.388 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

884 TUBE TUBE 0.645 1.330 0.485 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

885 TUBE TUBE 0.516 1.330 0.388 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

886 TUBE TUBE 0.646 1.330 0.486 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

887 TUBE TUBE 0.514 1.330 0.386 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

888 TUBE TUBE 0.643 1.330 0.483 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

889 TUBE TUBE 0.510 1.330 0.383 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

890 TUBE TUBE 0.634 1.330 0.477 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

891 TUBE TUBE 0.503 1.330 0.378 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

892 TUBE TUBE 0.620 1.330 0.466 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

893 TUBE TUBE 0.494 1.330 0.372 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

894 TUBE TUBE 0.599 1.330 0.451 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

895 TUBE TUBE 0.481 1.330 0.362 IS-7.1.1(B) 7 8.806 69.625 69.625 104.211

896 TUBE TUBE 0.569 1.330 0.428 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

897 TUBE TUBE 0.471 1.330 0.354 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

898 TUBE TUBE 0.527 1.330 0.396 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

899 TUBE TUBE 0.454 1.330 0.341 IS-7.1.2 3 8.806 69.625 69.625 104.211

900 TUBE TUBE 0.469 1.330 0.352 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

Page 23: Design Report for Acropolis Tower

21/05/2013

901 TUBE TUBE 0.435 1.330 0.327 IS-7.1.2 3 8.806 69.625 69.625 104.211

902 TUBE TUBE 0.408 1.330 0.307 IS-7.1.2 3 8.806 69.625 69.625 104.211

903 TUBE TUBE 0.384 1.330 0.289 IS-7.1.2 3 8.806 69.625 69.625 104.211

904 TUBE TUBE 0.338 1.330 0.254 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

905 TUBE TUBE 0.290 1.330 0.218 IS-7.1.2 3 8.806 69.625 69.625 104.211

906 TUBE TUBE 0.252 1.330 0.189 IS-7.1.2 6 8.806 69.625 69.625 104.211

964 TUBE TUBE 0.191 1.330 0.144 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

965 TUBE TUBE 0.178 1.330 0.134 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

966 TUBE TUBE 0.262 1.330 0.197 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

967 TUBE TUBE 0.186 1.330 0.140 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

968 TUBE TUBE 0.127 1.330 0.096 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

969 TUBE TUBE 0.104 1.330 0.078 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

970 TUBE TUBE 0.089 1.330 0.067 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

971 TUBE TUBE 0.081 1.330 0.061 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

972 TUBE TUBE 0.076 1.330 0.057 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

973 TUBE TUBE 0.073 1.330 0.055 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

974 TUBE TUBE 0.072 1.330 0.054 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

975 TUBE TUBE 0.070 1.330 0.053 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

976 TUBE TUBE 0.068 1.330 0.051 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

977 TUBE TUBE 0.063 1.330 0.048 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

978 TUBE TUBE 0.063 1.330 0.047 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

979 TUBE TUBE 0.072 1.330 0.054 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

980 TUBE TUBE 0.088 1.330 0.066 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

981 TUBE TUBE 0.113 1.330 0.085 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

982 TUBE TUBE 0.173 1.330 0.130 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

983 TUBE TUBE 0.261 1.330 0.196 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

984 TUBE TUBE 0.309 1.330 0.232 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

985 TUBE TUBE 0.386 1.330 0.290 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

986 TUBE TUBE 0.448 1.330 0.337 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

987 TUBE TUBE 0.495 1.330 0.372 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

988 TUBE TUBE 0.528 1.330 0.397 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

989 TUBE TUBE 0.550 1.330 0.414 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

990 TUBE TUBE 0.565 1.330 0.425 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

991 TUBE TUBE 0.574 1.330 0.431 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

992 TUBE TUBE 0.577 1.330 0.434 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

993 TUBE TUBE 0.576 1.330 0.433 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

994 TUBE TUBE 0.571 1.330 0.429 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

995 TUBE TUBE 0.561 1.330 0.422 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

996 TUBE TUBE 0.544 1.330 0.409 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

997 TUBE TUBE 0.520 1.330 0.391 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

998 TUBE TUBE 0.485 1.330 0.365 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

999 TUBE TUBE 0.436 1.330 0.328 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1000 TUBE TUBE 0.372 1.330 0.280 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1001 TUBE TUBE 0.293 1.330 0.220 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1002 TUBE TUBE 0.255 1.330 0.192 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1003 TUBE TUBE 0.177 1.330 0.133 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1004 TUBE TUBE 0.160 1.330 0.120 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1005 TUBE TUBE 0.156 1.330 0.117 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1006 TUBE TUBE 0.158 1.330 0.118 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1007 TUBE TUBE 0.170 1.330 0.128 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1008 TUBE TUBE 0.178 1.330 0.134 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1009 TUBE TUBE 0.181 1.330 0.136 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1010 TUBE TUBE 0.181 1.330 0.136 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1011 TUBE TUBE 0.179 1.330 0.134 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1012 TUBE TUBE 0.179 1.330 0.135 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1013 TUBE TUBE 0.177 1.330 0.133 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1014 TUBE TUBE 0.171 1.330 0.128 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1015 TUBE TUBE 0.158 1.330 0.119 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1016 TUBE TUBE 0.151 1.330 0.114 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1017 TUBE TUBE 0.151 1.330 0.114 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1018 TUBE TUBE 0.162 1.330 0.122 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1019 TUBE TUBE 0.232 1.330 0.174 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1020 TUBE TUBE 0.383 1.330 0.288 IS-7.1.2 7 20.870 238.030 585.567 517.300

1021 TUBE TUBE 0.538 1.330 0.405 IS-7.1.2 7 20.870 238.030 585.567 517.300

1022 TUBE TUBE 0.649 1.330 0.488 IS-7.1.2 7 20.870 238.030 585.567 517.300

1023 TUBE TUBE 0.729 1.330 0.548 IS-7.1.2 7 20.870 238.030 585.567 517.300

1024 TUBE TUBE 0.785 1.330 0.591 IS-7.1.2 7 20.870 238.030 585.567 517.300

1025 TUBE TUBE 0.825 1.330 0.620 IS-7.1.2 7 20.870 238.030 585.567 517.300

1026 TUBE TUBE 0.851 1.330 0.640 IS-7.1.2 7 20.870 238.030 585.567 517.300

Page 24: Design Report for Acropolis Tower

21/05/2013

1027 TUBE TUBE 0.867 1.330 0.652 IS-7.1.2 7 20.870 238.030 585.567 517.300

1028 TUBE TUBE 0.875 1.330 0.658 IS-7.1.2 7 20.870 238.030 585.567 517.300

1029 TUBE TUBE 0.877 1.330 0.659 IS-7.1.2 7 20.870 238.030 585.567 517.300

1030 TUBE TUBE 0.870 1.330 0.654 IS-7.1.2 7 20.870 238.030 585.567 517.300

1031 TUBE TUBE 0.856 1.330 0.644 IS-7.1.2 7 20.870 238.030 585.567 517.300

1032 TUBE TUBE 0.832 1.330 0.626 IS-7.1.2 7 20.870 238.030 585.567 517.300

1033 TUBE TUBE 0.795 1.330 0.598 IS-7.1.2 7 20.870 238.030 585.567 517.300

1034 TUBE TUBE 0.740 1.330 0.557 IS-7.1.2 7 20.870 238.030 585.567 517.300

1035 TUBE TUBE 0.661 1.330 0.497 IS-7.1.2 7 20.870 238.030 585.567 517.300

1036 TUBE TUBE 0.550 1.330 0.414 IS-7.1.2 7 20.870 238.030 585.567 517.300

1037 TUBE TUBE 0.392 1.330 0.295 IS-7.1.2 7 20.870 238.030 585.567 517.300

1056 TUBE TUBE 0.622 1.330 0.468 IS-7.1.2 7 20.870 238.030 585.567 517.300

1057 TUBE TUBE 0.794 1.330 0.597 IS-7.1.2 7 20.870 238.030 585.567 517.300

1058 TUBE TUBE 0.896 1.330 0.674 IS-7.1.2 7 20.870 238.030 585.567 517.300

1059 TUBE TUBE 0.965 1.330 0.726 IS-7.1.2 7 20.870 238.030 585.567 517.300

1060 TUBE TUBE 1.014 1.330 0.763 IS-7.1.2 7 20.870 238.030 585.567 517.300

1061 TUBE TUBE 1.048 1.330 0.788 IS-7.1.2 7 20.870 238.030 585.567 517.300

1062 TUBE TUBE 1.071 1.330 0.805 IS-7.1.2 7 20.870 238.030 585.567 517.300

1063 TUBE TUBE 1.084 1.330 0.815 IS-7.1.2 7 20.870 238.030 585.567 517.300

1064 TUBE TUBE 1.091 1.330 0.820 IS-7.1.2 7 20.870 238.030 585.567 517.300

1065 TUBE TUBE 1.092 1.330 0.821 IS-7.1.2 7 20.870 238.030 585.567 517.300

1066 TUBE TUBE 1.086 1.330 0.816 IS-7.1.2 7 20.870 238.030 585.567 517.300

1067 TUBE TUBE 1.072 1.330 0.806 IS-7.1.2 7 20.870 238.030 585.567 517.300

1068 TUBE TUBE 1.050 1.330 0.789 IS-7.1.2 7 20.870 238.030 585.567 517.300

1069 TUBE TUBE 1.015 1.330 0.763 IS-7.1.2 7 20.870 238.030 585.567 517.300

1070 TUBE TUBE 0.964 1.330 0.725 IS-7.1.2 7 20.870 238.030 585.567 517.300

1071 TUBE TUBE 0.891 1.330 0.670 IS-7.1.2 7 20.870 238.030 585.567 517.300

1072 TUBE TUBE 0.784 1.330 0.589 IS-7.1.2 7 20.870 238.030 585.567 517.300

1073 TUBE TUBE 0.611 1.330 0.459 IS-7.1.2 7 20.870 238.030 585.567 517.300

1074 TUBE TUBE 0.506 1.330 0.380 IS-7.1.2 7 12.658 81.791 244.748 189.165

1075 TUBE TUBE 0.534 1.330 0.401 IS-7.1.2 7 12.658 81.791 244.748 189.165

1076 TUBE TUBE 0.416 1.330 0.312 IS-7.1.2 7 12.658 81.791 244.748 189.165

1077 TUBE TUBE 0.295 1.330 0.222 IS-7.1.2 7 12.658 81.791 244.748 189.165

1078 TUBE TUBE 0.218 1.330 0.164 IS-7.1.2 7 12.658 81.791 244.748 189.165

1079 TUBE TUBE 0.168 1.330 0.126 IS-7.1.2 7 12.658 81.791 244.748 189.165

1080 TUBE TUBE 0.135 1.330 0.102 IS-7.1.2 7 12.658 81.791 244.748 189.165

1081 TUBE TUBE 0.114 1.330 0.086 IS-7.1.2 7 12.658 81.791 244.748 189.165

1082 TUBE TUBE 0.101 1.330 0.076 IS-7.1.2 7 12.658 81.791 244.748 189.165

1083 TUBE TUBE 0.091 1.330 0.069 IS-7.1.2 7 12.658 81.791 244.748 189.165

1084 TUBE TUBE 0.095 1.330 0.072 IS-7.1.2 7 12.658 81.791 244.748 189.165

1085 TUBE TUBE 0.098 1.330 0.074 IS-7.1.2 7 12.658 81.791 244.748 189.165

1086 TUBE TUBE 0.103 1.330 0.077 IS-7.1.2 7 12.658 81.791 244.748 189.165

1087 TUBE TUBE 0.111 1.330 0.083 IS-7.1.2 7 12.658 81.791 244.748 189.165

1088 TUBE TUBE 0.126 1.330 0.095 IS-7.1.2 7 12.658 81.791 244.748 189.165

1089 TUBE TUBE 0.152 1.330 0.114 IS-7.1.2 7 12.658 81.791 244.748 189.165

1090 TUBE TUBE 0.196 1.330 0.147 7.1.2 BEND C 7 12.658 81.791 244.748 189.165

1091 TUBE TUBE 0.272 1.330 0.205 7.1.2 BEND C 7 12.658 81.791 244.748 189.165

1092 TUBE TUBE 0.380 1.330 0.286 7.1.2 BEND C 7 12.658 81.791 244.748 189.165

1093 TUBE TUBE 0.283 1.330 0.213 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1094 TUBE TUBE 0.273 1.330 0.205 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1095 TUBE TUBE 0.277 1.330 0.209 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1096 TUBE TUBE 0.284 1.330 0.214 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1097 TUBE TUBE 0.288 1.330 0.217 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1098 TUBE TUBE 0.291 1.330 0.218 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1099 TUBE TUBE 0.292 1.330 0.219 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1100 TUBE TUBE 0.291 1.330 0.219 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1101 TUBE TUBE 0.295 1.330 0.222 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1102 TUBE TUBE 0.299 1.330 0.224 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1103 TUBE TUBE 0.299 1.330 0.225 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1104 TUBE TUBE 0.297 1.330 0.223 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1105 TUBE TUBE 0.292 1.330 0.219 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1106 TUBE TUBE 0.289 1.330 0.217 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1107 TUBE TUBE 0.285 1.330 0.214 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1108 TUBE TUBE 0.278 1.330 0.209 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1109 TUBE TUBE 0.270 1.330 0.203 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1110 TUBE TUBE 0.278 1.330 0.209 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1111 TUBE TUBE 0.301 1.330 0.226 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1112 TUBE TUBE 0.344 1.330 0.259 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1113 TUBE TUBE 0.366 1.330 0.275 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

Page 25: Design Report for Acropolis Tower

21/05/2013

1114 TUBE TUBE 0.379 1.330 0.285 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1115 TUBE TUBE 0.387 1.330 0.291 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1116 TUBE TUBE 0.392 1.330 0.295 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1117 TUBE TUBE 0.400 1.330 0.301 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1118 TUBE TUBE 0.407 1.330 0.306 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1119 TUBE TUBE 0.411 1.330 0.309 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1120 TUBE TUBE 0.412 1.330 0.310 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1121 TUBE TUBE 0.412 1.330 0.310 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1122 TUBE TUBE 0.409 1.330 0.307 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1123 TUBE TUBE 0.403 1.330 0.303 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1124 TUBE TUBE 0.394 1.330 0.296 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1125 TUBE TUBE 0.380 1.330 0.286 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1126 TUBE TUBE 0.359 1.330 0.270 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1127 TUBE TUBE 0.326 1.330 0.245 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1128 TUBE TUBE 0.264 1.330 0.198 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1129 TUBE TUBE 0.121 1.330 0.091 IS-7.1.2 7 20.870 238.030 585.567 517.300

1130 TUBE TUBE 0.196 1.330 0.148 IS-7.1.2 7 20.870 238.030 585.567 517.300

1131 TUBE TUBE 0.125 1.330 0.094 IS-7.1.2 7 20.870 238.030 585.567 517.300

1132 TUBE TUBE 0.247 1.330 0.186 IS-7.1.2 7 20.870 238.030 585.567 517.300

1133 TUBE TUBE 0.150 1.330 0.113 IS-7.1.2 3 20.870 238.030 585.567 517.300

1134 TUBE TUBE 0.273 1.330 0.205 IS-7.1.2 7 20.870 238.030 585.567 517.300

1135 TUBE TUBE 0.172 1.330 0.129 IS-7.1.2 7 20.870 238.030 585.567 517.300

1136 TUBE TUBE 0.290 1.330 0.218 IS-7.1.2 7 20.870 238.030 585.567 517.300

1137 TUBE TUBE 0.198 1.330 0.149 IS-7.1.2 7 20.870 238.030 585.567 517.300

1138 TUBE TUBE 0.302 1.330 0.227 IS-7.1.2 7 20.870 238.030 585.567 517.300

1139 TUBE TUBE 0.216 1.330 0.163 IS-7.1.2 7 20.870 238.030 585.567 517.300

1140 TUBE TUBE 0.310 1.330 0.233 IS-7.1.2 7 20.870 238.030 585.567 517.300

1141 TUBE TUBE 0.229 1.330 0.172 IS-7.1.2 7 20.870 238.030 585.567 517.300

1142 TUBE TUBE 0.316 1.330 0.237 IS-7.1.2 7 20.870 238.030 585.567 517.300

1143 TUBE TUBE 0.236 1.330 0.178 IS-7.1.2 7 20.870 238.030 585.567 517.300

1144 TUBE TUBE 0.319 1.330 0.240 IS-7.1.2 7 20.870 238.030 585.567 517.300

1145 TUBE TUBE 0.241 1.330 0.181 IS-7.1.2 7 20.870 238.030 585.567 517.300

1146 TUBE TUBE 0.321 1.330 0.241 IS-7.1.2 7 20.870 238.030 585.567 517.300

1147 TUBE TUBE 0.242 1.330 0.182 IS-7.1.2 7 20.870 238.030 585.567 517.300

1148 TUBE TUBE 0.320 1.330 0.241 IS-7.1.2 7 20.870 238.030 585.567 517.300

1149 TUBE TUBE 0.240 1.330 0.181 IS-7.1.2 7 20.870 238.030 585.567 517.300

1150 TUBE TUBE 0.318 1.330 0.239 IS-7.1.2 7 20.870 238.030 585.567 517.300

1151 TUBE TUBE 0.235 1.330 0.177 IS-7.1.2 7 20.870 238.030 585.567 517.300

1152 TUBE TUBE 0.314 1.330 0.236 IS-7.1.2 7 20.870 238.030 585.567 517.300

1153 TUBE TUBE 0.226 1.330 0.170 IS-7.1.2 7 20.870 238.030 585.567 517.300

1154 TUBE TUBE 0.307 1.330 0.231 IS-7.1.2 7 20.870 238.030 585.567 517.300

1155 TUBE TUBE 0.211 1.330 0.159 IS-7.1.2 7 20.870 238.030 585.567 517.300

1156 TUBE TUBE 0.296 1.330 0.223 IS-7.1.2 7 20.870 238.030 585.567 517.300

1157 TUBE TUBE 0.190 1.330 0.143 IS-7.1.2 7 20.870 238.030 585.567 517.300

1158 TUBE TUBE 0.281 1.330 0.211 IS-7.1.2 7 20.870 238.030 585.567 517.300

1159 TUBE TUBE 0.159 1.330 0.119 IS-7.1.2 7 20.870 238.030 585.567 517.300

1160 TUBE TUBE 0.258 1.330 0.194 IS-7.1.2 7 20.870 238.030 585.567 517.300

1161 TUBE TUBE 0.120 1.330 0.090 IS-7.1.2 3 20.870 238.030 585.567 517.300

1162 TUBE TUBE 0.224 1.330 0.168 IS-7.1.2 7 20.870 238.030 585.567 517.300

1163 TUBE TUBE 0.114 1.330 0.086 IS-7.1.2 4 20.870 238.030 585.567 517.300

1164 TUBE TUBE 0.171 1.330 0.128 IS-7.1.2 3 20.870 238.030 585.567 517.300

1165 TUBE TUBE 0.449 1.330 0.337 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1166 TUBE TUBE 0.432 1.330 0.325 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1167 TUBE TUBE 0.458 1.330 0.344 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1168 TUBE TUBE 0.507 1.330 0.381 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1169 TUBE TUBE 0.559 1.330 0.421 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1170 TUBE TUBE 0.595 1.330 0.447 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1171 TUBE TUBE 0.619 1.330 0.465 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1172 TUBE TUBE 0.633 1.330 0.476 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1173 TUBE TUBE 0.640 1.330 0.481 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1174 TUBE TUBE 0.640 1.330 0.481 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1175 TUBE TUBE 0.634 1.330 0.477 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1176 TUBE TUBE 0.621 1.330 0.467 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1177 TUBE TUBE 0.599 1.330 0.450 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1178 TUBE TUBE 0.566 1.330 0.426 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1179 TUBE TUBE 0.518 1.330 0.390 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1180 TUBE TUBE 0.450 1.330 0.338 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1181 TUBE TUBE 0.389 1.330 0.292 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1182 TUBE TUBE 0.386 1.330 0.290 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

Page 26: Design Report for Acropolis Tower

21/05/2013

1183 TUBE TUBE 0.436 1.330 0.328 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1184 TUBE TUBE 0.622 1.330 0.467 IS-7.1.2 7 8.806 69.625 69.625 104.211

1185 TUBE TUBE 0.729 1.330 0.548 IS-7.1.2 7 8.806 69.625 69.625 104.211

1186 TUBE TUBE 0.800 1.330 0.602 IS-7.1.2 7 8.806 69.625 69.625 104.211

1187 TUBE TUBE 0.850 1.330 0.639 IS-7.1.2 7 8.806 69.625 69.625 104.211

1188 TUBE TUBE 0.883 1.330 0.664 IS-7.1.2 7 8.806 69.625 69.625 104.211

1189 TUBE TUBE 0.906 1.330 0.681 IS-7.1.2 7 8.806 69.625 69.625 104.211

1190 TUBE TUBE 0.919 1.330 0.691 IS-7.1.2 7 8.806 69.625 69.625 104.211

1191 TUBE TUBE 0.926 1.330 0.696 IS-7.1.2 7 8.806 69.625 69.625 104.211

1192 TUBE TUBE 0.927 1.330 0.697 IS-7.1.2 7 8.806 69.625 69.625 104.211

1193 TUBE TUBE 0.922 1.330 0.693 IS-7.1.2 7 8.806 69.625 69.625 104.211

1194 TUBE TUBE 0.910 1.330 0.684 IS-7.1.2 7 8.806 69.625 69.625 104.211

1195 TUBE TUBE 0.891 1.330 0.670 IS-7.1.2 7 8.806 69.625 69.625 104.211

1196 TUBE TUBE 0.862 1.330 0.648 IS-7.1.2 7 8.806 69.625 69.625 104.211

1197 TUBE TUBE 0.819 1.330 0.616 IS-7.1.2 7 8.806 69.625 69.625 104.211

1198 TUBE TUBE 0.758 1.330 0.570 IS-7.1.2 7 8.806 69.625 69.625 104.211

1199 TUBE TUBE 0.668 1.330 0.502 IS-7.1.2 7 8.806 69.625 69.625 104.211

1200 TUBE TUBE 0.529 1.330 0.398 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1201 TUBE TUBE 0.285 1.330 0.214 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1202 TUBE TUBE 0.287 1.330 0.215 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1203 TUBE TUBE 0.544 1.330 0.409 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1204 TUBE TUBE 0.276 1.330 0.207 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1205 TUBE TUBE 0.226 1.330 0.170 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1206 TUBE TUBE 0.189 1.330 0.142 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1207 TUBE TUBE 0.173 1.330 0.130 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1208 TUBE TUBE 0.160 1.330 0.121 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1209 TUBE TUBE 0.151 1.330 0.114 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1210 TUBE TUBE 0.144 1.330 0.108 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1211 TUBE TUBE 0.139 1.330 0.105 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1212 TUBE TUBE 0.143 1.330 0.107 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1213 TUBE TUBE 0.147 1.330 0.111 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1214 TUBE TUBE 0.151 1.330 0.114 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1215 TUBE TUBE 0.156 1.330 0.117 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1216 TUBE TUBE 0.163 1.330 0.122 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1217 TUBE TUBE 0.171 1.330 0.129 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1218 TUBE TUBE 0.182 1.330 0.137 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1219 TUBE TUBE 0.196 1.330 0.147 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1220 TUBE TUBE 0.223 1.330 0.168 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1221 TUBE TUBE 0.293 1.330 0.220 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1222 TUBE TUBE 0.530 1.330 0.399 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1223 TUBE TUBE 0.368 1.330 0.277 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1224 TUBE TUBE 0.254 1.330 0.191 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1225 TUBE TUBE 0.179 1.330 0.134 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1226 TUBE TUBE 0.130 1.330 0.098 IS-7.1.2 3 12.658 81.791 244.748 189.165

1227 TUBE TUBE 0.107 1.330 0.081 IS-7.1.2 3 12.658 81.791 244.748 189.165

1228 TUBE TUBE 0.092 1.330 0.069 IS-7.1.2 3 12.658 81.791 244.748 189.165

1229 TUBE TUBE 0.082 1.330 0.061 IS-7.1.2 3 12.658 81.791 244.748 189.165

1230 TUBE TUBE 0.074 1.330 0.056 IS-7.1.2 3 12.658 81.791 244.748 189.165

1231 TUBE TUBE 0.076 1.330 0.057 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1232 TUBE TUBE 0.085 1.330 0.064 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1233 TUBE TUBE 0.096 1.330 0.072 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1234 TUBE TUBE 0.112 1.330 0.084 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1235 TUBE TUBE 0.134 1.330 0.101 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1236 TUBE TUBE 0.169 1.330 0.127 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1237 TUBE TUBE 0.220 1.330 0.166 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1238 TUBE TUBE 0.297 1.330 0.224 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1239 TUBE TUBE 0.408 1.330 0.307 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1240 TUBE TUBE 0.199 1.330 0.150 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1241 TUBE TUBE 0.157 1.330 0.118 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1242 TUBE TUBE 0.103 1.330 0.078 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

1243 TUBE TUBE 0.222 1.330 0.167 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1244 TUBE TUBE 0.289 1.330 0.217 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1245 TUBE TUBE 0.137 1.330 0.103 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

1246 TUBE TUBE 0.373 1.330 0.281 IS-7.1.2 7 20.870 238.030 585.567 517.300

1247 TUBE TUBE 0.116 1.330 0.087 IS-7.1.2 7 20.870 238.030 585.567 517.300

1248 TUBE TUBE 0.110 1.330 0.083 IS-7.1.2 3 20.870 238.030 585.567 517.300

1249 TUBE TUBE 0.064 1.330 0.048 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1250 TUBE TUBE 0.062 1.330 0.047 IS-7.1.2 3 20.870 238.030 585.567 517.300

1251 TUBE TUBE 0.127 1.330 0.096 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

Page 27: Design Report for Acropolis Tower

21/05/2013

1252 TUBE TUBE 0.078 1.330 0.059 IS-7.1.1(A) 6 12.658 81.791 244.748 189.165

1253 TUBE TUBE 0.160 1.330 0.121 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1254 TUBE TUBE 0.130 1.330 0.098 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1255 TUBE TUBE 0.086 1.330 0.065 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

1256 TUBE TUBE 0.214 1.330 0.161 IS-7.1.1(A) 3 20.870 238.030 585.567 517.300

1257 TUBE TUBE 0.292 1.330 0.220 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1258 TUBE TUBE 0.141 1.330 0.106 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

1259 TUBE TUBE 0.037 1.330 0.028 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1260 TUBE TUBE 0.075 1.330 0.057 IS-7.1.1(A) 7 20.870 238.030 585.567 517.300

1261 TUBE TUBE 0.382 1.330 0.287 IS-7.1.2 7 20.870 238.030 585.567 517.300

1262 TUBE TUBE 0.118 1.330 0.089 IS-7.1.2 7 20.870 238.030 585.567 517.300

1263 TUBE TUBE 0.108 1.330 0.081 IS-7.1.2 7 20.870 238.030 585.567 517.300

1264 TUBE TUBE 0.074 1.330 0.056 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1265 TUBE TUBE 0.065 1.330 0.049 IS-7.1.1(A) 7 12.658 81.791 244.748 189.165

1266 TUBE TUBE 0.354 1.330 0.266 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1267 TUBE TUBE 0.280 1.330 0.210 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

1268 TUBE TUBE 0.109 1.330 0.082 IS-7.1.2 3 8.806 69.625 69.625 104.211

1269 TUBE TUBE 0.097 1.330 0.073 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1270 TUBE TUBE 0.134 1.330 0.101 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1271 TUBE TUBE 0.141 1.330 0.106 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1272 TUBE TUBE 0.259 1.330 0.195 IS-7.1.2 3 8.806 69.625 69.625 104.211

1273 TUBE TUBE 0.108 1.330 0.081 IS-7.1.2 4 8.806 69.625 69.625 104.211

1274 TUBE TUBE 0.202 1.330 0.152 IS-7.1.2 7 8.806 69.625 69.625 104.211

1275 TUBE TUBE 0.093 1.330 0.070 IS-7.1.2 7 8.806 69.625 69.625 104.211

1276 TUBE TUBE 0.049 1.330 0.037 IS-7.1.2 7 8.806 69.625 69.625 104.211

1277 TUBE TUBE 0.056 1.330 0.042 IS-7.1.2 3 8.806 69.625 69.625 104.211

1278 TUBE TUBE 0.202 1.330 0.152 IS-7.1.2 3 8.806 69.625 69.625 104.211

1279 TUBE TUBE 0.265 1.330 0.199 IS-7.1.2 7 8.806 69.625 69.625 104.211

1280 TUBE TUBE 0.721 1.330 0.542 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1281 TUBE TUBE 0.249 1.330 0.187 IS-7.1.2 3 8.806 69.625 69.625 104.211

1282 TUBE TUBE 0.322 1.330 0.242 IS-7.1.2 6 8.806 69.625 69.625 104.211

1283 TUBE TUBE 0.699 1.330 0.525 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1296 TUBE TUBE 0.203 1.330 0.152 IS-7.1.2 3 8.806 69.625 69.625 104.211

1297 TUBE TUBE 0.207 1.330 0.156 IS-7.1.2 3 8.806 69.625 69.625 104.211

1298 TUBE TUBE 0.567 1.330 0.426 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1299 TUBE TUBE 0.472 1.330 0.355 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1300 TUBE TUBE 0.438 1.330 0.329 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1301 TUBE TUBE 0.411 1.330 0.309 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1302 TUBE TUBE 0.401 1.330 0.302 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1303 TUBE TUBE 0.454 1.330 0.341 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1304 TUBE TUBE 0.405 1.330 0.304 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1305 TUBE TUBE 0.169 1.330 0.127 IS-7.1.2 3 8.806 69.625 69.625 104.211

1306 TUBE TUBE 0.215 1.330 0.161 IS-7.1.2 7 8.806 69.625 69.625 104.211

1307 TUBE TUBE 0.747 1.330 0.561 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1308 TUBE TUBE 0.209 1.330 0.157 IS-7.1.2 3 8.806 69.625 69.625 104.211

1309 TUBE TUBE 0.255 1.330 0.191 IS-7.1.2 6 8.806 69.625 69.625 104.211

1310 TUBE TUBE 0.735 1.330 0.553 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1317 TUBE TUBE 0.195 1.330 0.146 IS-7.1.2 3 8.806 69.625 69.625 104.211

1318 TUBE TUBE 0.200 1.330 0.150 IS-7.1.2 3 8.806 69.625 69.625 104.211

1319 TUBE TUBE 0.600 1.330 0.451 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1321 TUBE TUBE 0.411 1.330 0.309 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1322 TUBE TUBE 0.403 1.330 0.303 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1325 TUBE TUBE 0.393 1.330 0.296 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1326 TUBE TUBE 0.385 1.330 0.289 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1329 TUBE TUBE 0.425 1.330 0.320 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1330 TUBE TUBE 0.381 1.330 0.286 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1332 TUBE TUBE 0.385 1.330 0.289 IS-7.1.2 3 8.806 69.625 69.625 104.211

1333 TUBE TUBE 0.188 1.330 0.142 IS-7.1.2 3 8.806 69.625 69.625 104.211

1334 TUBE TUBE 0.423 1.330 0.318 IS-7.1.2 7 8.806 69.625 69.625 104.211

1335 TUBE TUBE 0.967 1.330 0.727 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1336 TUBE TUBE 0.454 1.330 0.341 IS-7.1.2 3 8.806 69.625 69.625 104.211

1337 TUBE TUBE 0.199 1.330 0.150 IS-7.1.2 3 8.806 69.625 69.625 104.211

1338 TUBE TUBE 0.478 1.330 0.359 IS-7.1.2 3 8.806 69.625 69.625 104.211

1339 TUBE TUBE 0.952 1.330 0.716 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1348 TUBE TUBE 0.281 1.330 0.211 IS-7.1.2 3 8.806 69.625 69.625 104.211

1349 TUBE TUBE 0.216 1.330 0.163 IS-7.1.2 3 8.806 69.625 69.625 104.211

1350 TUBE TUBE 0.290 1.330 0.218 IS-7.1.2 3 8.806 69.625 69.625 104.211

1351 TUBE TUBE 0.755 1.330 0.567 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1353 TUBE TUBE 0.519 1.330 0.390 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

Page 28: Design Report for Acropolis Tower

21/05/2013

1354 TUBE TUBE 0.491 1.330 0.369 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1357 TUBE TUBE 0.525 1.330 0.395 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1358 TUBE TUBE 0.528 1.330 0.397 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1361 TUBE TUBE 0.556 1.330 0.418 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1362 TUBE TUBE 0.505 1.330 0.380 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1365 TUBE TUBE 0.536 1.330 0.403 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1366 TUBE TUBE 0.458 1.330 0.344 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1368 TUBE TUBE 0.425 1.330 0.319 IS-7.1.2 3 8.806 69.625 69.625 104.211

1369 TUBE TUBE 0.200 1.330 0.150 IS-7.1.2 3 8.806 69.625 69.625 104.211

1370 TUBE TUBE 0.448 1.330 0.337 IS-7.1.2 7 8.806 69.625 69.625 104.211

1371 TUBE TUBE 0.949 1.330 0.714 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1372 TUBE TUBE 0.497 1.330 0.374 IS-7.1.2 3 8.806 69.625 69.625 104.211

1373 TUBE TUBE 0.209 1.330 0.157 IS-7.1.2 3 8.806 69.625 69.625 104.211

1374 TUBE TUBE 0.486 1.330 0.365 IS-7.1.2 3 8.806 69.625 69.625 104.211

1375 TUBE TUBE 0.922 1.330 0.693 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1384 TUBE TUBE 0.298 1.330 0.224 IS-7.1.2 3 8.806 69.625 69.625 104.211

1385 TUBE TUBE 0.231 1.330 0.174 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1386 TUBE TUBE 0.308 1.330 0.232 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1387 TUBE TUBE 0.732 1.330 0.551 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1388 TUBE TUBE 0.202 1.330 0.152 IS-7.1.2 3 8.806 69.625 69.625 104.211

1389 TUBE TUBE 0.264 1.330 0.199 IS-7.1.2 7 8.806 69.625 69.625 104.211

1390 TUBE TUBE 0.721 1.330 0.542 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1391 TUBE TUBE 0.249 1.330 0.187 IS-7.1.2 3 8.806 69.625 69.625 104.211

1392 TUBE TUBE 0.322 1.330 0.242 IS-7.1.2 6 8.806 69.625 69.625 104.211

1393 TUBE TUBE 0.698 1.330 0.525 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1400 TUBE TUBE 0.203 1.330 0.152 IS-7.1.2 3 8.806 69.625 69.625 104.211

1401 TUBE TUBE 0.207 1.330 0.156 IS-7.1.2 3 8.806 69.625 69.625 104.211

1402 TUBE TUBE 0.567 1.330 0.426 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1409 TUBE TUBE 0.472 1.330 0.355 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1410 TUBE TUBE 0.438 1.330 0.329 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1411 TUBE TUBE 0.411 1.330 0.309 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1412 TUBE TUBE 0.401 1.330 0.301 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1413 TUBE TUBE 0.453 1.330 0.341 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1414 TUBE TUBE 0.405 1.330 0.305 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1416 TUBE TUBE 0.524 1.330 0.394 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1417 TUBE TUBE 0.519 1.330 0.390 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1420 TUBE TUBE 0.543 1.330 0.409 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1421 TUBE TUBE 0.567 1.330 0.427 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1424 TUBE TUBE 0.601 1.330 0.452 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1425 TUBE TUBE 0.521 1.330 0.392 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1428 TUBE TUBE 0.597 1.330 0.449 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1429 TUBE TUBE 0.484 1.330 0.364 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1431 TUBE TUBE 0.207 1.330 0.156 IS-7.1.2 3 8.806 69.625 69.625 104.211

1432 TUBE TUBE 0.208 1.330 0.157 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1433 TUBE TUBE 0.693 1.330 0.521 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1434 TUBE TUBE 0.244 1.330 0.184 IS-7.1.2 3 8.806 69.625 69.625 104.211

1435 TUBE TUBE 0.242 1.330 0.182 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1436 TUBE TUBE 0.688 1.330 0.517 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1443 TUBE TUBE 0.221 1.330 0.166 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1444 TUBE TUBE 0.238 1.330 0.179 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1445 TUBE TUBE 0.513 1.330 0.386 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1447 TUBE TUBE 0.393 1.330 0.296 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1448 TUBE TUBE 0.430 1.330 0.324 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1451 TUBE TUBE 0.445 1.330 0.335 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1452 TUBE TUBE 0.427 1.330 0.321 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1455 TUBE TUBE 0.492 1.330 0.370 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1456 TUBE TUBE 0.397 1.330 0.299 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1458 TUBE TUBE 0.170 1.330 0.127 IS-7.1.2 3 8.806 69.625 69.625 104.211

1459 TUBE TUBE 0.214 1.330 0.161 IS-7.1.2 7 8.806 69.625 69.625 104.211

1460 TUBE TUBE 0.747 1.330 0.562 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1461 TUBE TUBE 0.209 1.330 0.157 IS-7.1.2 3 8.806 69.625 69.625 104.211

1462 TUBE TUBE 0.255 1.330 0.191 IS-7.1.2 6 8.806 69.625 69.625 104.211

1463 TUBE TUBE 0.734 1.330 0.552 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1470 TUBE TUBE 0.195 1.330 0.147 IS-7.1.2 3 8.806 69.625 69.625 104.211

1471 TUBE TUBE 0.200 1.330 0.151 IS-7.1.2 3 8.806 69.625 69.625 104.211

1472 TUBE TUBE 0.599 1.330 0.451 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1473 TUBE TUBE 0.386 1.330 0.290 IS-7.1.2 3 8.806 69.625 69.625 104.211

1474 TUBE TUBE 0.189 1.330 0.142 IS-7.1.2 3 8.806 69.625 69.625 104.211

1475 TUBE TUBE 0.422 1.330 0.317 IS-7.1.2 7 8.806 69.625 69.625 104.211

Page 29: Design Report for Acropolis Tower

21/05/2013

1476 TUBE TUBE 0.969 1.330 0.728 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1477 TUBE TUBE 0.453 1.330 0.340 IS-7.1.2 3 8.806 69.625 69.625 104.211

1478 TUBE TUBE 0.198 1.330 0.149 IS-7.1.2 3 8.806 69.625 69.625 104.211

1479 TUBE TUBE 0.478 1.330 0.359 IS-7.1.2 3 8.806 69.625 69.625 104.211

1480 TUBE TUBE 0.948 1.330 0.713 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1489 TUBE TUBE 0.280 1.330 0.211 IS-7.1.2 3 8.806 69.625 69.625 104.211

1490 TUBE TUBE 0.217 1.330 0.163 IS-7.1.2 3 8.806 69.625 69.625 104.211

1491 TUBE TUBE 0.290 1.330 0.218 IS-7.1.2 3 8.806 69.625 69.625 104.211

1492 TUBE TUBE 0.753 1.330 0.566 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1493 TUBE TUBE 0.429 1.330 0.322 IS-7.1.2 3 8.806 69.625 69.625 104.211

1494 TUBE TUBE 0.203 1.330 0.153 IS-7.1.2 3 8.806 69.625 69.625 104.211

1495 TUBE TUBE 0.445 1.330 0.335 IS-7.1.2 7 8.806 69.625 69.625 104.211

1496 TUBE TUBE 0.957 1.330 0.719 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1497 TUBE TUBE 0.493 1.330 0.371 IS-7.1.2 3 8.806 69.625 69.625 104.211

1498 TUBE TUBE 0.207 1.330 0.155 IS-7.1.2 3 8.806 69.625 69.625 104.211

1499 TUBE TUBE 0.486 1.330 0.365 IS-7.1.2 3 8.806 69.625 69.625 104.211

1500 TUBE TUBE 0.910 1.330 0.684 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1509 TUBE TUBE 0.297 1.330 0.223 IS-7.1.2 3 8.806 69.625 69.625 104.211

1510 TUBE TUBE 0.230 1.330 0.173 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1511 TUBE TUBE 0.305 1.330 0.230 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1512 TUBE TUBE 0.729 1.330 0.548 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1513 TUBE TUBE 0.218 1.330 0.164 IS-7.1.2 3 8.806 69.625 69.625 104.211

1514 TUBE TUBE 0.218 1.330 0.164 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1515 TUBE TUBE 0.716 1.330 0.538 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1516 TUBE TUBE 0.232 1.330 0.175 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1517 TUBE TUBE 0.220 1.330 0.165 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1518 TUBE TUBE 0.656 1.330 0.493 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1525 TUBE TUBE 0.223 1.330 0.168 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1526 TUBE TUBE 0.234 1.330 0.176 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1527 TUBE TUBE 0.505 1.330 0.380 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1529 TUBE TUBE 0.411 1.330 0.309 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1530 TUBE TUBE 0.403 1.330 0.303 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1533 TUBE TUBE 0.392 1.330 0.295 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1534 TUBE TUBE 0.385 1.330 0.289 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1537 TUBE TUBE 0.425 1.330 0.319 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1538 TUBE TUBE 0.381 1.330 0.287 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1541 TUBE TUBE 0.518 1.330 0.390 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1542 TUBE TUBE 0.491 1.330 0.369 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1545 TUBE TUBE 0.525 1.330 0.395 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1546 TUBE TUBE 0.529 1.330 0.397 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1549 TUBE TUBE 0.555 1.330 0.417 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1550 TUBE TUBE 0.506 1.330 0.380 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1553 TUBE TUBE 0.534 1.330 0.402 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1554 TUBE TUBE 0.459 1.330 0.345 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1557 TUBE TUBE 0.523 1.330 0.394 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1558 TUBE TUBE 0.520 1.330 0.391 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1561 TUBE TUBE 0.543 1.330 0.408 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1562 TUBE TUBE 0.569 1.330 0.428 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1565 TUBE TUBE 0.598 1.330 0.450 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1566 TUBE TUBE 0.523 1.330 0.394 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1569 TUBE TUBE 0.594 1.330 0.447 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1570 TUBE TUBE 0.486 1.330 0.366 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1573 TUBE TUBE 0.390 1.330 0.294 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1574 TUBE TUBE 0.434 1.330 0.326 7.1.2 BEND C 7 8.806 69.625 69.625 104.211

1577 TUBE TUBE 0.438 1.330 0.330 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1578 TUBE TUBE 0.431 1.330 0.324 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1581 TUBE TUBE 0.484 1.330 0.364 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1582 TUBE TUBE 0.403 1.330 0.303 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1584 TUBE TUBE 0.233 1.330 0.175 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1585 TUBE TUBE 0.281 1.330 0.211 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1586 TUBE TUBE 0.382 1.330 0.287 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1587 TUBE TUBE 0.400 1.330 0.301 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1588 TUBE TUBE 0.360 1.330 0.270 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1589 TUBE TUBE 0.432 1.330 0.324 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1590 TUBE TUBE 0.385 1.330 0.289 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1591 TUBE TUBE 0.303 1.330 0.228 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1592 TUBE TUBE 0.325 1.330 0.244 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1593 TUBE TUBE 0.204 1.330 0.153 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1594 TUBE TUBE 0.269 1.330 0.202 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

Page 30: Design Report for Acropolis Tower

21/05/2013

1595 TUBE TUBE 0.197 1.330 0.148 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1596 TUBE TUBE 0.252 1.330 0.190 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1597 TUBE TUBE 0.266 1.330 0.200 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1598 TUBE TUBE 0.250 1.330 0.188 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1599 TUBE TUBE 0.266 1.330 0.200 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1600 TUBE TUBE 0.261 1.330 0.196 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1601 TUBE TUBE 0.247 1.330 0.186 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1602 TUBE TUBE 0.223 1.330 0.167 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1603 TUBE TUBE 0.363 1.330 0.273 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1604 TUBE TUBE 0.262 1.330 0.197 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1605 TUBE TUBE 0.271 1.330 0.204 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1606 TUBE TUBE 0.472 1.330 0.355 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1607 TUBE TUBE 0.273 1.330 0.205 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1608 TUBE TUBE 0.497 1.330 0.374 IS-7.1.2 3 8.806 69.625 69.625 104.211

1609 TUBE TUBE 0.354 1.330 0.266 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1610 TUBE TUBE 0.481 1.330 0.362 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1611 TUBE TUBE 0.218 1.330 0.164 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1612 TUBE TUBE 0.336 1.330 0.252 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1613 TUBE TUBE 0.271 1.330 0.204 IS-7.1.2 3 8.806 69.625 69.625 104.211

1614 TUBE TUBE 0.265 1.330 0.199 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1615 TUBE TUBE 0.454 1.330 0.342 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1616 TUBE TUBE 0.268 1.330 0.201 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1617 TUBE TUBE 0.509 1.330 0.383 IS-7.1.2 3 8.806 69.625 69.625 104.211

1618 TUBE TUBE 0.356 1.330 0.268 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1619 TUBE TUBE 0.485 1.330 0.365 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1620 TUBE TUBE 0.217 1.330 0.163 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1621 TUBE TUBE 0.357 1.330 0.269 IS-7.1.2 3 8.806 69.625 69.625 104.211

1622 TUBE TUBE 0.291 1.330 0.219 IS-7.1.2 3 8.806 69.625 69.625 104.211

1623 TUBE TUBE 0.261 1.330 0.196 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1624 TUBE TUBE 0.459 1.330 0.345 IS-7.1.2 3 8.806 69.625 69.625 104.211

1625 TUBE TUBE 0.263 1.330 0.198 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1626 TUBE TUBE 0.522 1.330 0.392 IS-7.1.2 3 8.806 69.625 69.625 104.211

1627 TUBE TUBE 0.366 1.330 0.275 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1628 TUBE TUBE 0.501 1.330 0.377 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1629 TUBE TUBE 0.184 1.330 0.138 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

1630 TUBE TUBE 0.250 1.330 0.188 IS-7.1.2 3 8.806 69.625 69.625 104.211

1631 TUBE TUBE 0.219 1.330 0.164 IS-7.1.2 3 8.806 69.625 69.625 104.211

1632 TUBE TUBE 0.224 1.330 0.168 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1633 TUBE TUBE 0.251 1.330 0.189 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1634 TUBE TUBE 0.242 1.330 0.182 IS-7.1.2 3 8.806 69.625 69.625 104.211

1635 TUBE TUBE 0.310 1.330 0.233 IS-7.1.2 3 8.806 69.625 69.625 104.211

1636 TUBE TUBE 0.301 1.330 0.227 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1637 TUBE TUBE 0.331 1.330 0.249 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1638 TUBE TUBE 0.096 1.330 0.072 IS-7.1.2 7 8.806 69.625 69.625 104.211

1639 TUBE TUBE 0.549 1.330 0.413 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1640 TUBE TUBE 0.219 1.330 0.165 IS-7.1.2 7 8.806 69.625 69.625 104.211

1641 TUBE TUBE 0.249 1.330 0.187 IS-7.1.2 3 8.806 69.625 69.625 104.211

1642 TUBE TUBE 0.234 1.330 0.176 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1643 TUBE TUBE 0.147 1.330 0.110 IS-7.1.2 3 8.806 69.625 69.625 104.211

1644 TUBE TUBE 0.295 1.330 0.222 IS-7.1.2 3 8.806 69.625 69.625 104.211

1645 TUBE TUBE 0.395 1.330 0.297 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1646 TUBE TUBE 0.223 1.330 0.168 IS-7.1.2 3 8.806 69.625 69.625 104.211

1647 TUBE TUBE 0.296 1.330 0.222 IS-7.1.2 3 8.806 69.625 69.625 104.211

1648 TUBE TUBE 0.392 1.330 0.295 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1649 TUBE TUBE 0.224 1.330 0.169 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1650 TUBE TUBE 0.299 1.330 0.225 IS-7.1.2 3 8.806 69.625 69.625 104.211

1651 TUBE TUBE 0.404 1.330 0.303 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1652 TUBE TUBE 0.232 1.330 0.174 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1653 TUBE TUBE 0.276 1.330 0.208 IS-7.1.2 3 8.806 69.625 69.625 104.211

1654 TUBE TUBE 0.356 1.330 0.267 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1655 TUBE TUBE 0.149 1.330 0.112 IS-7.1.2 3 8.806 69.625 69.625 104.211

1656 TUBE TUBE 0.182 1.330 0.137 IS-7.1.2 7 8.806 69.625 69.625 104.211

1657 TUBE TUBE 0.142 1.330 0.107 IS-7.1.2 7 8.806 69.625 69.625 104.211

1658 TUBE TUBE 0.582 1.330 0.438 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1659 TUBE TUBE 0.047 1.330 0.035 IS-7.1.2 7 8.806 69.625 69.625 104.211

1660 TUBE TUBE 0.119 1.330 0.089 IS-7.1.2 7 8.806 69.625 69.625 104.211

1661 TUBE TUBE 0.130 1.330 0.097 IS-7.1.2 3 8.806 69.625 69.625 104.211

1662 TUBE TUBE 0.228 1.330 0.171 IS-7.1.2 3 8.806 69.625 69.625 104.211

1663 TUBE TUBE 0.222 1.330 0.167 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

Page 31: Design Report for Acropolis Tower

21/05/2013

1664 TUBE TUBE 0.173 1.330 0.130 IS-7.1.2 3 8.806 69.625 69.625 104.211

1665 TUBE TUBE 0.188 1.330 0.141 IS-7.1.2 3 8.806 69.625 69.625 104.211

1666 TUBE TUBE 0.187 1.330 0.141 IS-7.1.2 3 8.806 69.625 69.625 104.211

1667 TUBE TUBE 0.268 1.330 0.202 IS-7.1.2 3 8.806 69.625 69.625 104.211

1668 TUBE TUBE 0.379 1.330 0.285 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

1669 TUBE TUBE 0.258 1.330 0.194 IS-7.1.2 3 8.806 69.625 69.625 104.211

1670 TUBE TUBE 0.259 1.330 0.194 IS-7.1.2 3 8.806 69.625 69.625 104.211

1671 TUBE TUBE 0.188 1.330 0.142 IS-7.1.2 3 8.806 69.625 69.625 104.211

1672 TUBE TUBE 0.266 1.330 0.200 IS-7.1.2 3 8.806 69.625 69.625 104.211

1673 TUBE TUBE 0.366 1.330 0.275 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

1674 TUBE TUBE 0.260 1.330 0.196 IS-7.1.2 3 8.806 69.625 69.625 104.211

1675 TUBE TUBE 0.258 1.330 0.194 IS-7.1.2 3 8.806 69.625 69.625 104.211

1676 TUBE TUBE 0.189 1.330 0.142 IS-7.1.2 3 8.806 69.625 69.625 104.211

1677 TUBE TUBE 0.268 1.330 0.202 IS-7.1.2 3 8.806 69.625 69.625 104.211

1678 TUBE TUBE 0.381 1.330 0.286 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1679 TUBE TUBE 0.271 1.330 0.204 IS-7.1.2 3 8.806 69.625 69.625 104.211

1680 TUBE TUBE 0.265 1.330 0.199 IS-7.1.2 3 8.806 69.625 69.625 104.211

1681 TUBE TUBE 0.162 1.330 0.122 IS-7.1.2 3 8.806 69.625 69.625 104.211

1682 TUBE TUBE 0.249 1.330 0.187 IS-7.1.2 3 8.806 69.625 69.625 104.211

1683 TUBE TUBE 0.344 1.330 0.258 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1684 TUBE TUBE 0.196 1.330 0.147 IS-7.1.2 3 8.806 69.625 69.625 104.211

1685 TUBE TUBE 0.202 1.330 0.152 IS-7.1.2 3 8.806 69.625 69.625 104.211

1686 TUBE TUBE 0.263 1.330 0.198 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1687 TUBE TUBE 0.263 1.330 0.198 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1688 TUBE TUBE 0.398 1.330 0.299 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1689 TUBE TUBE 0.429 1.330 0.323 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1690 TUBE TUBE 0.328 1.330 0.247 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1691 TUBE TUBE 0.446 1.330 0.336 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1692 TUBE TUBE 0.364 1.330 0.274 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1693 TUBE TUBE 0.302 1.330 0.227 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

1694 TUBE TUBE 0.315 1.330 0.237 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1695 TUBE TUBE 0.245 1.330 0.184 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1696 TUBE TUBE 0.227 1.330 0.171 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1697 TUBE TUBE 0.197 1.330 0.148 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1698 TUBE TUBE 0.288 1.330 0.216 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1699 TUBE TUBE 0.236 1.330 0.177 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1700 TUBE TUBE 0.267 1.330 0.201 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1701 TUBE TUBE 0.256 1.330 0.193 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1702 TUBE TUBE 0.261 1.330 0.196 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1703 TUBE TUBE 0.244 1.330 0.183 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1704 TUBE TUBE 0.275 1.330 0.207 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1705 TUBE TUBE 0.337 1.330 0.253 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1706 TUBE TUBE 0.302 1.330 0.227 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1707 TUBE TUBE 0.305 1.330 0.230 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1708 TUBE TUBE 0.444 1.330 0.334 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1709 TUBE TUBE 0.287 1.330 0.216 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1710 TUBE TUBE 0.486 1.330 0.365 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1711 TUBE TUBE 0.364 1.330 0.274 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1712 TUBE TUBE 0.475 1.330 0.357 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1713 TUBE TUBE 0.283 1.330 0.213 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1714 TUBE TUBE 0.313 1.330 0.235 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1715 TUBE TUBE 0.312 1.330 0.234 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1716 TUBE TUBE 0.300 1.330 0.226 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1717 TUBE TUBE 0.431 1.330 0.324 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1718 TUBE TUBE 0.280 1.330 0.211 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1719 TUBE TUBE 0.479 1.330 0.361 IS-7.1.2 3 8.806 69.625 69.625 104.211

1720 TUBE TUBE 0.371 1.330 0.279 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1721 TUBE TUBE 0.477 1.330 0.358 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1722 TUBE TUBE 0.298 1.330 0.224 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1723 TUBE TUBE 0.296 1.330 0.223 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1724 TUBE TUBE 0.321 1.330 0.242 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1725 TUBE TUBE 0.296 1.330 0.223 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1726 TUBE TUBE 0.424 1.330 0.319 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1727 TUBE TUBE 0.279 1.330 0.209 IS-7.1.2 3 8.806 69.625 69.625 104.211

1728 TUBE TUBE 0.487 1.330 0.366 IS-7.1.2 3 8.806 69.625 69.625 104.211

1729 TUBE TUBE 0.389 1.330 0.292 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1730 TUBE TUBE 0.492 1.330 0.370 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1731 TUBE TUBE 0.307 1.330 0.231 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1732 TUBE TUBE 0.192 1.330 0.144 IS-7.1.2 7 8.806 69.625 69.625 104.211

Page 32: Design Report for Acropolis Tower

21/05/2013

1733 TUBE TUBE 0.270 1.330 0.203 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1734 TUBE TUBE 0.279 1.330 0.210 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1735 TUBE TUBE 0.175 1.330 0.132 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1736 TUBE TUBE 0.269 1.330 0.202 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1737 TUBE TUBE 0.245 1.330 0.184 IS-7.1.2 3 8.806 69.625 69.625 104.211

1738 TUBE TUBE 0.292 1.330 0.220 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

1739 TUBE TUBE 0.300 1.330 0.225 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1740 TUBE TUBE 0.100 1.330 0.075 IS-7.1.2 7 8.806 69.625 69.625 104.211

1741 TUBE TUBE 0.540 1.330 0.406 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1742 TUBE TUBE 0.208 1.330 0.156 IS-7.1.2 7 8.806 69.625 69.625 104.211

1743 TUBE TUBE 0.254 1.330 0.191 IS-7.1.2 3 8.806 69.625 69.625 104.211

1744 TUBE TUBE 0.214 1.330 0.161 IS-7.1.1(A) 3 8.806 69.625 69.625 104.211

1745 TUBE TUBE 0.146 1.330 0.110 IS-7.1.2 3 8.806 69.625 69.625 104.211

1746 TUBE TUBE 0.306 1.330 0.230 IS-7.1.2 3 8.806 69.625 69.625 104.211

1747 TUBE TUBE 0.386 1.330 0.290 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

1748 TUBE TUBE 0.222 1.330 0.167 IS-7.1.2 3 8.806 69.625 69.625 104.211

1749 TUBE TUBE 0.312 1.330 0.235 IS-7.1.2 3 8.806 69.625 69.625 104.211

1750 TUBE TUBE 0.394 1.330 0.296 IS-7.1.1(A) 4 8.806 69.625 69.625 104.211

1751 TUBE TUBE 0.221 1.330 0.166 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1752 TUBE TUBE 0.322 1.330 0.242 IS-7.1.2 3 8.806 69.625 69.625 104.211

1753 TUBE TUBE 0.418 1.330 0.315 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1754 TUBE TUBE 0.226 1.330 0.170 7.1.2 BEND C 3 8.806 69.625 69.625 104.211

1755 TUBE TUBE 0.296 1.330 0.222 IS-7.1.2 3 8.806 69.625 69.625 104.211

1756 TUBE TUBE 0.404 1.330 0.304 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1757 TUBE TUBE 0.145 1.330 0.109 IS-7.1.2 3 8.806 69.625 69.625 104.211

1758 TUBE TUBE 0.193 1.330 0.145 IS-7.1.2 7 8.806 69.625 69.625 104.211

1759 TUBE TUBE 0.152 1.330 0.114 IS-7.1.2 7 8.806 69.625 69.625 104.211

1760 TUBE TUBE 0.597 1.330 0.449 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1761 TUBE TUBE 0.043 1.330 0.033 IS-7.1.2 7 8.806 69.625 69.625 104.211

1762 TUBE TUBE 0.106 1.330 0.080 IS-7.1.2 7 8.806 69.625 69.625 104.211

1763 TUBE TUBE 0.132 1.330 0.099 IS-7.1.2 3 8.806 69.625 69.625 104.211

1764 TUBE TUBE 0.233 1.330 0.175 IS-7.1.2 3 8.806 69.625 69.625 104.211

1765 TUBE TUBE 0.251 1.330 0.189 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1766 TUBE TUBE 0.168 1.330 0.126 IS-7.1.2 3 8.806 69.625 69.625 104.211

1767 TUBE TUBE 0.183 1.330 0.138 IS-7.1.2 3 8.806 69.625 69.625 104.211

1768 TUBE TUBE 0.190 1.330 0.143 IS-7.1.2 3 8.806 69.625 69.625 104.211

1769 TUBE TUBE 0.277 1.330 0.209 IS-7.1.2 3 8.806 69.625 69.625 104.211

1770 TUBE TUBE 0.402 1.330 0.302 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1771 TUBE TUBE 0.249 1.330 0.188 IS-7.1.2 3 8.806 69.625 69.625 104.211

1772 TUBE TUBE 0.250 1.330 0.188 IS-7.1.2 3 8.806 69.625 69.625 104.211

1773 TUBE TUBE 0.193 1.330 0.145 IS-7.1.2 3 8.806 69.625 69.625 104.211

1774 TUBE TUBE 0.280 1.330 0.210 IS-7.1.2 3 8.806 69.625 69.625 104.211

1775 TUBE TUBE 0.386 1.330 0.290 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1776 TUBE TUBE 0.247 1.330 0.185 IS-7.1.2 3 8.806 69.625 69.625 104.211

1777 TUBE TUBE 0.245 1.330 0.184 IS-7.1.2 3 8.806 69.625 69.625 104.211

1778 TUBE TUBE 0.197 1.330 0.148 IS-7.1.2 3 8.806 69.625 69.625 104.211

1779 TUBE TUBE 0.288 1.330 0.216 IS-7.1.2 3 8.806 69.625 69.625 104.211

1780 TUBE TUBE 0.397 1.330 0.298 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1781 TUBE TUBE 0.253 1.330 0.190 IS-7.1.2 3 8.806 69.625 69.625 104.211

1782 TUBE TUBE 0.246 1.330 0.185 IS-7.1.2 3 8.806 69.625 69.625 104.211

1783 TUBE TUBE 0.166 1.330 0.125 IS-7.1.2 3 8.806 69.625 69.625 104.211

1784 TUBE TUBE 0.267 1.330 0.201 IS-7.1.2 3 8.806 69.625 69.625 104.211

1785 TUBE TUBE 0.360 1.330 0.271 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

1786 TUBE TUBE 0.179 1.330 0.134 IS-7.1.2 3 8.806 69.625 69.625 104.211

1787 TUBE TUBE 0.183 1.330 0.137 IS-7.1.2 3 8.806 69.625 69.625 104.211

1890 TUBE TUBE 0.288 1.330 0.217 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1891 TUBE TUBE 0.296 1.330 0.223 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1892 TUBE TUBE 0.283 1.330 0.212 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

1893 TUBE TUBE 0.167 1.330 0.125 IS-7.1.2 3 5.760 12.595 12.595 18.662

1894 TUBE TUBE 0.287 1.330 0.216 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1895 TUBE TUBE 0.337 1.330 0.254 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1896 TUBE TUBE 0.278 1.330 0.209 IS-7.1.2 7 5.760 12.595 12.595 18.662

1897 TUBE TUBE 0.327 1.330 0.246 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1898 TUBE TUBE 0.197 1.330 0.148 IS-7.1.2 3 5.760 12.595 12.595 18.662

1899 TUBE TUBE 0.214 1.330 0.161 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1900 TUBE TUBE 0.136 1.330 0.102 IS-7.1.2 4 5.760 12.595 12.595 18.662

1901 TUBE TUBE 0.302 1.330 0.227 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1902 TUBE TUBE 0.243 1.330 0.183 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

1903 TUBE TUBE 0.255 1.330 0.192 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

Page 33: Design Report for Acropolis Tower

21/05/2013

1904 TUBE TUBE 0.187 1.330 0.141 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

1905 TUBE TUBE 0.146 1.330 0.110 IS-7.1.2 7 5.760 12.595 12.595 18.662

1906 TUBE TUBE 0.243 1.330 0.183 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1907 TUBE TUBE 0.183 1.330 0.138 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1908 TUBE TUBE 0.232 1.330 0.175 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1909 TUBE TUBE 0.219 1.330 0.165 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1910 TUBE TUBE 0.195 1.330 0.147 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

1911 TUBE TUBE 0.124 1.330 0.094 IS-7.1.2 3 5.760 12.595 12.595 18.662

1912 TUBE TUBE 0.221 1.330 0.166 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1913 TUBE TUBE 0.185 1.330 0.139 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1914 TUBE TUBE 0.295 1.330 0.222 IS-7.1.2 7 5.760 12.595 12.595 18.662

1915 TUBE TUBE 0.351 1.330 0.264 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1916 TUBE TUBE 0.228 1.330 0.171 IS-7.1.2 3 5.760 12.595 12.595 18.662

1917 TUBE TUBE 0.190 1.330 0.143 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1918 TUBE TUBE 0.178 1.330 0.134 IS-7.1.2 6 5.760 12.595 12.595 18.662

1919 TUBE TUBE 0.314 1.330 0.236 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1920 TUBE TUBE 0.377 1.330 0.283 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

1921 TUBE TUBE 0.330 1.330 0.248 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1922 TUBE TUBE 0.276 1.330 0.207 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

1923 TUBE TUBE 0.167 1.330 0.126 IS-7.1.2 6 5.760 12.595 12.595 18.662

1924 TUBE TUBE 0.327 1.330 0.246 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1925 TUBE TUBE 0.262 1.330 0.197 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1926 TUBE TUBE 0.203 1.330 0.153 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1927 TUBE TUBE 0.214 1.330 0.161 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1928 TUBE TUBE 0.140 1.330 0.105 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

1929 TUBE TUBE 0.161 1.330 0.121 IS-7.1.2 4 5.760 12.595 12.595 18.662

1930 TUBE TUBE 0.220 1.330 0.165 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1931 TUBE TUBE 0.165 1.330 0.124 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1932 TUBE TUBE 0.302 1.330 0.227 IS-7.1.2 4 5.760 12.595 12.595 18.662

1933 TUBE TUBE 0.359 1.330 0.270 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1934 TUBE TUBE 0.255 1.330 0.191 IS-7.1.2 7 5.760 12.595 12.595 18.662

1935 TUBE TUBE 0.184 1.330 0.139 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1936 TUBE TUBE 0.141 1.330 0.106 IS-7.1.2 6 5.760 12.595 12.595 18.662

1937 TUBE TUBE 0.335 1.330 0.252 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1938 TUBE TUBE 0.368 1.330 0.276 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

1939 TUBE TUBE 0.326 1.330 0.245 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1940 TUBE TUBE 0.279 1.330 0.210 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

1941 TUBE TUBE 0.160 1.330 0.120 IS-7.1.2 6 5.760 12.595 12.595 18.662

1942 TUBE TUBE 0.325 1.330 0.244 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1943 TUBE TUBE 0.265 1.330 0.199 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1944 TUBE TUBE 0.198 1.330 0.149 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1945 TUBE TUBE 0.212 1.330 0.159 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1946 TUBE TUBE 0.138 1.330 0.104 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

1947 TUBE TUBE 0.163 1.330 0.122 IS-7.1.2 4 5.760 12.595 12.595 18.662

1948 TUBE TUBE 0.221 1.330 0.166 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1949 TUBE TUBE 0.163 1.330 0.122 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1950 TUBE TUBE 0.304 1.330 0.228 IS-7.1.2 7 5.760 12.595 12.595 18.662

1951 TUBE TUBE 0.362 1.330 0.272 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1952 TUBE TUBE 0.252 1.330 0.190 IS-7.1.2 7 5.760 12.595 12.595 18.662

1953 TUBE TUBE 0.188 1.330 0.141 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1954 TUBE TUBE 0.148 1.330 0.111 IS-7.1.2 6 5.760 12.595 12.595 18.662

1955 TUBE TUBE 0.333 1.330 0.250 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1956 TUBE TUBE 0.373 1.330 0.281 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

1957 TUBE TUBE 0.329 1.330 0.247 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1958 TUBE TUBE 0.284 1.330 0.213 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

1959 TUBE TUBE 0.162 1.330 0.122 IS-7.1.2 6 5.760 12.595 12.595 18.662

1960 TUBE TUBE 0.330 1.330 0.248 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1961 TUBE TUBE 0.267 1.330 0.201 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1962 TUBE TUBE 0.200 1.330 0.150 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

1963 TUBE TUBE 0.209 1.330 0.157 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1964 TUBE TUBE 0.137 1.330 0.103 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

1965 TUBE TUBE 0.168 1.330 0.126 IS-7.1.2 4 5.760 12.595 12.595 18.662

1966 TUBE TUBE 0.222 1.330 0.167 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1967 TUBE TUBE 0.160 1.330 0.120 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1968 TUBE TUBE 0.293 1.330 0.220 IS-7.1.2 3 5.760 12.595 12.595 18.662

1969 TUBE TUBE 0.345 1.330 0.260 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1970 TUBE TUBE 0.279 1.330 0.209 IS-7.1.2 7 5.760 12.595 12.595 18.662

1971 TUBE TUBE 0.186 1.330 0.140 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1972 TUBE TUBE 0.159 1.330 0.119 IS-7.1.2 4 5.760 12.595 12.595 18.662

Page 34: Design Report for Acropolis Tower

21/05/2013

1973 TUBE TUBE 0.335 1.330 0.252 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1974 TUBE TUBE 0.282 1.330 0.212 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1975 TUBE TUBE 0.282 1.330 0.212 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1976 TUBE TUBE 0.237 1.330 0.179 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

1977 TUBE TUBE 0.159 1.330 0.119 IS-7.1.2 6 5.760 12.595 12.595 18.662

1978 TUBE TUBE 0.280 1.330 0.211 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1979 TUBE TUBE 0.219 1.330 0.165 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1980 TUBE TUBE 0.239 1.330 0.180 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

1981 TUBE TUBE 0.204 1.330 0.153 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1982 TUBE TUBE 0.181 1.330 0.136 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

1983 TUBE TUBE 0.108 1.330 0.082 IS-7.1.2 4 5.760 12.595 12.595 18.662

1984 TUBE TUBE 0.188 1.330 0.142 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1985 TUBE TUBE 0.167 1.330 0.126 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1992 TUBE TUBE 0.287 1.330 0.216 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

1993 TUBE TUBE 0.300 1.330 0.225 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

1994 TUBE TUBE 0.279 1.330 0.209 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

1995 TUBE TUBE 0.168 1.330 0.126 IS-7.1.2 3 5.760 12.595 12.595 18.662

1996 TUBE TUBE 0.285 1.330 0.214 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

1997 TUBE TUBE 0.340 1.330 0.255 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

1998 TUBE TUBE 0.281 1.330 0.211 IS-7.1.2 7 5.760 12.595 12.595 18.662

1999 TUBE TUBE 0.327 1.330 0.246 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2000 TUBE TUBE 0.194 1.330 0.146 IS-7.1.2 3 5.760 12.595 12.595 18.662

2001 TUBE TUBE 0.214 1.330 0.161 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2002 TUBE TUBE 0.133 1.330 0.100 IS-7.1.2 4 5.760 12.595 12.595 18.662

2003 TUBE TUBE 0.301 1.330 0.227 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2004 TUBE TUBE 0.244 1.330 0.183 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

2005 TUBE TUBE 0.259 1.330 0.195 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2006 TUBE TUBE 0.181 1.330 0.136 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

2007 TUBE TUBE 0.153 1.330 0.115 IS-7.1.2 7 5.760 12.595 12.595 18.662

2008 TUBE TUBE 0.242 1.330 0.182 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2009 TUBE TUBE 0.186 1.330 0.140 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2010 TUBE TUBE 0.234 1.330 0.176 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2011 TUBE TUBE 0.222 1.330 0.167 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2012 TUBE TUBE 0.185 1.330 0.139 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

2013 TUBE TUBE 0.131 1.330 0.099 IS-7.1.2 3 5.760 12.595 12.595 18.662

2014 TUBE TUBE 0.217 1.330 0.163 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2015 TUBE TUBE 0.188 1.330 0.141 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2016 TUBE TUBE 0.298 1.330 0.224 IS-7.1.2 7 5.760 12.595 12.595 18.662

2017 TUBE TUBE 0.354 1.330 0.266 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2018 TUBE TUBE 0.219 1.330 0.165 IS-7.1.2 3 5.760 12.595 12.595 18.662

2019 TUBE TUBE 0.203 1.330 0.152 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2020 TUBE TUBE 0.177 1.330 0.133 IS-7.1.2 7 5.760 12.595 12.595 18.662

2021 TUBE TUBE 0.316 1.330 0.238 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2022 TUBE TUBE 0.379 1.330 0.285 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

2023 TUBE TUBE 0.335 1.330 0.252 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2024 TUBE TUBE 0.267 1.330 0.201 7.1.2 BEND C 4 5.760 12.595 12.595 18.662

2025 TUBE TUBE 0.178 1.330 0.134 IS-7.1.2 7 5.760 12.595 12.595 18.662

2026 TUBE TUBE 0.326 1.330 0.245 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2027 TUBE TUBE 0.266 1.330 0.200 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2028 TUBE TUBE 0.204 1.330 0.154 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2029 TUBE TUBE 0.219 1.330 0.165 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2030 TUBE TUBE 0.127 1.330 0.095 7.1.2 BEND C 6 5.760 12.595 12.595 18.662

2031 TUBE TUBE 0.170 1.330 0.128 IS-7.1.2 3 5.760 12.595 12.595 18.662

2032 TUBE TUBE 0.214 1.330 0.161 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2033 TUBE TUBE 0.169 1.330 0.127 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2034 TUBE TUBE 0.306 1.330 0.230 IS-7.1.2 7 5.760 12.595 12.595 18.662

2035 TUBE TUBE 0.364 1.330 0.273 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2036 TUBE TUBE 0.243 1.330 0.183 IS-7.1.2 6 5.760 12.595 12.595 18.662

2037 TUBE TUBE 0.199 1.330 0.150 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2038 TUBE TUBE 0.141 1.330 0.106 IS-7.1.2 7 5.760 12.595 12.595 18.662

2039 TUBE TUBE 0.336 1.330 0.253 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2040 TUBE TUBE 0.371 1.330 0.279 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

2041 TUBE TUBE 0.332 1.330 0.250 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2042 TUBE TUBE 0.273 1.330 0.205 7.1.2 BEND C 4 5.760 12.595 12.595 18.662

2043 TUBE TUBE 0.169 1.330 0.127 IS-7.1.2 7 5.760 12.595 12.595 18.662

2044 TUBE TUBE 0.323 1.330 0.243 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2045 TUBE TUBE 0.270 1.330 0.203 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2046 TUBE TUBE 0.200 1.330 0.150 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2047 TUBE TUBE 0.218 1.330 0.164 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

Page 35: Design Report for Acropolis Tower

21/05/2013

2048 TUBE TUBE 0.125 1.330 0.094 7.1.2 BEND C 6 5.760 12.595 12.595 18.662

2049 TUBE TUBE 0.170 1.330 0.128 IS-7.1.2 3 5.760 12.595 12.595 18.662

2050 TUBE TUBE 0.214 1.330 0.161 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2051 TUBE TUBE 0.169 1.330 0.127 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2052 TUBE TUBE 0.310 1.330 0.233 IS-7.1.2 7 5.760 12.595 12.595 18.662

2053 TUBE TUBE 0.368 1.330 0.277 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2054 TUBE TUBE 0.241 1.330 0.181 IS-7.1.2 6 5.760 12.595 12.595 18.662

2055 TUBE TUBE 0.201 1.330 0.151 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2056 TUBE TUBE 0.147 1.330 0.110 IS-7.1.2 7 5.760 12.595 12.595 18.662

2057 TUBE TUBE 0.334 1.330 0.251 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2058 TUBE TUBE 0.379 1.330 0.285 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

2059 TUBE TUBE 0.337 1.330 0.253 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2060 TUBE TUBE 0.280 1.330 0.211 7.1.2 BEND C 4 5.760 12.595 12.595 18.662

2061 TUBE TUBE 0.170 1.330 0.128 IS-7.1.2 7 5.760 12.595 12.595 18.662

2062 TUBE TUBE 0.328 1.330 0.246 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2063 TUBE TUBE 0.275 1.330 0.207 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2064 TUBE TUBE 0.202 1.330 0.152 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2065 TUBE TUBE 0.217 1.330 0.163 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2066 TUBE TUBE 0.125 1.330 0.094 7.1.2 BEND C 6 5.760 12.595 12.595 18.662

2067 TUBE TUBE 0.173 1.330 0.130 IS-7.1.2 3 5.760 12.595 12.595 18.662

2068 TUBE TUBE 0.214 1.330 0.161 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2069 TUBE TUBE 0.168 1.330 0.126 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2070 TUBE TUBE 0.305 1.330 0.229 IS-7.1.2 7 5.760 12.595 12.595 18.662

2071 TUBE TUBE 0.354 1.330 0.267 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2072 TUBE TUBE 0.265 1.330 0.199 IS-7.1.2 6 5.760 12.595 12.595 18.662

2073 TUBE TUBE 0.209 1.330 0.157 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2074 TUBE TUBE 0.148 1.330 0.112 IS-7.1.2 3 5.760 12.595 12.595 18.662

2075 TUBE TUBE 0.334 1.330 0.251 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2076 TUBE TUBE 0.271 1.330 0.204 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2077 TUBE TUBE 0.299 1.330 0.225 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2078 TUBE TUBE 0.231 1.330 0.174 7.1.2 BEND C 4 5.760 12.595 12.595 18.662

2079 TUBE TUBE 0.177 1.330 0.133 IS-7.1.2 7 5.760 12.595 12.595 18.662

2080 TUBE TUBE 0.280 1.330 0.211 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2081 TUBE TUBE 0.235 1.330 0.177 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2082 TUBE TUBE 0.254 1.330 0.191 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

2083 TUBE TUBE 0.211 1.330 0.159 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2084 TUBE TUBE 0.169 1.330 0.127 7.1.2 BEND C 6 5.760 12.595 12.595 18.662

2085 TUBE TUBE 0.113 1.330 0.085 IS-7.1.2 7 5.760 12.595 12.595 18.662

2086 TUBE TUBE 0.169 1.330 0.127 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2087 TUBE TUBE 0.179 1.330 0.134 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2092 TUBE TUBE 0.227 1.330 0.171 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2093 TUBE TUBE 0.329 1.330 0.247 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2094 TUBE TUBE 0.384 1.330 0.289 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2095 TUBE TUBE 0.249 1.330 0.187 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2096 TUBE TUBE 0.291 1.330 0.219 IS-7.1.2 4 5.760 12.595 12.595 18.662

2097 TUBE TUBE 0.320 1.330 0.240 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2098 TUBE TUBE 0.127 1.330 0.096 IS-7.1.2 7 5.760 12.595 12.595 18.662

2099 TUBE TUBE 0.287 1.330 0.216 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2100 TUBE TUBE 0.243 1.330 0.183 7.1.2 BEND C 6 5.760 12.595 12.595 18.662

2101 TUBE TUBE 0.201 1.330 0.151 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2102 TUBE TUBE 0.256 1.330 0.193 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2103 TUBE TUBE 0.191 1.330 0.144 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2104 TUBE TUBE 0.211 1.330 0.158 7.1.2 BEND C 4 5.760 12.595 12.595 18.662

2105 TUBE TUBE 0.204 1.330 0.153 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2106 TUBE TUBE 0.260 1.330 0.195 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2107 TUBE TUBE 0.151 1.330 0.113 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2108 TUBE TUBE 0.334 1.330 0.251 IS-7.1.2 6 5.760 12.595 12.595 18.662

2109 TUBE TUBE 0.338 1.330 0.254 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2110 TUBE TUBE 0.147 1.330 0.111 IS-7.1.2 3 5.760 12.595 12.595 18.662

2111 TUBE TUBE 0.301 1.330 0.227 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2112 TUBE TUBE 0.349 1.330 0.263 7.1.2 BEND C 6 5.760 12.595 12.595 18.662

2113 TUBE TUBE 0.264 1.330 0.198 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2114 TUBE TUBE 0.350 1.330 0.263 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2115 TUBE TUBE 0.300 1.330 0.225 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2116 TUBE TUBE 0.188 1.330 0.141 7.1.2 BEND C 4 5.760 12.595 12.595 18.662

2117 TUBE TUBE 0.188 1.330 0.142 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2118 TUBE TUBE 0.240 1.330 0.181 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2119 TUBE TUBE 0.141 1.330 0.106 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2120 TUBE TUBE 0.315 1.330 0.237 IS-7.1.2 6 5.760 12.595 12.595 18.662

Page 36: Design Report for Acropolis Tower

21/05/2013

2121 TUBE TUBE 0.372 1.330 0.280 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2122 TUBE TUBE 0.134 1.330 0.101 IS-7.1.2 7 5.760 12.595 12.595 18.662

2123 TUBE TUBE 0.313 1.330 0.236 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2124 TUBE TUBE 0.348 1.330 0.262 7.1.2 BEND C 6 5.760 12.595 12.595 18.662

2125 TUBE TUBE 0.264 1.330 0.198 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2126 TUBE TUBE 0.350 1.330 0.263 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2127 TUBE TUBE 0.295 1.330 0.222 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2128 TUBE TUBE 0.186 1.330 0.140 7.1.2 BEND C 4 5.760 12.595 12.595 18.662

2129 TUBE TUBE 0.189 1.330 0.142 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2130 TUBE TUBE 0.240 1.330 0.180 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2131 TUBE TUBE 0.137 1.330 0.103 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2132 TUBE TUBE 0.320 1.330 0.241 IS-7.1.2 6 5.760 12.595 12.595 18.662

2133 TUBE TUBE 0.371 1.330 0.279 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2134 TUBE TUBE 0.132 1.330 0.099 IS-7.1.2 7 5.760 12.595 12.595 18.662

2135 TUBE TUBE 0.315 1.330 0.237 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2136 TUBE TUBE 0.353 1.330 0.266 7.1.2 BEND C 6 5.760 12.595 12.595 18.662

2137 TUBE TUBE 0.268 1.330 0.201 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2138 TUBE TUBE 0.355 1.330 0.267 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2139 TUBE TUBE 0.302 1.330 0.227 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2140 TUBE TUBE 0.185 1.330 0.139 7.1.2 BEND C 4 5.760 12.595 12.595 18.662

2141 TUBE TUBE 0.189 1.330 0.142 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2142 TUBE TUBE 0.239 1.330 0.180 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2143 TUBE TUBE 0.140 1.330 0.106 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2144 TUBE TUBE 0.310 1.330 0.233 IS-7.1.2 4 5.760 12.595 12.595 18.662

2145 TUBE TUBE 0.371 1.330 0.279 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2146 TUBE TUBE 0.160 1.330 0.120 IS-7.1.2 7 5.760 12.595 12.595 18.662

2147 TUBE TUBE 0.301 1.330 0.226 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2148 TUBE TUBE 0.274 1.330 0.206 7.1.2 BEND C 6 5.760 12.595 12.595 18.662

2149 TUBE TUBE 0.236 1.330 0.177 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2150 TUBE TUBE 0.302 1.330 0.227 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2151 TUBE TUBE 0.224 1.330 0.168 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2152 TUBE TUBE 0.188 1.330 0.142 7.1.2 BEND C 4 5.760 12.595 12.595 18.662

2153 TUBE TUBE 0.183 1.330 0.138 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2154 TUBE TUBE 0.242 1.330 0.182 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2155 TUBE TUBE 0.186 1.330 0.140 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2160 TUBE TUBE 0.226 1.330 0.170 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2161 TUBE TUBE 0.329 1.330 0.248 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2162 TUBE TUBE 0.384 1.330 0.289 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2163 TUBE TUBE 0.251 1.330 0.188 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2164 TUBE TUBE 0.289 1.330 0.217 IS-7.1.2 4 5.760 12.595 12.595 18.662

2165 TUBE TUBE 0.320 1.330 0.241 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2166 TUBE TUBE 0.127 1.330 0.095 IS-7.1.2 7 5.760 12.595 12.595 18.662

2167 TUBE TUBE 0.289 1.330 0.217 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2168 TUBE TUBE 0.241 1.330 0.181 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

2169 TUBE TUBE 0.204 1.330 0.154 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2170 TUBE TUBE 0.253 1.330 0.190 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2171 TUBE TUBE 0.191 1.330 0.144 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2172 TUBE TUBE 0.208 1.330 0.156 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

2173 TUBE TUBE 0.205 1.330 0.154 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2174 TUBE TUBE 0.256 1.330 0.192 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2175 TUBE TUBE 0.150 1.330 0.113 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2176 TUBE TUBE 0.330 1.330 0.248 IS-7.1.2 7 5.760 12.595 12.595 18.662

2177 TUBE TUBE 0.340 1.330 0.256 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2178 TUBE TUBE 0.144 1.330 0.108 IS-7.1.2 4 5.760 12.595 12.595 18.662

2179 TUBE TUBE 0.303 1.330 0.228 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2180 TUBE TUBE 0.346 1.330 0.260 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

2181 TUBE TUBE 0.269 1.330 0.202 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2182 TUBE TUBE 0.346 1.330 0.260 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2183 TUBE TUBE 0.297 1.330 0.223 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2184 TUBE TUBE 0.183 1.330 0.138 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

2185 TUBE TUBE 0.190 1.330 0.143 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2186 TUBE TUBE 0.235 1.330 0.177 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2187 TUBE TUBE 0.140 1.330 0.105 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2188 TUBE TUBE 0.310 1.330 0.233 IS-7.1.2 7 5.760 12.595 12.595 18.662

2189 TUBE TUBE 0.374 1.330 0.281 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2190 TUBE TUBE 0.129 1.330 0.097 IS-7.1.2 6 5.760 12.595 12.595 18.662

2191 TUBE TUBE 0.316 1.330 0.238 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2192 TUBE TUBE 0.343 1.330 0.258 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

2193 TUBE TUBE 0.270 1.330 0.203 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

Page 37: Design Report for Acropolis Tower

21/05/2013

2194 TUBE TUBE 0.345 1.330 0.259 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2195 TUBE TUBE 0.291 1.330 0.218 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2196 TUBE TUBE 0.179 1.330 0.135 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

2197 TUBE TUBE 0.191 1.330 0.144 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2198 TUBE TUBE 0.233 1.330 0.175 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2199 TUBE TUBE 0.136 1.330 0.102 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2200 TUBE TUBE 0.313 1.330 0.236 IS-7.1.2 7 5.760 12.595 12.595 18.662

2201 TUBE TUBE 0.373 1.330 0.281 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2202 TUBE TUBE 0.126 1.330 0.095 IS-7.1.2 6 5.760 12.595 12.595 18.662

2203 TUBE TUBE 0.318 1.330 0.239 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2204 TUBE TUBE 0.346 1.330 0.261 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

2205 TUBE TUBE 0.275 1.330 0.207 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2206 TUBE TUBE 0.348 1.330 0.261 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2207 TUBE TUBE 0.295 1.330 0.222 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2208 TUBE TUBE 0.175 1.330 0.132 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

2209 TUBE TUBE 0.192 1.330 0.144 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2210 TUBE TUBE 0.230 1.330 0.173 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2211 TUBE TUBE 0.140 1.330 0.105 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2212 TUBE TUBE 0.297 1.330 0.223 IS-7.1.2 4 5.760 12.595 12.595 18.662

2213 TUBE TUBE 0.375 1.330 0.282 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2214 TUBE TUBE 0.151 1.330 0.113 IS-7.1.2 6 5.760 12.595 12.595 18.662

2215 TUBE TUBE 0.310 1.330 0.233 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2216 TUBE TUBE 0.266 1.330 0.200 7.1.2 BEND C 7 5.760 12.595 12.595 18.662

2217 TUBE TUBE 0.249 1.330 0.188 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2218 TUBE TUBE 0.292 1.330 0.220 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2219 TUBE TUBE 0.241 1.330 0.181 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2220 TUBE TUBE 0.169 1.330 0.127 7.1.2 BEND C 3 5.760 12.595 12.595 18.662

2221 TUBE TUBE 0.185 1.330 0.139 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2222 TUBE TUBE 0.227 1.330 0.171 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2223 TUBE TUBE 0.169 1.330 0.127 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2224 TUBE TUBE 0.014 1.330 0.010 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

2225 TUBE TUBE 0.001 1.330 0.001 IS-7.1.1(A) 1 8.806 69.625 69.625 104.211

2226 TUBE TUBE 0.014 1.330 0.010 IS-7.1.1(A) 6 8.806 69.625 69.625 104.211

2227 TUBE TUBE 0.001 1.330 0.001 IS-7.1.1(A) 1 8.806 69.625 69.625 104.211

2228 TUBE TUBE 0.984 1.330 0.740 IS-7.1.2 7 8.806 69.625 69.625 104.211

2229 TUBE TUBE 0.626 1.330 0.470 IS-7.1.2 7 8.806 69.625 69.625 104.211

2230 TUBE TUBE 1.009 1.330 0.759 IS-7.1.2 7 8.806 69.625 69.625 104.211

2231 TUBE TUBE 0.596 1.330 0.448 IS-7.1.2 7 8.806 69.625 69.625 104.211

2232 TUBE TUBE 0.824 1.330 0.619 IS-7.1.2 7 10.880 84.139 84.139 125.773

2233 TUBE TUBE 0.554 1.330 0.416 IS-7.1.2 7 10.880 84.139 84.139 125.773

2234 TUBE TUBE 0.828 1.330 0.623 IS-7.1.2 7 10.880 84.139 84.139 125.773

2235 TUBE TUBE 0.549 1.330 0.412 IS-7.1.2 7 10.880 84.139 84.139 125.773

2236 TUBE TUBE 0.653 1.330 0.491 IS-7.1.2 3 8.806 69.625 69.625 104.211

2237 TUBE TUBE 0.490 1.330 0.368 IS-7.1.2 3 8.806 69.625 69.625 104.211

2238 TUBE TUBE 0.776 1.330 0.584 IS-7.1.2 7 8.806 69.625 69.625 104.211

2239 TUBE TUBE 0.551 1.330 0.415 IS-7.1.2 7 8.806 69.625 69.625 104.211

2240 TUBE TUBE 0.796 1.330 0.599 IS-7.1.2 3 8.806 69.625 69.625 104.211

2241 TUBE TUBE 0.502 1.330 0.378 IS-7.1.2 3 8.806 69.625 69.625 104.211

2242 TUBE TUBE 0.808 1.330 0.608 IS-7.1.2 7 8.806 69.625 69.625 104.211

2243 TUBE TUBE 0.493 1.330 0.371 IS-7.1.2 7 8.806 69.625 69.625 104.211

2244 TUBE TUBE 0.903 1.330 0.679 IS-7.1.2 7 8.806 69.625 69.625 104.211

2245 TUBE TUBE 0.648 1.330 0.487 IS-7.1.2 7 8.806 69.625 69.625 104.211

2246 TUBE TUBE 0.091 1.330 0.069 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

2247 TUBE TUBE 0.094 1.330 0.071 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

2248 TUBE TUBE 0.654 1.330 0.492 IS-7.1.2 3 8.806 69.625 69.625 104.211

2249 TUBE TUBE 0.490 1.330 0.368 IS-7.1.2 3 8.806 69.625 69.625 104.211

2250 TUBE TUBE 0.777 1.330 0.584 IS-7.1.2 7 8.806 69.625 69.625 104.211

2251 TUBE TUBE 0.550 1.330 0.414 IS-7.1.2 7 8.806 69.625 69.625 104.211

2252 TUBE TUBE 0.798 1.330 0.600 IS-7.1.2 3 8.806 69.625 69.625 104.211

2253 TUBE TUBE 0.502 1.330 0.377 IS-7.1.2 3 8.806 69.625 69.625 104.211

2254 TUBE TUBE 0.812 1.330 0.611 IS-7.1.2 7 8.806 69.625 69.625 104.211

2255 TUBE TUBE 0.488 1.330 0.367 IS-7.1.2 7 8.806 69.625 69.625 104.211

2256 TUBE TUBE 0.915 1.330 0.688 IS-7.1.2 7 8.806 69.625 69.625 104.211

2257 TUBE TUBE 0.633 1.330 0.476 IS-7.1.2 7 8.806 69.625 69.625 104.211

2258 TUBE TUBE 0.092 1.330 0.069 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

2259 TUBE TUBE 0.094 1.330 0.070 IS-7.1.1(A) 7 8.806 69.625 69.625 104.211

2260 TUBE TUBE 0.564 1.330 0.424 IS-7.1.2 3 8.806 69.625 69.625 104.211

2261 TUBE TUBE 0.200 1.330 0.151 IS-7.1.2 7 8.806 69.625 69.625 104.211

2262 TUBE TUBE 0.696 1.330 0.523 IS-7.1.2 7 8.806 69.625 69.625 104.211

Page 38: Design Report for Acropolis Tower

21/05/2013

2263 TUBE TUBE 0.549 1.330 0.412 IS-7.1.2 3 8.806 69.625 69.625 104.211

2264 TUBE TUBE 0.186 1.330 0.140 IS-7.1.2 7 8.806 69.625 69.625 104.211

2265 TUBE TUBE 0.723 1.330 0.544 IS-7.1.2 7 8.806 69.625 69.625 104.211

2266 TUBE TUBE 0.540 1.330 0.406 IS-7.1.2 3 8.806 69.625 69.625 104.211

2267 TUBE TUBE 0.172 1.330 0.130 IS-7.1.2 7 8.806 69.625 69.625 104.211

2268 TUBE TUBE 0.637 1.330 0.479 IS-7.1.2 7 8.806 69.625 69.625 104.211

2269 TUBE TUBE 0.533 1.330 0.401 IS-7.1.2 3 8.806 69.625 69.625 104.211

2270 TUBE TUBE 0.154 1.330 0.116 IS-7.1.2 7 8.806 69.625 69.625 104.211

2271 TUBE TUBE 0.662 1.330 0.498 IS-7.1.2 7 8.806 69.625 69.625 104.211

2272 TUBE TUBE 0.860 1.330 0.646 IS-7.1.2 3 8.806 69.625 69.625 104.211

2273 TUBE TUBE 0.361 1.330 0.271 IS-7.1.2 3 8.806 69.625 69.625 104.211

2274 TUBE TUBE 0.446 1.330 0.335 IS-7.1.2 7 8.806 69.625 69.625 104.211

2275 TUBE TUBE 0.932 1.330 0.701 IS-7.1.2 7 8.806 69.625 69.625 104.211

2276 TUBE TUBE 0.860 1.330 0.647 IS-7.1.2 3 8.806 69.625 69.625 104.211

2277 TUBE TUBE 0.339 1.330 0.255 IS-7.1.2 3 8.806 69.625 69.625 104.211

2278 TUBE TUBE 0.447 1.330 0.336 IS-7.1.2 7 8.806 69.625 69.625 104.211

2279 TUBE TUBE 0.950 1.330 0.715 IS-7.1.2 7 8.806 69.625 69.625 104.211

2280 TUBE TUBE 0.936 1.330 0.704 IS-7.1.2 3 8.806 69.625 69.625 104.211

2281 TUBE TUBE 0.424 1.330 0.319 IS-7.1.2 3 8.806 69.625 69.625 104.211

2282 TUBE TUBE 0.434 1.330 0.326 IS-7.1.2 7 8.806 69.625 69.625 104.211

2283 TUBE TUBE 0.958 1.330 0.720 IS-7.1.2 7 8.806 69.625 69.625 104.211

2284 TUBE TUBE 0.947 1.330 0.712 IS-7.1.2 3 8.806 69.625 69.625 104.211

2285 TUBE TUBE 0.411 1.330 0.309 IS-7.1.2 3 8.806 69.625 69.625 104.211

2286 TUBE TUBE 0.434 1.330 0.327 IS-7.1.2 7 8.806 69.625 69.625 104.211

2287 TUBE TUBE 0.992 1.330 0.746 IS-7.1.2 7 8.806 69.625 69.625 104.211

2288 TUBE TUBE 0.565 1.330 0.424 IS-7.1.2 3 8.806 69.625 69.625 104.211

2289 TUBE TUBE 0.201 1.330 0.151 IS-7.1.2 7 8.806 69.625 69.625 104.211

2290 TUBE TUBE 0.696 1.330 0.523 IS-7.1.2 7 8.806 69.625 69.625 104.211

2291 TUBE TUBE 0.548 1.330 0.412 IS-7.1.2 3 8.806 69.625 69.625 104.211

2292 TUBE TUBE 0.185 1.330 0.139 IS-7.1.2 7 8.806 69.625 69.625 104.211

2293 TUBE TUBE 0.722 1.330 0.543 IS-7.1.2 7 8.806 69.625 69.625 104.211

2294 TUBE TUBE 0.627 1.330 0.472 IS-7.1.2 3 8.806 69.625 69.625 104.211

2295 TUBE TUBE 0.167 1.330 0.126 IS-7.1.2 3 8.806 69.625 69.625 104.211

2296 TUBE TUBE 0.609 1.330 0.458 IS-7.1.2 7 8.806 69.625 69.625 104.211

2297 TUBE TUBE 0.633 1.330 0.476 IS-7.1.2 3 8.806 69.625 69.625 104.211

2298 TUBE TUBE 0.127 1.330 0.096 IS-7.1.2 3 8.806 69.625 69.625 104.211

2299 TUBE TUBE 0.671 1.330 0.504 IS-7.1.2 7 8.806 69.625 69.625 104.211

2300 TUBE TUBE 0.540 1.330 0.406 IS-7.1.2 3 8.806 69.625 69.625 104.211

2301 TUBE TUBE 0.173 1.330 0.130 IS-7.1.2 7 8.806 69.625 69.625 104.211

2302 TUBE TUBE 0.638 1.330 0.480 IS-7.1.2 7 8.806 69.625 69.625 104.211

2303 TUBE TUBE 0.533 1.330 0.400 IS-7.1.2 3 8.806 69.625 69.625 104.211

2304 TUBE TUBE 0.153 1.330 0.115 IS-7.1.2 7 8.806 69.625 69.625 104.211

2305 TUBE TUBE 0.661 1.330 0.497 IS-7.1.2 7 8.806 69.625 69.625 104.211

2306 TUBE TUBE 0.861 1.330 0.648 IS-7.1.2 3 8.806 69.625 69.625 104.211

2307 TUBE TUBE 0.362 1.330 0.272 IS-7.1.2 3 8.806 69.625 69.625 104.211

2308 TUBE TUBE 0.448 1.330 0.337 IS-7.1.2 7 8.806 69.625 69.625 104.211

2309 TUBE TUBE 0.934 1.330 0.702 IS-7.1.2 7 8.806 69.625 69.625 104.211

2310 TUBE TUBE 0.859 1.330 0.646 IS-7.1.2 3 8.806 69.625 69.625 104.211

2311 TUBE TUBE 0.338 1.330 0.254 IS-7.1.2 3 8.806 69.625 69.625 104.211

2312 TUBE TUBE 0.444 1.330 0.334 IS-7.1.2 7 8.806 69.625 69.625 104.211

2313 TUBE TUBE 0.947 1.330 0.712 IS-7.1.2 7 8.806 69.625 69.625 104.211

2314 TUBE TUBE 0.940 1.330 0.707 IS-7.1.2 3 8.806 69.625 69.625 104.211

2315 TUBE TUBE 0.429 1.330 0.322 IS-7.1.2 3 8.806 69.625 69.625 104.211

2316 TUBE TUBE 0.439 1.330 0.330 IS-7.1.2 7 8.806 69.625 69.625 104.211

2317 TUBE TUBE 0.965 1.330 0.725 IS-7.1.2 7 8.806 69.625 69.625 104.211

2318 TUBE TUBE 0.944 1.330 0.710 IS-7.1.2 3 8.806 69.625 69.625 104.211

2319 TUBE TUBE 0.408 1.330 0.307 IS-7.1.2 3 8.806 69.625 69.625 104.211

2320 TUBE TUBE 0.427 1.330 0.321 IS-7.1.2 7 8.806 69.625 69.625 104.211

2321 TUBE TUBE 0.984 1.330 0.740 IS-7.1.2 7 8.806 69.625 69.625 104.211

2322 TUBE TUBE 0.639 1.330 0.481 IS-7.1.2 3 8.806 69.625 69.625 104.211

2323 TUBE TUBE 0.180 1.330 0.135 IS-7.1.2 3 8.806 69.625 69.625 104.211

2324 TUBE TUBE 0.627 1.330 0.471 IS-7.1.2 7 8.806 69.625 69.625 104.211

2325 TUBE TUBE 0.624 1.330 0.469 IS-7.1.2 3 8.806 69.625 69.625 104.211

2326 TUBE TUBE 0.117 1.330 0.088 IS-7.1.2 3 8.806 69.625 69.625 104.211

2327 TUBE TUBE 0.650 1.330 0.489 IS-7.1.2 7 8.806 69.625 69.625 104.211

2329 TUBE TUBE 0.170 1.330 0.128 IS-7.1.2 7 10.880 84.139 84.139 125.773

2330 TUBE TUBE 0.863 1.330 0.649 7.1.2 BEND C 3 10.880 84.139 84.139 125.773

2331 TUBE TUBE 0.264 1.330 0.198 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2332 TUBE TUBE 0.327 1.330 0.246 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

Page 39: Design Report for Acropolis Tower

21/05/2013

2333 TUBE TUBE 0.868 1.330 0.652 IS-7.1.2 7 10.880 84.139 84.139 125.773

2334 TUBE TUBE 0.769 1.330 0.578 IS-7.1.2 3 10.880 84.139 84.139 125.773

2335 TUBE TUBE 0.262 1.330 0.197 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2336 TUBE TUBE 0.304 1.330 0.229 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2337 TUBE TUBE 0.789 1.330 0.593 IS-7.1.2 7 10.880 84.139 84.139 125.773

2338 TUBE TUBE 1.075 1.330 0.809 IS-7.1.2 3 10.880 84.139 84.139 125.773

2339 TUBE TUBE 0.415 1.330 0.312 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2340 TUBE TUBE 0.206 1.330 0.155 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2341 TUBE TUBE 0.445 1.330 0.335 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2342 TUBE TUBE 1.080 1.330 0.812 IS-7.1.2 7 10.880 84.139 84.139 125.773

2343 TUBE TUBE 1.116 1.330 0.839 IS-7.1.2 3 10.880 84.139 84.139 125.773

2344 TUBE TUBE 0.450 1.330 0.338 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2345 TUBE TUBE 0.208 1.330 0.157 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2346 TUBE TUBE 0.454 1.330 0.341 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2347 TUBE TUBE 1.142 1.330 0.859 IS-7.1.2 7 10.880 84.139 84.139 125.773

2348 TUBE TUBE 0.785 1.330 0.591 IS-7.1.2 3 10.880 84.139 84.139 125.773

2349 TUBE TUBE 0.301 1.330 0.226 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2350 TUBE TUBE 0.284 1.330 0.213 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2352 TUBE TUBE 0.140 1.330 0.105 IS-7.1.2 7 10.880 84.139 84.139 125.773

2353 TUBE TUBE 0.557 1.330 0.419 7.1.2 BEND C 3 10.880 84.139 84.139 125.773

2354 TUBE TUBE 0.189 1.330 0.142 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2355 TUBE TUBE 0.265 1.330 0.199 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2356 TUBE TUBE 0.571 1.330 0.429 IS-7.1.2 7 10.880 84.139 84.139 125.773

2357 TUBE TUBE 0.472 1.330 0.355 7.1.2 BEND C 3 10.880 84.139 84.139 125.773

2358 TUBE TUBE 0.187 1.330 0.140 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2359 TUBE TUBE 0.238 1.330 0.179 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2360 TUBE TUBE 0.502 1.330 0.377 IS-7.1.2 7 10.880 84.139 84.139 125.773

2361 TUBE TUBE 0.685 1.330 0.515 IS-7.1.2 3 10.880 84.139 84.139 125.773

2362 TUBE TUBE 0.364 1.330 0.274 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2363 TUBE TUBE 0.167 1.330 0.125 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2364 TUBE TUBE 0.400 1.330 0.301 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2365 TUBE TUBE 0.699 1.330 0.526 IS-7.1.2 7 10.880 84.139 84.139 125.773

2366 TUBE TUBE 0.717 1.330 0.539 IS-7.1.2 3 10.880 84.139 84.139 125.773

2367 TUBE TUBE 0.407 1.330 0.306 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2368 TUBE TUBE 0.161 1.330 0.121 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2369 TUBE TUBE 0.412 1.330 0.310 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2370 TUBE TUBE 0.745 1.330 0.560 IS-7.1.2 7 10.880 84.139 84.139 125.773

2371 TUBE TUBE 0.496 1.330 0.373 IS-7.1.2 3 10.880 84.139 84.139 125.773

2372 TUBE TUBE 0.227 1.330 0.170 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2373 TUBE TUBE 0.223 1.330 0.167 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2375 TUBE TUBE 0.170 1.330 0.128 IS-7.1.2 7 10.880 84.139 84.139 125.773

2376 TUBE TUBE 0.863 1.330 0.649 7.1.2 BEND C 3 10.880 84.139 84.139 125.773

2377 TUBE TUBE 0.264 1.330 0.198 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2378 TUBE TUBE 0.327 1.330 0.246 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2379 TUBE TUBE 0.868 1.330 0.652 IS-7.1.2 7 10.880 84.139 84.139 125.773

2380 TUBE TUBE 0.769 1.330 0.578 IS-7.1.2 3 10.880 84.139 84.139 125.773

2381 TUBE TUBE 0.262 1.330 0.197 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2382 TUBE TUBE 0.305 1.330 0.229 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2383 TUBE TUBE 0.789 1.330 0.593 IS-7.1.2 7 10.880 84.139 84.139 125.773

2384 TUBE TUBE 1.076 1.330 0.809 IS-7.1.2 3 10.880 84.139 84.139 125.773

2385 TUBE TUBE 0.415 1.330 0.312 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2386 TUBE TUBE 0.206 1.330 0.155 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2387 TUBE TUBE 0.446 1.330 0.335 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2388 TUBE TUBE 1.080 1.330 0.812 IS-7.1.2 7 10.880 84.139 84.139 125.773

2389 TUBE TUBE 1.118 1.330 0.840 IS-7.1.2 3 10.880 84.139 84.139 125.773

2390 TUBE TUBE 0.451 1.330 0.339 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2391 TUBE TUBE 0.209 1.330 0.157 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2392 TUBE TUBE 0.456 1.330 0.343 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2393 TUBE TUBE 1.145 1.330 0.861 IS-7.1.2 7 10.880 84.139 84.139 125.773

2394 TUBE TUBE 0.790 1.330 0.594 IS-7.1.2 3 10.880 84.139 84.139 125.773

2395 TUBE TUBE 0.305 1.330 0.230 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2396 TUBE TUBE 0.289 1.330 0.218 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2398 TUBE TUBE 0.140 1.330 0.105 IS-7.1.2 7 10.880 84.139 84.139 125.773

2399 TUBE TUBE 0.557 1.330 0.419 7.1.2 BEND C 3 10.880 84.139 84.139 125.773

2400 TUBE TUBE 0.189 1.330 0.142 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2401 TUBE TUBE 0.265 1.330 0.199 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2402 TUBE TUBE 0.571 1.330 0.429 IS-7.1.2 7 10.880 84.139 84.139 125.773

2403 TUBE TUBE 0.472 1.330 0.355 7.1.2 BEND C 3 10.880 84.139 84.139 125.773

2404 TUBE TUBE 0.187 1.330 0.140 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

Page 40: Design Report for Acropolis Tower

21/05/2013

2405 TUBE TUBE 0.238 1.330 0.179 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2406 TUBE TUBE 0.502 1.330 0.377 IS-7.1.2 7 10.880 84.139 84.139 125.773

2407 TUBE TUBE 0.685 1.330 0.515 IS-7.1.2 3 10.880 84.139 84.139 125.773

2408 TUBE TUBE 0.364 1.330 0.273 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2409 TUBE TUBE 0.166 1.330 0.125 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2410 TUBE TUBE 0.400 1.330 0.300 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2411 TUBE TUBE 0.698 1.330 0.525 IS-7.1.2 7 10.880 84.139 84.139 125.773

2412 TUBE TUBE 0.715 1.330 0.537 IS-7.1.2 3 10.880 84.139 84.139 125.773

2413 TUBE TUBE 0.406 1.330 0.305 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2414 TUBE TUBE 0.158 1.330 0.119 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2415 TUBE TUBE 0.410 1.330 0.308 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2416 TUBE TUBE 0.742 1.330 0.558 IS-7.1.2 7 10.880 84.139 84.139 125.773

2417 TUBE TUBE 0.493 1.330 0.371 IS-7.1.2 3 10.880 84.139 84.139 125.773

2418 TUBE TUBE 0.222 1.330 0.167 IS-7.1.1(A) 3 10.880 84.139 84.139 125.773

2419 TUBE TUBE 0.216 1.330 0.163 IS-7.1.1(A) 7 10.880 84.139 84.139 125.773

2420 TUBE TUBE 0.250 1.330 0.188 IS-7.1.2 7 5.760 12.595 12.595 18.662

2421 TUBE TUBE 0.143 1.330 0.107 IS-7.1.2 7 5.760 12.595 12.595 18.662

2422 TUBE TUBE 0.279 1.330 0.210 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2423 TUBE TUBE 0.361 1.330 0.272 IS-7.1.2 3 5.760 12.595 12.595 18.662

2424 TUBE TUBE 0.160 1.330 0.120 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2425 TUBE TUBE 0.253 1.330 0.190 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2426 TUBE TUBE 0.129 1.330 0.097 IS-7.1.2 7 5.760 12.595 12.595 18.662

2427 TUBE TUBE 0.179 1.330 0.135 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2428 TUBE TUBE 0.207 1.330 0.156 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2429 TUBE TUBE 0.079 1.330 0.059 IS-7.1.2 7 5.760 12.595 12.595 18.662

2430 TUBE TUBE 0.200 1.330 0.151 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2432 TUBE TUBE 0.172 1.330 0.129 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2433 TUBE TUBE 0.292 1.330 0.220 IS-7.1.2 3 5.760 12.595 12.595 18.662

2434 TUBE TUBE 0.196 1.330 0.147 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2435 TUBE TUBE 0.092 1.330 0.069 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2436 TUBE TUBE 0.212 1.330 0.159 IS-7.1.2 3 5.760 12.595 12.595 18.662

2437 TUBE TUBE 0.160 1.330 0.120 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2438 TUBE TUBE 0.114 1.330 0.085 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2439 TUBE TUBE 0.105 1.330 0.079 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2440 TUBE TUBE 0.106 1.330 0.080 IS-7.1.2 3 5.760 12.595 12.595 18.662

2441 TUBE TUBE 0.073 1.330 0.055 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2442 TUBE TUBE 0.175 1.330 0.131 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2443 TUBE TUBE 0.102 1.330 0.076 IS-7.1.2 3 5.760 12.595 12.595 18.662

2444 TUBE TUBE 0.098 1.330 0.073 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2445 TUBE TUBE 0.126 1.330 0.095 IS-7.1.2 7 5.760 12.595 12.595 18.662

2446 TUBE TUBE 0.156 1.330 0.117 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2447 TUBE TUBE 0.169 1.330 0.127 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2448 TUBE TUBE 0.076 1.330 0.057 IS-7.1.2 7 5.760 12.595 12.595 18.662

2449 TUBE TUBE 0.190 1.330 0.142 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2450 TUBE TUBE 0.087 1.330 0.065 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2451 TUBE TUBE 0.096 1.330 0.072 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2452 TUBE TUBE 0.101 1.330 0.076 IS-7.1.2 3 5.760 12.595 12.595 18.662

2453 TUBE TUBE 0.068 1.330 0.051 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2454 TUBE TUBE 0.162 1.330 0.121 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2455 TUBE TUBE 0.095 1.330 0.071 IS-7.1.2 3 5.760 12.595 12.595 18.662

2456 TUBE TUBE 0.093 1.330 0.070 IS-7.1.1(A) 6 5.760 12.595 12.595 18.662

2457 TUBE TUBE 0.249 1.330 0.187 IS-7.1.2 7 5.760 12.595 12.595 18.662

2458 TUBE TUBE 0.300 1.330 0.225 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2459 TUBE TUBE 0.393 1.330 0.296 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2460 TUBE TUBE 0.098 1.330 0.074 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2461 TUBE TUBE 0.221 1.330 0.166 IS-7.1.2 3 5.760 12.595 12.595 18.662

2462 TUBE TUBE 0.169 1.330 0.127 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2463 TUBE TUBE 0.179 1.330 0.135 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2464 TUBE TUBE 0.300 1.330 0.225 IS-7.1.2 3 5.760 12.595 12.595 18.662

2465 TUBE TUBE 0.198 1.330 0.149 IS-7.1.1(A) 4 5.760 12.595 12.595 18.662

2466 TUBE TUBE 0.142 1.330 0.107 IS-7.1.2 7 5.760 12.595 12.595 18.662

2467 TUBE TUBE 0.169 1.330 0.127 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2468 TUBE TUBE 0.275 1.330 0.207 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2469 TUBE TUBE 0.227 1.330 0.171 IS-7.1.2 7 5.760 12.595 12.595 18.662

2470 TUBE TUBE 0.165 1.330 0.124 IS-7.1.2 7 5.760 12.595 12.595 18.662

2471 TUBE TUBE 0.342 1.330 0.257 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2472 TUBE TUBE 0.232 1.330 0.175 IS-7.1.2 3 5.760 12.595 12.595 18.662

2473 TUBE TUBE 0.227 1.330 0.170 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2474 TUBE TUBE 0.077 1.330 0.058 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

Page 41: Design Report for Acropolis Tower

21/05/2013

2475 TUBE TUBE 0.085 1.330 0.064 IS-7.1.2 7 5.760 12.595 12.595 18.662

2476 TUBE TUBE 0.195 1.330 0.146 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2477 TUBE TUBE 0.185 1.330 0.139 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2478 TUBE TUBE 0.157 1.330 0.118 IS-7.1.2 7 5.760 12.595 12.595 18.662

2479 TUBE TUBE 0.105 1.330 0.079 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2480 TUBE TUBE 0.293 1.330 0.220 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2481 TUBE TUBE 0.237 1.330 0.178 IS-7.1.2 3 5.760 12.595 12.595 18.662

2482 TUBE TUBE 0.188 1.330 0.141 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2483 TUBE TUBE 0.212 1.330 0.160 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2484 TUBE TUBE 0.083 1.330 0.062 IS-7.1.2 3 5.760 12.595 12.595 18.662

2485 TUBE TUBE 0.150 1.330 0.113 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2486 TUBE TUBE 0.173 1.330 0.130 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2487 TUBE TUBE 0.140 1.330 0.105 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2488 TUBE TUBE 0.066 1.330 0.050 IS-7.1.2 3 5.760 12.595 12.595 18.662

2489 TUBE TUBE 0.257 1.330 0.193 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2490 TUBE TUBE 0.135 1.330 0.102 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2491 TUBE TUBE 0.096 1.330 0.072 IS-7.1.2 3 5.760 12.595 12.595 18.662

2492 TUBE TUBE 0.125 1.330 0.094 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2493 TUBE TUBE 0.083 1.330 0.062 IS-7.1.2 7 5.760 12.595 12.595 18.662

2494 TUBE TUBE 0.172 1.330 0.129 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2495 TUBE TUBE 0.159 1.330 0.120 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2496 TUBE TUBE 0.154 1.330 0.116 IS-7.1.2 7 5.760 12.595 12.595 18.662

2497 TUBE TUBE 0.092 1.330 0.069 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2498 TUBE TUBE 0.148 1.330 0.111 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2499 TUBE TUBE 0.132 1.330 0.099 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2500 TUBE TUBE 0.058 1.330 0.043 IS-7.1.2 3 5.760 12.595 12.595 18.662

2501 TUBE TUBE 0.252 1.330 0.190 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2502 TUBE TUBE 0.125 1.330 0.094 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2503 TUBE TUBE 0.092 1.330 0.069 IS-7.1.2 3 5.760 12.595 12.595 18.662

2504 TUBE TUBE 0.118 1.330 0.089 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2505 TUBE TUBE 0.227 1.330 0.171 IS-7.1.2 7 5.760 12.595 12.595 18.662

2506 TUBE TUBE 0.362 1.330 0.272 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2507 TUBE TUBE 0.251 1.330 0.189 IS-7.1.2 3 5.760 12.595 12.595 18.662

2508 TUBE TUBE 0.221 1.330 0.166 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2509 TUBE TUBE 0.093 1.330 0.070 IS-7.1.2 3 5.760 12.595 12.595 18.662

2510 TUBE TUBE 0.160 1.330 0.121 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2511 TUBE TUBE 0.299 1.330 0.225 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2512 TUBE TUBE 0.245 1.330 0.184 IS-7.1.2 3 5.760 12.595 12.595 18.662

2513 TUBE TUBE 0.189 1.330 0.142 IS-7.1.1(A) 3 5.760 12.595 12.595 18.662

2514 TUBE TUBE 0.165 1.330 0.124 IS-7.1.2 7 5.760 12.595 12.595 18.662

2515 TUBE TUBE 0.239 1.330 0.180 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

2516 TUBE TUBE 0.098 1.330 0.074 IS-7.1.1(A) 7 5.760 12.595 12.595 18.662

Utilisation Ratio for all beams are less than 1.00, hence the structure is safe.

Page 42: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR BOLT & BASE PLATE FOR ZCP CLADDING (EAST SIDE) R2

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 43: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR RHS (145X82) X 4.8 THK

3300 CANTILEVER

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 44: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M16 hnom3Effective embedment depth: hef = 120 mm, hnom = 132 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: Engineering judgement SOFA - based on ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 20 mmAnchor plate: lx x ly x t = 800 x 750 x 20 mm (Recommended plate thickness: not calculated)Profile Rectangular hollow; (L x W x T) = 145 mm x 82 mm x 5 mmBase material: uncracked concrete , C20/25, fcc = 25.00 N/mm²; h = 450 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to ETAG 001, Annex C, 5.2.2.6 present.

Geometry [mm] & Loading [kN, kNm]

1

Page 45: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 23.160 3.739 3.683 0.643

2 7.522 3.776 3.683 0.835

3 23.320 3.854 3.800 0.643

4 7.681 3.891 3.800 0.835

5 23.510 3.997 3.945 0.643

6 7.880 4.032 3.945 0.835

7 23.670 4.113 4.062 0.643

8 8.039 4.147 4.062 0.835

max. concrete compressive strain [‰]: 0.16max. concrete compressive stress [N/mm²]: 4.81resulting tension force in (x/y)=(-83/-3) [kN]: 124.800resulting compression force in (x/y)=(376/22) [kN]: 117.400

1 2

3 4

5 6

7 8

Tension Compression

x

y

3. Tension loadProof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 23.674 62.643 38 OK

Pullout Strength* 23.674 33.333 71 OK

Concrete Breakout Strength** 124.783 160.311 78 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

87.700

gM,s

1.400

NRd,s [kN]

62.643

NSd [kN]

23.674

Pullout StrengthNRk,p [kN]

50.000

yc

1.000

gM,p

1.500

NRd,p [kN]

33.333

NSd [kN]

23.674

Concrete Breakout StrengthAc,N [mm2]

696900

Ac,N

0 [mm2]

129600

ccr,N [mm]

180

scr,N [mm]

360

ec1,N [mm]

83

yec1,N

0.685

ec2,N [mm]

3

yec2,N

0.983

ys,N

1.000

yre,N

1.000

k1

10.100

NRk,c

0 [kN]

66.384

gM,c

1.500

NRd,c [kN]

160.311

NSd [kN]

124.783

2

Page 46: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear loadProof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 4.147 45.200 9 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 31.540 635.941 5 OK

Concrete edge failure in direction

x+**

31.160 87.509 36 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

56.500

gM,s

1.250

VRd,s [kN]

45.200

VSd [kN]

4.147

Pryout StrengthAc,N [mm2]

696900

Ac,N

0 [mm2]

129600

ccr,N [mm]

180

scr,N [mm]

360

k-factor

2.900

ec1,V [mm]

2

yec1,N

0.987

ec2,V [mm]

13

yec2,N

0.934

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

66.384

gM,c,p

1.500

VRd,c1 [kN]

635.941

VSd [kN]

31.540

Concrete edge failure in direction x+lf [mm]

120

dnom [mm]

16

k1

2.400

a

0.071

b

0.058

c1 [mm]

235

Ac,V [mm2]

477638

Ac,V

0 [mm2]

248513

ys,V

1.000

yh,V

1.000

ya,V

1.005

ec,V [mm]

9

yec,V

0.975

yre,V

1.000

VRk,c

0 [kN]

69.712

gM,c

1.500

VRd,c [kN]

87.509

VSd [kN]

31.160

5. Combined tension and shear loadsbN bV a Utilization bN,V [%] Status

0.778 0.356 1.5 90 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 17.540 [kN]

VSk = 3.070 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 47: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method SOFA assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by filling the

gap with mortar of sufficient compressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• An SLS-check is not performed for SOFA and has to be provided by the user!• The anchor plate overlaps the concrete plate edges. A local concrete spalling due to compression has to be checked separately!• Checking the transfer of loads into the base material is required in accordance with ETAG 001, Annex C(2010)Section 7! The software

considers that the grout is installed under the anchor plate without creating air voids and before application of the loads.• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 4.1 of ETAG 001, Annex C! For largerdiameters of the clearance hole see Chapter 1.1. of ETAG 001, Annex C!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 48: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Rectangular hollow, 145 mm x 82 mm x 5 mmHole diameter in the fixture: df = 18 mmPlate thickness (input): 20 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M16 hnom3Installation torque: 0.080 kNmHole diameter in the base material: 16 mmHole depth in the base material: 140 mmMinimum thickness of the base material: 180 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y Anchor x y c-x c+x c-y c+y

1 -165 325 235 565 - -2 165 325 565 235 - -3 -165 125 235 565 - -4 165 125 565 235 - -

5 -165 -125 235 565 - -6 165 -125 565 235 - -7 -165 -325 235 565 - -8 165 -325 565 235 - -

1 2

3 4

5 6

7 8

400.0 400.0

235.0 235.0

375.

037

5.0

50.0

50.0

1 2

3 4

5 6

7 8

x

y

5

Page 49: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 50: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE

Factored Tension Force (from Hilti Report) = 23160.00 N

Eccentricity = 25 mm

Maximum Bending Moment = 579000 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 3335.44148 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 758054.882 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 50.03 mm

Required Section Modulas of Plate = 2547.60 mm3

Plate Thickness Required = 17.48 mm

Thickness Provided = 20 mm

> 17.48 mm

Provide MS Plate of 800X750X20 thk. Hence ok

t

βb

Tfactored

e

M

fy

Zp

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

Md

b

Zreq.

treq.

Page 51: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR SHS (72X72) X 4.0 THK

300 CANTILEVER

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 52: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M16 hnom1Effective embedment depth: hef = 65 mm, hnom = 77 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 20 mmAnchor plate: lx x ly x t = 400 x 250 x 20 mm (Recommended plate thickness: not calculated)Profile Square hollow; (L x W x T) = 72 mm x 72 mm x 3 mmBase material: uncracked concrete , C20/25, fc = 20.00 N/mm²; h = 450 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 53: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 1.561 4.269 1.270 4.076

2 1.025 4.466 1.270 4.282

3 12.130 4.306 1.387 4.076

4 11.590 4.501 1.387 4.282

max. concrete compressive strain [‰]: 0.07max. concrete compressive stress [N/mm²]: 2.04resulting tension force in (x/y)=(-6/-68) [kN]: 26.300resulting compression force in (x/y)=(39/118) [kN]: 6.207

1 2

3 4

Tension

Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 12.126 62.643 19 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 26.303 36.358 72 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

87.700

gM,s

1.400

NRd,s [kN]

62.643

NSd [kN]

12.126

Concrete Breakout StrengthAc,N [mm2]

142350

Ac,N

0 [mm2]

38025

yA,N

3.744

ccr,N [mm]

98

scr,N [mm]

195

ec1,N [mm]

6

yec1,N

0.961

ec2,N [mm]

68

yec2,N

0.588

ys,N

1.000

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

25.780

gM,c

1.500

NRd,c [kN]

36.358

NSd [kN]

26.303

2

Page 54: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 4.501 45.200 10 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 17.540 178.607 10 OK

Concrete edge failure in direction

x+**

8.968 89.393 10 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

56.500

gM,s

1.250

VRd,s [kN]

45.200

VSd [kN]

4.501

Pryout StrengthAc,N [mm2]

142350

Ac,N

0 [mm2]

38025

yA,N

3.744

ccr,N [mm]

98

scr,N [mm]

195

k4

2.900

ec1,V [mm]

4

yec1,N

0.971

ec2,V [mm]

1

yec2,N

0.986

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

25.780

gM,c,p

1.500

VRd,c1 [kN]

178.607

VSd [kN]

17.540

Concrete edge failure in direction x+lf [mm]

65

dnom [mm]

16

kv

2.400

a

0.034

b

0.049

c1 [mm]

550

Ac,V [mm2]

819000

Ac,V

0 [mm2]

1361250

yA,V

0.602

ys,V

1.000

yh,V

1.354

ya,V

1.762

ec,V [mm]

1

yec,V

0.999

yre,V

1.000

y90°,V

2.000

VRk,c

0 [kN]

187.078

n

2

gM,c

1.500

VRd,c [kN]

89.393

VSd [kN]

8.968

Note: Resistance limit acc. to fib (07/2011) Eq. (10.2-7) is governing5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

bN bV a Utilization bN,V [%] Status

steel 0.194 0.095 2.0 5 OK

concrete 0.723 0.100 1.5 65 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 8.980 [kN]

VSk = 3.330 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 55: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 56: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Square hollow, 72 mm x 72 mm x 3 mmHole diameter in the fixture: df = 18 mmPlate thickness (input): 20 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M16 hnom1Installation torque: 0.080 kNmHole diameter in the base material: 16 mmHole depth in the base material: 85 mmMinimum thickness of the base material: 140 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 -150 85 250 550 - -2 150 85 550 250 - -3 -150 -85 250 550 - -4 150 -85 550 250 - -

1 2

3 4

200.0 200.0

50.0 50.0

125.

012

5.0

40.0

40.0

1 2

3 4

x

y

5

Page 57: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 58: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE

Factored Tension Force (from Hilti Report) = 12130.00 N

Eccentricity = 25 mm

Maximum Bending Moment = 303250 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 3335.44148 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 758054.882 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 50.03 mm

Required Section Modulas of Plate = 1334.30 mm3

Plate Thickness Required = 12.65 mm

Thickness Provided = 20 mm

> 12.65 mm

Provide MS Plate of 400X250X20 thk. Hence ok

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

Md

b

Zreq.

treq.

t

βb

Tfactored

e

M

fy

Zp

Page 59: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR SHS (72X72) X 4.0 THK

3300 CANTILEVER

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 60: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M16 hnom2Effective embedment depth: hef = 80 mm, hnom = 92 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: Engineering judgement SOFA - based on ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 20 mmAnchor plate: lx x ly x t = 500 x 500 x 20 mm (Recommended plate thickness: not calculated)Profile Square hollow; (L x W x T) = 72 mm x 72 mm x 3 mmBase material: uncracked concrete , C20/25, fcc = 25.00 N/mm²; h = 450 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to ETAG 001, Annex C, 5.2.2.6 present.

Geometry [mm] & Loading [kN, kNm]

1

Page 61: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 12.370 6.640 0.205 6.637

2 11.850 6.371 0.205 6.368

3 12.880 6.638 0.120 6.637

4 12.360 6.369 0.120 6.368

5 13.500 6.637 0.020 6.637

6 12.980 6.368 0.020 6.368

7 14.010 6.637 -0.065 6.637

8 13.490 6.368 -0.065 6.368

max. concrete compressive strain [‰]: 0.00max. concrete compressive stress [N/mm²]: 0.00resulting tension force in (x/y)=(-4/-7) [kN]: 103.400resulting compression force in (x/y)=(0/0) [kN]: 0.000

1 2

3 4

5 6

7 8

Tension

Compression

x

y

3. Tension loadProof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 14.010 62.643 22 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 103.429 118.775 87 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

87.700

gM,s

1.400

NRd,s [kN]

62.643

NSd [kN]

14.010

Concrete Breakout StrengthAc,N [mm2]

307200

Ac,N

0 [mm2]

57600

ccr,N [mm]

120

scr,N [mm]

240

ec1,N [mm]

4

yec1,N

0.980

ec2,N [mm]

7

yec2,N

0.943

ys,N

1.000

yre,N

1.000

k1

10.100

NRk,c

0 [kN]

36.135

gM,c

1.500

NRd,c [kN]

118.775

NSd [kN]

103.429

2

Page 62: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear loadProof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 6.640 45.200 15 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 52.023 360.658 14 OK

Concrete edge failure in direction

x-**

26.548 145.876 18 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

56.500

gM,s

1.250

VRd,s [kN]

45.200

VSd [kN]

6.640

Pryout StrengthAc,N [mm2]

307200

Ac,N

0 [mm2]

57600

ccr,N [mm]

120

scr,N [mm]

240

k-factor

2.900

ec1,V [mm]

7

yec1,N

0.969

ec2,V [mm]

0

yec2,N

0.999

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

36.135

gM,c,p

1.500

VRd,c1 [kN]

360.658

VSd [kN]

52.023

Concrete edge failure in direction x-lf [mm]

80

dnom [mm]

16

k1

2.400

a

0.063

b

0.060

c1 [mm]

200

Ac,V [mm2]

300000

Ac,V

0 [mm2]

180000

ys,V

1.000

yh,V

1.000

ya,V

2.500

ec,V [mm]

1

yec,V

0.997

yre,V

1.000

VRk,c

0 [kN]

52.689

gM,c

1.500

VRd,c [kN]

145.876

VSd [kN]

26.548

5. Combined tension and shear loadsbN bV a Utilization bN,V [%] Status

0.871 0.182 - 88 OK

(bN + bV) / 1.2 <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 10.380 [kN]

VSk = 4.920 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 63: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method SOFA assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by filling the

gap with mortar of sufficient compressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• An SLS-check is not performed for SOFA and has to be provided by the user!• Checking the transfer of loads into the base material is required in accordance with ETAG 001, Annex C(2010)Section 7! The software

considers that the grout is installed under the anchor plate without creating air voids and before application of the loads.• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 4.1 of ETAG 001, Annex C! For largerdiameters of the clearance hole see Chapter 1.1. of ETAG 001, Annex C!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 64: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Square hollow, 72 mm x 72 mm x 3 mmHole diameter in the fixture: df = 18 mmPlate thickness (input): 20 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M16 hnom2Installation torque: 0.080 kNmHole diameter in the base material: 16 mmHole depth in the base material: 100 mmMinimum thickness of the base material: 160 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y Anchor x y c-x c+x c-y c+y

1 -200 200 200 600 - -2 200 200 600 200 - -3 -200 75 200 600 - -4 200 75 600 200 - -

5 -200 -75 200 600 - -6 200 -75 600 200 - -7 -200 -200 200 600 - -8 200 -200 600 200 - -

1 2

3 4

5 6

7 8

250.0 250.0

50.0 50.0

250.

025

0.0

50.0

50.0

1 2

3 4

5 6

7 8

x

y

5

Page 65: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 66: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE

Factored Tension Force (from Hilti Report) = 14010.00 N

Eccentricity = 25 mm

Maximum Bending Moment = 350250 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 3335.44148 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 758054.882 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 50.03 mm

Required Section Modulas of Plate = 1541.10 mm3

Plate Thickness Required = 13.59 mm

Thickness Provided = 20 mm

> 13.59 mm

Provide MS Plate of 500X500X20 thk. Hence ok

t

βb

Tfactored

e

M

fy

Zp

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

Md

b

Zreq.

treq.

Page 67: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR SHS (72X72) X 4.0 THK

AT 6TH

FL LEVEL

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 68: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HST-R, M10Effective embedment depth: hef = 60 mm, hnom = 69 mmMaterial: A4Evaluation Service Report:: ETA 98/0001Issued I Valid: 2/20/2013 | 2/20/2018Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 16 mmAnchor plate: lx x ly x t = 400 x 250 x 16 mm (Recommended plate thickness: not calculated)Profile Square hollow; (L x W x T) = 72 mm x 72 mm x 3 mmBase material: cracked concrete , C20/25, fc = 20.00 N/mm²; h = 135 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 69: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 4.796 1.214 1.130 0.444

2 0.000 1.270 1.130 0.579

3 4.794 1.250 1.168 0.444

4 0.000 1.304 1.168 0.579

5 4.793 1.285 1.206 0.444

6 0.000 1.338 1.206 0.579

max. concrete compressive strain [‰]: 0.06max. concrete compressive stress [N/mm²]: 1.92resulting tension force in (x/y)=(-175/0) [kN]: 14.380resulting compression force in (x/y)=(188/0) [kN]: 8.747

1 2

3 4

5 6

Tension Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 4.796 18.667 26 OK

Pullout Strength* 4.796 6.000 80 OK

Concrete Breakout Strength** 14.383 22.519 64 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

28.000

gM,s

1.500

NRd,s [kN]

18.667

NSd [kN]

4.796

Pullout StrengthNRk,p [kN]

9.000

yc

1.000

gM,p

1.500

NRd,p [kN]

6.000

NSd [kN]

4.796

Concrete Breakout StrengthAc,N [mm2]

68400

Ac,N

0 [mm2]

32400

yA,N

2.111

ccr,N [mm]

90

scr,N [mm]

180

ec1,N [mm]

0

yec1,N

1.000

ec2,N [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

k1

7.700

NRk,c

0 [kN]

16.004

gM,c

1.500

NRd,c [kN]

22.519

NSd [kN]

14.383

2

Page 70: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 1.338 16.000 8 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 7.651 78.817 10 OK

Concrete edge failure in

direction**

N/A N/A N/A N/A

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

20.000

gM,s

1.250

VRd,s [kN]

16.000

VSd [kN]

1.338

Pryout StrengthAc,N [mm2]

136800

Ac,N

0 [mm2]

32400

yA,N

4.222

ccr,N [mm]

90

scr,N [mm]

180

k4

2.000

ec1,V [mm]

5

yec1,N

0.975

ec2,V [mm]

10

yec2,N

0.897

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

16.004

gM,c,p

1.500

VRd,c1 [kN]

78.817

VSd [kN]

7.651

5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)bN bV a Utilization bN,V [%] Status

steel 0.257 0.080 2.0 7 OK

concrete 0.799 0.097 1.5 74 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 3.550 [kN]

VSk = 0.990 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

3

Page 71: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Fastening meets the design criteria!

4

Page 72: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Square hollow, 72 mm x 72 mm x 3 mmHole diameter in the fixture: df = 12 mmPlate thickness (input): 16 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HST-R, M10Installation torque: 0.045 kNmHole diameter in the base material: 10 mmHole depth in the base material: 80 mmMinimum thickness of the base material: 120 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y Anchor x y c-x c+x c-y c+y

1 -175 100 - - - -2 175 100 - - - -3 -175 0 - - - -

4 175 0 - - - -5 -175 -100 - - - -6 175 -100 - - - -

1 2

3 4

5 6

200.0 200.0

25.0 25.0

125.

012

5.0

25.0

25.0

1 2

3 4

5 6

x

y

5

Page 73: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/21/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 74: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE

Factored Tension Force (from Hilti Report) = 14380.00 N

Eccentricity = 139 mm

Maximum Bending Moment = 1998820 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 10666.6667 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 2424242.42 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 250.00 mm

Required Section Modulas of Plate = 8794.81 mm3

Plate Thickness Required = 14.53 mm

Thickness Provided = 16 mm

> 14.53 mm

Provide MS Plate of 400X250X16 thk. Hence ok

t

βb

Tfactored

e

M

fy

Zp

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

Md

b

Zreq.

treq.

Page 75: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

PE – 02 & WEST SIDE ZCP (PORTAL) CLADDING

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 76: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

STAAD REPORT FOR PE 02 WITH ZCP CLADDING (WEST SIDE) R3

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 77: Design Report for Acropolis Tower

22/05/2013

STAAD.Pro Report

To: ACROPOLIS

TOWER,

KOLKATA

From: NITSON AND AMITSU PRIVATE LIMITED

Copy to: Date: 20/05/20123

14:56:00

Ref: DRG NO. :

NAP/BS/ACROPOLIS-T /

010-01

Job Information

Engineer Checked Approved

Name:

Date: 15-May-13

Structure Type SPACE FRAME

Number of Nodes 864 Highest Node 1080

Number of Elements 1850 Highest Beam 2390

Number of Basic Load Cases 3

Number of Combination Load Cases 2

Included in this printout are data for:

All The Whole Structure

Included in this printout are results for load cases:

Type L/C Name

Primary 1 DL

Primary 2 LL

Primary 3 WL

Combination 4 COMBINATION LOAD CASE 4

Combination 5 COMBINATION LOAD CASE 5

Page 78: Design Report for Acropolis Tower

22/05/2013

Whole Structure

3D Rendered View

Whole Structure

Page 79: Design Report for Acropolis Tower

22/05/2013

LOADS CONSIDERED :

1) DEAD LOAD :

a. Self Weight of Structure b. Dead load of Glass (30 Kg/m2) c. Dead load of ACP Sheeting (10 Kg/m2)

2) WIND LOAD :

a. Design Wind Pressure as per Tender Specification is 2520 N/m2

Section Properties Prop Section Area

(cm2)

Iyy (cm

4)

Izz (cm

4)

J (cm

4)

Material

1 TUBE 5.760 12.595 12.595 18.662 STEEL

2 TUBE 8.806 69.625 69.625 104.211 STEEL

3 TUBE 8.806 69.625 69.625 104.211 STEEL

4 TUBE 41.760 1.06E 3 3.16E 3 2.45E 3 STEEL

5 TUBE 8.806 34.720 104.529 80.392 STEEL

Materials

Mat Name E (kN/mm

2)

Density (kg/m

3)

(/°C)

1 STEEL 205.000 0.300 7.83E 3 12E -6

Supports Node X

(kN/mm) Y

(kN/mm) Z

(kN/mm) rX

(kN-m/deg)

rY (kN

-m/deg)

rZ (kN

-m/deg)

1 Fixed Fixed Fixed Fixed Fixed Fixed

2 Fixed Fixed Fixed Fixed Fixed Fixed

3 Fixed Fixed Fixed Fixed Fixed Fixed

4 Fixed Fixed Fixed Fixed Fixed Fixed

8 Fixed Fixed Fixed Fixed Fixed Fixed

9 Fixed Fixed Fixed Fixed Fixed Fixed

10 Fixed Fixed Fixed Fixed Fixed Fixed

11 Fixed Fixed Fixed Fixed Fixed Fixed

12 Fixed Fixed Fixed Fixed Fixed Fixed

49 Fixed Fixed Fixed Fixed Fixed Fixed

57 Fixed Fixed Fixed Fixed Fixed Fixed

97 Fixed Fixed Fixed Fixed Fixed Fixed

105 Fixed Fixed Fixed Fixed Fixed Fixed

157 Fixed Fixed Fixed Fixed Fixed Fixed

158 Fixed Fixed Fixed Fixed Fixed Fixed

159 Fixed Fixed Fixed Fixed Fixed Fixed

163 Fixed Fixed Fixed Fixed Fixed Fixed

164 Fixed Fixed Fixed Fixed Fixed Fixed

Page 80: Design Report for Acropolis Tower

22/05/2013

165 Fixed Fixed Fixed Fixed Fixed Fixed

171 Fixed Fixed Fixed Fixed Fixed Fixed

172 Fixed Fixed Fixed Fixed Fixed Fixed

191 Fixed Fixed Fixed Fixed Fixed Fixed

192 Fixed Fixed Fixed Fixed Fixed Fixed

211 Fixed Fixed Fixed Fixed Fixed Fixed

212 Fixed Fixed Fixed Fixed Fixed Fixed

231 Fixed Fixed Fixed Fixed Fixed Fixed

232 Fixed Fixed Fixed Fixed Fixed Fixed

251 Fixed Fixed Fixed Fixed Fixed Fixed

252 Fixed Fixed Fixed Fixed Fixed Fixed

256 Fixed Fixed Fixed Fixed Fixed Fixed

257 Fixed Fixed Fixed Fixed Fixed Fixed

261 Fixed Fixed Fixed Fixed Fixed Fixed

262 Fixed Fixed Fixed Fixed Fixed Fixed

268 Fixed Fixed Fixed Fixed Fixed Fixed

269 Fixed Fixed Fixed Fixed Fixed Fixed

270 Fixed Fixed Fixed Fixed Fixed Fixed

296 Fixed Fixed Fixed Fixed Fixed Fixed

297 Fixed Fixed Fixed Fixed Fixed Fixed

298 Fixed Fixed Fixed Fixed Fixed Fixed

299 Fixed Fixed Fixed Fixed Fixed Fixed

300 Fixed Fixed Fixed Fixed Fixed Fixed

301 Fixed Fixed Fixed Fixed Fixed Fixed

302 Fixed Fixed Fixed Fixed Fixed Fixed

303 Fixed Fixed Fixed Fixed Fixed Fixed

304 Fixed Fixed Fixed Fixed Fixed Fixed

332 Fixed Fixed Fixed Fixed Fixed Fixed

337 Fixed Fixed Fixed Fixed Fixed Fixed

368 Fixed Fixed Fixed Fixed Fixed Fixed

373 Fixed Fixed Fixed Fixed Fixed Fixed

413 Fixed Fixed Fixed Fixed Fixed Fixed

414 Fixed Fixed Fixed Fixed Fixed Fixed

415 Fixed Fixed Fixed Fixed Fixed Fixed

416 Fixed Fixed Fixed Fixed Fixed Fixed

417 Fixed Fixed Fixed Fixed Fixed Fixed

418 Fixed Fixed Fixed Fixed Fixed Fixed

424 Fixed Fixed Fixed Fixed Fixed Fixed

425 Fixed Fixed Fixed Fixed Fixed Fixed

444 Fixed Fixed Fixed Fixed Fixed Fixed

445 Fixed Fixed Fixed Fixed Fixed Fixed

464 Fixed Fixed Fixed Fixed Fixed Fixed

465 Fixed Fixed Fixed Fixed Fixed Fixed

484 Fixed Fixed Fixed Fixed Fixed Fixed

485 Fixed Fixed Fixed Fixed Fixed Fixed

504 Fixed Fixed Fixed Fixed Fixed Fixed

505 Fixed Fixed Fixed Fixed Fixed Fixed

509 Fixed Fixed Fixed Fixed Fixed Fixed

510 Fixed Fixed Fixed Fixed Fixed Fixed

514 Fixed Fixed Fixed Fixed Fixed Fixed

515 Fixed Fixed Fixed Fixed Fixed Fixed

521 Fixed Fixed Fixed Fixed Fixed Fixed

522 Fixed Fixed Fixed Fixed Fixed Fixed

523 Fixed Fixed Fixed Fixed Fixed Fixed

688 Fixed Fixed Fixed Fixed Fixed Fixed

704 Fixed Fixed Fixed Fixed Fixed Fixed

708 Fixed Fixed Fixed Fixed Fixed Fixed

744 Fixed Fixed Fixed Fixed Fixed Fixed

759 Fixed Fixed Fixed Fixed Fixed Fixed

760 Fixed Fixed Fixed Fixed Fixed Fixed

763 Fixed Fixed Fixed Fixed Fixed Fixed

778 Fixed Fixed Fixed Fixed Fixed Fixed

779 Fixed Fixed Fixed Fixed Fixed Fixed

782 Fixed Fixed Fixed Fixed Fixed Fixed

797 Fixed Fixed Fixed Fixed Fixed Fixed

798 Fixed Fixed Fixed Fixed Fixed Fixed

801 Fixed Fixed Fixed Fixed Fixed Fixed

816 Fixed Fixed Fixed Fixed Fixed Fixed

817 Fixed Fixed Fixed Fixed Fixed Fixed

Page 81: Design Report for Acropolis Tower

22/05/2013

820 Fixed Fixed Fixed Fixed Fixed Fixed

835 Fixed Fixed Fixed Fixed Fixed Fixed

836 Fixed Fixed Fixed Fixed Fixed Fixed

839 Fixed Fixed Fixed Fixed Fixed Fixed

854 Fixed Fixed Fixed Fixed Fixed Fixed

855 Fixed Fixed Fixed Fixed Fixed Fixed

858 Fixed Fixed Fixed Fixed Fixed Fixed

873 Fixed Fixed Fixed Fixed Fixed Fixed

874 Fixed Fixed Fixed Fixed Fixed Fixed

877 Fixed Fixed Fixed Fixed Fixed Fixed

892 Fixed Fixed Fixed Fixed Fixed Fixed

893 Fixed Fixed Fixed Fixed Fixed Fixed

896 Fixed Fixed Fixed Fixed Fixed Fixed

911 Fixed Fixed Fixed Fixed Fixed Fixed

912 Fixed Fixed Fixed Fixed Fixed Fixed

915 Fixed Fixed Fixed Fixed Fixed Fixed

930 Fixed Fixed Fixed Fixed Fixed Fixed

931 Fixed Fixed Fixed Fixed Fixed Fixed

934 Fixed Fixed Fixed Fixed Fixed Fixed

949 Fixed Fixed Fixed Fixed Fixed Fixed

950 Fixed Fixed Fixed Fixed Fixed Fixed

985 Fixed Fixed Fixed Fixed Fixed Fixed

987 Fixed Fixed Fixed Fixed Fixed Fixed

992 Fixed Fixed Fixed Fixed Fixed Fixed

994 Fixed Fixed Fixed Fixed Fixed Fixed

999 Fixed Fixed Fixed Fixed Fixed Fixed

1001 Fixed Fixed Fixed Fixed Fixed Fixed

1006 Fixed Fixed Fixed Fixed Fixed Fixed

1008 Fixed Fixed Fixed Fixed Fixed Fixed

1013 Fixed Fixed Fixed Fixed Fixed Fixed

1015 Fixed Fixed Fixed Fixed Fixed Fixed

1020 Fixed Fixed Fixed Fixed Fixed Fixed

1022 Fixed Fixed Fixed Fixed Fixed Fixed

1027 Fixed Fixed Fixed Fixed Fixed Fixed

1029 Fixed Fixed Fixed Fixed Fixed Fixed

1034 Fixed Fixed Fixed Fixed Fixed Fixed

1036 Fixed Fixed Fixed Fixed Fixed Fixed

1041 Fixed Fixed Fixed Fixed Fixed Fixed

1043 Fixed Fixed Fixed Fixed Fixed Fixed

1048 Fixed Fixed Fixed Fixed Fixed Fixed

1050 Fixed Fixed Fixed Fixed Fixed Fixed

1055 Fixed Fixed Fixed Fixed Fixed Fixed

1057 Fixed Fixed Fixed Fixed Fixed Fixed

1062 Fixed Fixed Fixed Fixed Fixed Fixed

1064 Fixed Fixed Fixed Fixed Fixed Fixed

Basic Load Cases

Number Name

1 DL

2 LL

3 WL

Combination Load Cases

Comb. Combination L/C Name Primary Primary L/C Name Factor

4 COMBINATION LOAD CASE 4 1 DL 1.50

2 LL 1.50

5 COMBINATION LOAD CASE 5 1 DL 1.50

3 WL 1.50

Page 82: Design Report for Acropolis Tower

22/05/2013

Statics Check Results

L/C FX (N)

FY (N)

FZ (N)

MX (kNm)

MY (kNm)

MZ (kNm)

1:DL Loads 0.000 -377E 3 0.000 1.03E 3 0.000 -4E 3

1:DL Reactions -0.000 377E 3 0.000 -1.03E 3 0.000 4E 3

Difference -0.000 0.000 0.000 -0.000 0.000 -0.000

2:LL Loads 0.000 -5.8E 3 0.000 18.252 0.000 -61.569

2:LL Reactions -0.000 5.8E 3 -0.000 -18.252 0.000 61.569

Difference -0.000 -0.000 -0.000 -0.000 0.000 0.000

3:WL Loads 470E 3 -36.1E 3

1.13E 6

22.6E 3 -11.1E 3 -4.2E 3

3:WL Reactions -470E 3 36.1E 3

-1.13E 6

-22.6E 3 11.1E 3 4.2E 3

Difference -0.000 0.000 -0.000 -0.003 -0.000 0.000

Node Displacement Summary

Node L/C X (mm)

Y (mm)

Z (mm)

Resultant (mm)

rX (rad)

rY (rad)

rZ (rad)

Max X 25 5:COMBINATION LOAD CASE 5

14.424 -0.005 0.409 14.430 0.000 -0.001 0.000

Min X 427 5:COMBINATION LOAD CASE 5

-0.112 -0.132 1.185 1.197 0.001 -0.001 0.000

Max Y 412 3:WL 0.766 0.144 0.779 1.102 -0.001 -0.000 0.002

Min Y 136 5:COMBINATION LOAD CASE 5

3.291 -0.319 -1.139 3.497 -0.000 -0.002 0.003

Max Z 900 5:COMBINATION LOAD CASE 5

0.104 -0.013 12.038 12.038 0.001 0.000 0.000

Min Z 135 5:COMBINATION LOAD CASE 5

5.243 -0.045 -1.149 5.367 0.000 -0.001 0.004

Max rX 898 5:COMBINATION LOAD CASE 5

0.112 -0.008 3.991 3.993 0.004 0.000 -0.000

Min rX 903 5:COMBINATION LOAD CASE 5

0.077 -0.006 2.103 2.105 -0.003 0.000 0.000

Max rY 938 5:COMBINATION LOAD CASE 5

0.082 -0.014 8.066 8.066 0.001 0.004 0.000

Min rY 692 5:COMBINATION LOAD CASE 5

0.070 -0.014 7.955 7.955 0.001 -0.004 0.000

Max rZ 37 5:COMBINATION LOAD CASE 5

8.402 -0.006 0.840 8.444 -0.000 -0.000 0.010

Min rZ 13 5:COMBINATION LOAD CASE 5

8.466 -0.001 0.331 8.473 -0.000 -0.001 -0.009

Max Rst 319 5:COMBINATION LOAD CASE 5

14.210 -0.007 2.828 14.488 -0.000 -0.001 0.000

Beam Displacement Detail Summary Displacements shown in italic indicate the presence of an offset

Beam L/C d (m)

X (mm)

Y (mm)

Z (mm)

Resultant (mm)

Max X 47 5:COMBINATION LOAD CASE 5

1.075 14.424 -0.004 0.409 14.430

Min X 962 5:COMBINATION LOAD CASE 5

0.656 -0.119 -0.132 0.718 0.739

Max Y 1162 5:COMBINATION LOAD CASE 5

0.579 8.334 1.304 0.952 8.489

Min Y 1142 5:COMBINATION LOAD CASE 5

0.579 8.275 -1.381 0.617 8.412

Max Z 2019 5:COMBINATION LOAD CASE 5

0.370 0.102 -0.014 12.195 12.195

Min Z 310 5:COMBINATION LOAD CASE 5

0.917 5.243 -0.045 -1.149 5.368

Max Rst 758 5:COMBINATION LOAD CASE 5

1.075 14.210 -0.008 2.828 14.489

A maximum deflection of 12.038 mm is observed at Node No. 900 for Combination Load Case 5. Therefore, ∂max = 12.038 mm Allowable Deflection is, ∂allow = 8700/300 = 29.000 mm > 12.038 mm The ∂max is less than the allowable, Hence ok.

Page 83: Design Report for Acropolis Tower

22/05/2013

Reaction Summary

Horizontal Vertical Horizontal Moment

Node L/C FX (N)

FY (N)

FZ (N)

MX (kNm)

MY (kNm)

MZ (kNm)

Max FX 465 5:COMBINATION LOAD CASE 5

3.85E 3 2.23E 3 -9.58E 3 -0.116 0.044 -0.027

Min FX 49 5:COMBINATION LOAD CASE 5

-52.1E 3 1.72E 3 -115E 3 -0.272 -0.829 -0.504

Max FY 912 5:COMBINATION LOAD CASE 5

-798.683 12.1E 3 -25.6E 3 30.394 -0.049 -0.462

Min FY 172 3:WL -5.97E 3 -3.46E 3 -25.7E 3 1.781 -0.557 -2.725

Max FZ 57 5:COMBINATION LOAD CASE 5

-48.6E 3 2.37E 3 90.6E 3 0.220 -0.924 -0.532

Min FZ 49 5:COMBINATION LOAD CASE 5

-52.1E 3 1.72E 3 -115E 3 -0.272 -0.829 -0.504

Max MX 912 5:COMBINATION LOAD CASE 5

-798.683 12.1E 3 -25.6E 3 30.394 -0.049 -0.462

Min MX 911 5:COMBINATION LOAD CASE 5

-2.32E 3 6.27E 3 -25.2E 3 -31.960 0.001 -0.364

Max MY 232 5:COMBINATION LOAD CASE 5

-2.92E 3 6.15E 3 -37E 3 0.291 5.340 -0.237

Min MY 444 5:COMBINATION LOAD CASE 5

-13.1E 3 10.5E 3 -38.9E 3 0.356 -6.519 -0.054

Max MZ 1 5:COMBINATION LOAD CASE 5

-5.9E 3 453.612 -470.454 -0.273 -0.088 3.928

Min MZ 172 5:COMBINATION LOAD CASE 5

-8.85E 3 2.04E 3 -38.3E 3 1.973 -0.825 -4.055

Utilization Ratio Beam Analysis

Property Design Property

Actual Ratio

Allowable Ratio

Ratio (Act./All

ow.)

Clause L/C

Ax (cm

2)

Iz (cm

4)

Iy (cm

4)

Ix (cm

4)

1 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

2 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

3 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

7 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

14 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

15 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

16 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

17 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

18 TUBE TUBE 0.805 1.000 0.805 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

19 TUBE TUBE 0.760 1.000 0.760 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

20 TUBE TUBE 0.695 1.000 0.695 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

21 TUBE TUBE 0.664 1.000 0.664 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

25 TUBE TUBE 0.840 1.000 0.840 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

26 TUBE TUBE 0.855 1.000 0.855 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

27 TUBE TUBE 0.901 1.000 0.901 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

28 TUBE TUBE 0.800 1.000 0.800 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

29 TUBE TUBE 0.810 1.000 0.810 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

30 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

31 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

32 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

36 TUBE TUBE 0.569 1.000 0.569 Major Axis B 5 8.806 69.625 69.625 104.211

43 TUBE TUBE 0.573 1.000 0.573 Minor Axis B 5 8.806 69.625 69.625 104.211

44 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

45 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

46 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

47 TUBE TUBE 0.386 1.000 0.386 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

48 TUBE TUBE 0.316 1.000 0.316 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

49 TUBE TUBE 0.247 1.000 0.247 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

50 TUBE TUBE 0.345 1.000 0.345 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

54 TUBE TUBE 0.432 1.000 0.432 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

55 TUBE TUBE 0.432 1.000 0.432 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

56 TUBE TUBE 0.404 1.000 0.404 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

57 TUBE TUBE 0.334 1.000 0.334 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

58 TUBE TUBE 0.269 1.000 0.269 Minor Axis B 5 8.806 69.625 69.625 104.211

59 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

60 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

61 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

65 TUBE TUBE 0.089 1.000 0.089 Major Axis B 5 8.806 69.625 69.625 104.211

72 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

73 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

Page 84: Design Report for Acropolis Tower

22/05/2013

74 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

75 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

76 TUBE TUBE 0.413 1.000 0.413 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

77 TUBE TUBE 0.356 1.000 0.356 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

78 TUBE TUBE 0.272 1.000 0.272 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

79 TUBE TUBE 0.286 1.000 0.286 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

83 TUBE TUBE 0.265 1.000 0.265 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

84 TUBE TUBE 0.476 1.000 0.476 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

85 TUBE TUBE 0.447 1.000 0.447 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

86 TUBE TUBE 0.366 1.000 0.366 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

87 TUBE TUBE 0.202 1.000 0.202 Slenderness 1 8.806 69.625 69.625 104.211

88 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

89 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

90 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

94 TUBE TUBE 0.357 1.000 0.357 Major Axis B 5 8.806 69.625 69.625 104.211

101 TUBE TUBE 0.353 1.000 0.353 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

102 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

103 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

104 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

105 TUBE TUBE 0.811 1.000 0.811 Major Axis B 5 8.806 69.625 69.625 104.211

106 TUBE TUBE 0.730 1.000 0.730 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

107 TUBE TUBE 0.561 1.000 0.561 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

108 TUBE TUBE 0.462 1.000 0.462 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

112 TUBE TUBE 0.591 1.000 0.591 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

113 TUBE TUBE 0.790 1.000 0.790 Minor Axis B 5 8.806 69.625 69.625 104.211

114 TUBE TUBE 0.834 1.000 0.834 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

115 TUBE TUBE 0.705 1.000 0.705 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

116 TUBE TUBE 0.591 1.000 0.591 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

117 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

118 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

119 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

123 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

130 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

131 TUBE TUBE 0.569 1.000 0.569 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

132 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

133 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

134 TUBE TUBE 0.864 1.000 0.864 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

135 TUBE TUBE 0.720 1.000 0.720 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

136 TUBE TUBE 0.561 1.000 0.561 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

137 TUBE TUBE 0.482 1.000 0.482 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

141 TUBE TUBE 0.615 1.000 0.615 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

142 TUBE TUBE 0.696 1.000 0.696 Minor Axis B 5 8.806 69.625 69.625 104.211

143 TUBE TUBE 0.786 1.000 0.786 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

144 TUBE TUBE 0.669 1.000 0.669 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

145 TUBE TUBE 0.592 1.000 0.592 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

146 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

147 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

148 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

152 TUBE TUBE 0.439 1.000 0.439 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

159 TUBE TUBE 0.426 1.000 0.426 Minor Axis B 5 8.806 69.625 69.625 104.211

160 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

161 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

162 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

163 TUBE TUBE 0.375 1.000 0.375 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

164 TUBE TUBE 0.296 1.000 0.296 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

165 TUBE TUBE 0.227 1.000 0.227 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

166 TUBE TUBE 0.312 1.000 0.312 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

170 TUBE TUBE 0.366 1.000 0.366 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

171 TUBE TUBE 0.421 1.000 0.421 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

172 TUBE TUBE 0.274 1.000 0.274 Minor Axis B 5 8.806 69.625 69.625 104.211

173 TUBE TUBE 0.307 1.000 0.307 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

174 TUBE TUBE 0.234 1.000 0.234 Minor Axis B 5 8.806 69.625 69.625 104.211

175 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

176 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

177 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

181 TUBE TUBE 0.089 1.000 0.089 Major Axis B 5 8.806 69.625 69.625 104.211

188 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

189 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

190 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

Page 85: Design Report for Acropolis Tower

22/05/2013

191 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

192 TUBE TUBE 0.351 1.000 0.351 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

193 TUBE TUBE 0.277 1.000 0.277 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

194 TUBE TUBE 0.210 1.000 0.210 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

195 TUBE TUBE 0.236 1.000 0.236 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

199 TUBE TUBE 0.203 1.000 0.203 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

200 TUBE TUBE 0.385 1.000 0.385 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

201 TUBE TUBE 0.243 1.000 0.243 Minor Axis B 5 8.806 69.625 69.625 104.211

202 TUBE TUBE 0.187 1.000 0.187 Minor Axis B 5 8.806 69.625 69.625 104.211

203 TUBE TUBE 0.182 1.000 0.182 Slenderness 1 8.806 69.625 69.625 104.211

204 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

205 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

206 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

210 TUBE TUBE 0.340 1.000 0.340 Major Axis B 5 8.806 69.625 69.625 104.211

217 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

218 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

219 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

220 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

221 TUBE TUBE 0.715 1.000 0.715 Major Axis B 5 8.806 69.625 69.625 104.211

222 TUBE TUBE 0.618 1.000 0.618 Major Axis B 5 8.806 69.625 69.625 104.211

223 TUBE TUBE 0.496 1.000 0.496 Major Axis B 5 8.806 69.625 69.625 104.211

224 TUBE TUBE 0.478 1.000 0.478 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

228 TUBE TUBE 0.586 1.000 0.586 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

229 TUBE TUBE 0.697 1.000 0.697 Minor Axis B 5 8.806 69.625 69.625 104.211

230 TUBE TUBE 0.629 1.000 0.629 Minor Axis B 5 8.806 69.625 69.625 104.211

231 TUBE TUBE 0.485 1.000 0.485 Minor Axis B 5 8.806 69.625 69.625 104.211

232 TUBE TUBE 0.407 1.000 0.407 Minor Axis B 5 8.806 69.625 69.625 104.211

233 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

234 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

235 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

239 TUBE TUBE 0.166 1.000 0.166 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

246 TUBE TUBE 0.095 1.000 0.095 Minor Axis B 5 8.806 69.625 69.625 104.211

247 TUBE TUBE 0.512 1.000 0.512 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

248 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

249 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

250 TUBE TUBE 0.756 1.000 0.756 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

251 TUBE TUBE 0.598 1.000 0.598 Major Axis B 5 8.806 69.625 69.625 104.211

252 TUBE TUBE 0.468 1.000 0.468 Major Axis B 5 8.806 69.625 69.625 104.211

253 TUBE TUBE 0.324 1.000 0.324 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

257 TUBE TUBE 0.413 1.000 0.413 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

258 TUBE TUBE 0.684 1.000 0.684 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

259 TUBE TUBE 0.621 1.000 0.621 Minor Axis B 5 8.806 69.625 69.625 104.211

260 TUBE TUBE 0.470 1.000 0.470 Minor Axis B 5 8.806 69.625 69.625 104.211

261 TUBE TUBE 0.313 1.000 0.313 Minor Axis B 5 8.806 69.625 69.625 104.211

262 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

263 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

264 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

268 TUBE TUBE 0.244 1.000 0.244 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

275 TUBE TUBE 0.236 1.000 0.236 Minor Axis B 5 8.806 69.625 69.625 104.211

276 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

277 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

278 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

279 TUBE TUBE 0.384 1.000 0.384 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

280 TUBE TUBE 0.241 1.000 0.241 Major Axis B 5 8.806 69.625 69.625 104.211

281 TUBE TUBE 0.167 1.000 0.167 Major Axis B 5 8.806 69.625 69.625 104.211

282 TUBE TUBE 0.230 1.000 0.230 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

286 TUBE TUBE 0.181 1.000 0.181 Slenderness 1 8.806 69.625 69.625 104.211

287 TUBE TUBE 0.396 1.000 0.396 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

288 TUBE TUBE 0.248 1.000 0.248 Minor Axis B 5 8.806 69.625 69.625 104.211

289 TUBE TUBE 0.197 1.000 0.197 Sec. 9.3.2.2 3 8.806 69.625 69.625 104.211

290 TUBE TUBE 0.181 1.000 0.181 Slenderness 2 8.806 69.625 69.625 104.211

291 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

292 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

293 TUBE TUBE 0.100 1.000 0.100 Major Axis B 5 8.806 69.625 69.625 104.211

297 TUBE TUBE 0.093 1.000 0.093 Major Axis B 5 8.806 69.625 69.625 104.211

304 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

305 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

306 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

307 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

Page 86: Design Report for Acropolis Tower

22/05/2013

308 TUBE TUBE 0.292 1.000 0.292 Major Axis B 5 8.806 69.625 69.625 104.211

309 TUBE TUBE 0.236 1.000 0.236 Major Axis B 5 8.806 69.625 69.625 104.211

310 TUBE TUBE 0.178 1.000 0.178 Major Axis B 5 8.806 69.625 69.625 104.211

311 TUBE TUBE 0.254 1.000 0.254 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

315 TUBE TUBE 0.310 1.000 0.310 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

316 TUBE TUBE 0.355 1.000 0.355 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

317 TUBE TUBE 0.225 1.000 0.225 Minor Axis B 5 8.806 69.625 69.625 104.211

318 TUBE TUBE 0.181 1.000 0.181 Slenderness 3 8.806 69.625 69.625 104.211

319 TUBE TUBE 0.208 1.000 0.208 Minor Axis B 5 8.806 69.625 69.625 104.211

320 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

321 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

322 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

326 TUBE TUBE 0.403 1.000 0.403 Major Axis B 5 8.806 69.625 69.625 104.211

333 TUBE TUBE 0.396 1.000 0.396 Minor Axis B 5 8.806 69.625 69.625 104.211

334 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

335 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

336 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

337 TUBE TUBE 0.206 1.000 0.206 Major Axis B 5 8.806 69.625 69.625 104.211

338 TUBE TUBE 0.178 1.000 0.178 Major Axis B 5 8.806 69.625 69.625 104.211

339 TUBE TUBE 0.111 1.000 0.111 Major Axis B 5 8.806 69.625 69.625 104.211

340 TUBE TUBE 0.266 1.000 0.266 Major Axis B 5 8.806 69.625 69.625 104.211

344 TUBE TUBE 0.463 1.000 0.463 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

345 TUBE TUBE 0.196 1.000 0.196 Minor Axis B 5 8.806 69.625 69.625 104.211

346 TUBE TUBE 0.220 1.000 0.220 Sec. 9.3.2.2 3 8.806 69.625 69.625 104.211

347 TUBE TUBE 0.243 1.000 0.243 Sec. 9.3.2.2 3 8.806 69.625 69.625 104.211

348 TUBE TUBE 0.312 1.000 0.312 Sec. 9.3.2.2 3 8.806 69.625 69.625 104.211

349 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

350 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

351 TUBE TUBE 0.173 1.000 0.173 Major Axis B 5 8.806 69.625 69.625 104.211

355 TUBE TUBE 0.380 1.000 0.380 Major Axis B 5 8.806 69.625 69.625 104.211

362 TUBE TUBE 0.595 1.000 0.595 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

363 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

364 TUBE TUBE 0.219 1.000 0.219 Slenderness 3 8.806 69.625 69.625 104.211

365 TUBE TUBE 0.579 1.000 0.579 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

366 TUBE TUBE 0.542 1.000 0.542 Major Axis B 5 8.806 69.625 69.625 104.211

367 TUBE TUBE 0.382 1.000 0.382 Major Axis B 5 8.806 69.625 69.625 104.211

368 TUBE TUBE 0.300 1.000 0.300 Major Axis B 5 8.806 69.625 69.625 104.211

372 TUBE TUBE 0.487 1.000 0.487 Minor Axis B 5 8.806 69.625 69.625 104.211

373 TUBE TUBE 0.447 1.000 0.447 Minor Axis B 5 8.806 69.625 69.625 104.211

374 TUBE TUBE 0.232 1.000 0.232 Minor Axis B 5 8.806 69.625 69.625 104.211

375 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

376 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

385 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

386 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

387 TUBE TUBE 0.082 1.000 0.082 Minor Axis B 5 8.806 69.625 69.625 104.211

388 TUBE TUBE 0.597 1.000 0.597 Major Axis B 5 8.806 69.625 69.625 104.211

389 TUBE TUBE 0.243 1.000 0.243 Major Axis B 5 8.806 69.625 69.625 104.211

390 TUBE TUBE 0.390 1.000 0.390 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

391 TUBE TUBE 0.305 1.000 0.305 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

392 TUBE TUBE 0.446 1.000 0.446 Sec. 9.3.2.2 3 8.806 69.625 69.625 104.211

393 TUBE TUBE 0.097 1.000 0.097 Shear along 5 41.760 3.16E 3 1.06E 3 2.45E 3

394 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

395 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

396 TUBE TUBE 0.133 1.000 0.133 Major Axis B 5 8.806 69.625 69.625 104.211

397 TUBE TUBE 0.063 1.000 0.063 Minor Axis B 3 8.806 69.625 69.625 104.211

398 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

399 TUBE TUBE 0.226 1.000 0.226 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

400 TUBE TUBE 0.243 1.000 0.243 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

401 TUBE TUBE 0.243 1.000 0.243 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

402 TUBE TUBE 0.145 1.000 0.145 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

403 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

404 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

405 TUBE TUBE 0.113 1.000 0.113 Major Axis B 5 8.806 69.625 69.625 104.211

406 TUBE TUBE 0.238 1.000 0.238 Major Axis B 5 8.806 69.625 69.625 104.211

407 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

408 TUBE TUBE 0.216 1.000 0.216 Slenderness 1 8.806 69.625 69.625 104.211

409 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

410 TUBE TUBE 0.216 1.000 0.216 Slenderness 1 8.806 69.625 69.625 104.211

411 TUBE TUBE 0.054 1.000 0.054 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

Page 87: Design Report for Acropolis Tower

22/05/2013

412 TUBE TUBE 0.080 1.000 0.080 Minor Axis B 5 8.806 69.625 69.625 104.211

413 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

414 TUBE TUBE 0.083 1.000 0.083 Major Axis B 5 8.806 69.625 69.625 104.211

415 TUBE TUBE 0.301 1.000 0.301 Major Axis B 5 8.806 69.625 69.625 104.211

416 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

417 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

418 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

419 TUBE TUBE 0.216 1.000 0.216 Slenderness 3 8.806 69.625 69.625 104.211

420 TUBE TUBE 0.120 1.000 0.120 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

421 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

422 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

423 TUBE TUBE 0.261 1.000 0.261 Major Axis B 5 8.806 69.625 69.625 104.211

424 TUBE TUBE 0.319 1.000 0.319 Major Axis B 5 8.806 69.625 69.625 104.211

425 TUBE TUBE 0.231 1.000 0.231 Minor Axis B 5 8.806 69.625 69.625 104.211

426 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

427 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

428 TUBE TUBE 0.197 1.000 0.197 Minor Axis B 5 8.806 69.625 69.625 104.211

429 TUBE TUBE 0.039 1.000 0.039 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

430 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

431 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

432 TUBE TUBE 0.097 1.000 0.097 Major Axis B 5 8.806 69.625 69.625 104.211

433 TUBE TUBE 0.072 1.000 0.072 Slenderness 2 8.806 69.625 69.625 104.211

434 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

435 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

436 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

437 TUBE TUBE 0.214 1.000 0.214 Slenderness 1 8.806 69.625 69.625 104.211

438 TUBE TUBE 0.181 1.000 0.181 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

439 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

440 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

441 TUBE TUBE 0.144 1.000 0.144 Major Axis B 5 8.806 69.625 69.625 104.211

442 TUBE TUBE 0.289 1.000 0.289 Major Axis B 5 8.806 69.625 69.625 104.211

443 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

444 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

445 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

446 TUBE TUBE 0.214 1.000 0.214 Slenderness 1 8.806 69.625 69.625 104.211

447 TUBE TUBE 0.060 1.000 0.060 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

448 TUBE TUBE 0.084 1.000 0.084 Minor Axis B 5 8.806 69.625 69.625 104.211

449 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

450 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

451 TUBE TUBE 0.296 1.000 0.296 Major Axis B 5 8.806 69.625 69.625 104.211

452 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

453 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

454 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

455 TUBE TUBE 0.214 1.000 0.214 Slenderness 3 8.806 69.625 69.625 104.211

456 TUBE TUBE 0.119 1.000 0.119 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

457 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

458 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

459 TUBE TUBE 0.215 1.000 0.215 Major Axis B 5 8.806 69.625 69.625 104.211

460 TUBE TUBE 0.221 1.000 0.221 Major Axis B 5 8.806 69.625 69.625 104.211

461 TUBE TUBE 0.266 1.000 0.266 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

462 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

463 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

464 TUBE TUBE 0.182 1.000 0.182 Minor Axis B 5 8.806 69.625 69.625 104.211

465 TUBE TUBE 0.027 1.000 0.027 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

466 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

467 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

468 TUBE TUBE 0.072 1.000 0.072 Slenderness 2 8.806 69.625 69.625 104.211

469 TUBE TUBE 0.072 1.000 0.072 Slenderness 2 8.806 69.625 69.625 104.211

470 TUBE TUBE 0.232 1.000 0.232 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

471 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

472 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

473 TUBE TUBE 0.215 1.000 0.215 Slenderness 1 8.806 69.625 69.625 104.211

474 TUBE TUBE 0.145 1.000 0.145 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

475 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

476 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

477 TUBE TUBE 0.165 1.000 0.165 Major Axis B 5 8.806 69.625 69.625 104.211

478 TUBE TUBE 0.225 1.000 0.225 Major Axis B 5 8.806 69.625 69.625 104.211

479 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

480 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

Page 88: Design Report for Acropolis Tower

22/05/2013

481 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

482 TUBE TUBE 0.215 1.000 0.215 Slenderness 1 8.806 69.625 69.625 104.211

483 TUBE TUBE 0.053 1.000 0.053 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

484 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

485 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

486 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

487 TUBE TUBE 0.291 1.000 0.291 Major Axis B 5 8.806 69.625 69.625 104.211

488 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

489 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

490 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

491 TUBE TUBE 0.215 1.000 0.215 Slenderness 3 8.806 69.625 69.625 104.211

492 TUBE TUBE 0.120 1.000 0.120 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

493 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

494 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

495 TUBE TUBE 0.200 1.000 0.200 Major Axis B 5 8.806 69.625 69.625 104.211

496 TUBE TUBE 0.309 1.000 0.309 Major Axis B 5 8.806 69.625 69.625 104.211

497 TUBE TUBE 0.251 1.000 0.251 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

498 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

499 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

500 TUBE TUBE 0.176 1.000 0.176 Minor Axis B 5 8.806 69.625 69.625 104.211

501 TUBE TUBE 0.038 1.000 0.038 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

502 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

503 TUBE TUBE 0.156 1.000 0.156 Slenderness 2 8.806 69.625 69.625 104.211

504 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

505 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

506 TUBE TUBE 0.219 1.000 0.219 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

507 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

508 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

509 TUBE TUBE 0.199 1.000 0.199 Slenderness 1 8.806 69.625 69.625 104.211

510 TUBE TUBE 0.179 1.000 0.179 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

511 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

512 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

513 TUBE TUBE 0.170 1.000 0.170 Major Axis B 5 8.806 69.625 69.625 104.211

514 TUBE TUBE 0.264 1.000 0.264 Major Axis B 5 8.806 69.625 69.625 104.211

515 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

516 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

517 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

518 TUBE TUBE 0.199 1.000 0.199 Slenderness 1 8.806 69.625 69.625 104.211

519 TUBE TUBE 0.062 1.000 0.062 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

520 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

521 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

522 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

523 TUBE TUBE 0.279 1.000 0.279 Major Axis B 5 8.806 69.625 69.625 104.211

524 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

525 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

526 TUBE TUBE 0.199 1.000 0.199 Slenderness 1 8.806 69.625 69.625 104.211

527 TUBE TUBE 0.199 1.000 0.199 Slenderness 3 8.806 69.625 69.625 104.211

528 TUBE TUBE 0.111 1.000 0.111 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

529 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

530 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

531 TUBE TUBE 0.151 1.000 0.151 Major Axis B 5 8.806 69.625 69.625 104.211

532 TUBE TUBE 0.192 1.000 0.192 Major Axis B 5 8.806 69.625 69.625 104.211

533 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

534 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

535 TUBE TUBE 0.199 1.000 0.199 Slenderness 1 8.806 69.625 69.625 104.211

536 TUBE TUBE 0.127 1.000 0.127 Minor Axis B 5 8.806 69.625 69.625 104.211

537 TUBE TUBE 0.040 1.000 0.040 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

538 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

539 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

540 TUBE TUBE 0.032 1.000 0.032 Slenderness 1 8.806 69.625 69.625 104.211

541 TUBE TUBE 0.036 1.000 0.036 Major Axis B 5 8.806 69.625 69.625 104.211

542 TUBE TUBE 0.188 1.000 0.188 Slenderness 2 8.806 69.625 69.625 104.211

543 TUBE TUBE 0.188 1.000 0.188 Slenderness 2 8.806 69.625 69.625 104.211

544 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

545 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

546 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

547 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

548 TUBE TUBE 0.156 1.000 0.156 Slenderness 2 8.806 69.625 69.625 104.211

549 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

Page 89: Design Report for Acropolis Tower

22/05/2013

550 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

551 TUBE TUBE 0.101 1.000 0.101 Slenderness 2 8.806 69.625 69.625 104.211

552 TUBE TUBE 0.101 1.000 0.101 Slenderness 2 8.806 69.625 69.625 104.211

553 TUBE TUBE 0.101 1.000 0.101 Slenderness 2 8.806 69.625 69.625 104.211

554 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

555 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

556 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

557 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

558 TUBE TUBE 0.072 1.000 0.072 Slenderness 3 8.806 69.625 69.625 104.211

559 TUBE TUBE 0.032 1.000 0.032 Slenderness 1 8.806 69.625 69.625 104.211

560 TUBE TUBE 0.086 1.000 0.086 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

561 TUBE TUBE 0.062 1.000 0.062 Slenderness 2 8.806 69.625 69.625 104.211

562 TUBE TUBE 0.067 1.000 0.067 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

563 TUBE TUBE 0.115 1.000 0.115 Minor Axis B 5 8.806 69.625 69.625 104.211

564 TUBE TUBE 0.122 1.000 0.122 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

565 TUBE TUBE 0.156 1.000 0.156 Slenderness 2 8.806 69.625 69.625 104.211

566 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

567 TUBE TUBE 0.143 1.000 0.143 Major Axis B 5 8.806 69.625 69.625 104.211

568 TUBE TUBE 0.104 1.000 0.104 Minor Axis B 5 8.806 69.625 69.625 104.211

569 TUBE TUBE 0.045 1.000 0.045 Major Axis B 4 8.806 69.625 69.625 104.211

571 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

573 TUBE TUBE 0.039 1.000 0.039 Major Axis B 4 8.806 69.625 69.625 104.211

576 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

577 TUBE TUBE 0.512 1.000 0.512 Slenderness 3 5.760 12.595 12.595 18.662

578 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

579 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

580 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

581 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

582 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

583 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

584 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

585 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

586 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

587 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

588 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

589 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

590 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

591 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

592 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

593 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

594 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

595 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

596 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

597 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

598 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

599 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

600 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

601 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

602 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

603 TUBE TUBE 0.401 1.000 0.401 Major Axis B 5 5.760 12.595 12.595 18.662

604 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

605 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

606 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

607 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

608 TUBE TUBE 0.407 1.000 0.407 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

609 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

610 TUBE TUBE 0.217 1.000 0.217 Tension 5 5.760 12.595 12.595 18.662

611 TUBE TUBE 0.551 1.000 0.551 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

612 TUBE TUBE 0.408 1.000 0.408 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

613 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

614 TUBE TUBE 0.218 1.000 0.218 Tension 5 5.760 12.595 12.595 18.662

615 TUBE TUBE 0.542 1.000 0.542 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

616 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

617 TUBE TUBE 0.230 1.000 0.230 Slenderness 1 5.760 12.595 12.595 18.662

618 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

619 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

620 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

621 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

622 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

Page 90: Design Report for Acropolis Tower

22/05/2013

623 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

624 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

625 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

626 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

627 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

628 TUBE TUBE 0.163 1.000 0.163 Slenderness 1 5.760 12.595 12.595 18.662

629 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

630 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

631 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

632 TUBE TUBE 0.163 1.000 0.163 Slenderness 1 5.760 12.595 12.595 18.662

633 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

634 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

635 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

636 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

637 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

638 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

639 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

640 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

641 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

642 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

643 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

644 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

645 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

646 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

647 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

648 TUBE TUBE 0.385 1.000 0.385 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

649 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

650 TUBE TUBE 0.192 1.000 0.192 Tension 5 5.760 12.595 12.595 18.662

651 TUBE TUBE 0.506 1.000 0.506 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

652 TUBE TUBE 0.369 1.000 0.369 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

653 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

654 TUBE TUBE 0.193 1.000 0.193 Tension 5 5.760 12.595 12.595 18.662

655 TUBE TUBE 0.497 1.000 0.497 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

656 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

657 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

658 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

659 TUBE TUBE 0.261 1.000 0.261 Minor Axis B 5 5.760 12.595 12.595 18.662

660 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

661 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

662 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

663 TUBE TUBE 0.299 1.000 0.299 Major Axis B 5 5.760 12.595 12.595 18.662

664 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

665 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

666 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

667 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

668 TUBE TUBE 0.163 1.000 0.163 Slenderness 1 5.760 12.595 12.595 18.662

669 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

670 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

671 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

672 TUBE TUBE 0.163 1.000 0.163 Slenderness 1 5.760 12.595 12.595 18.662

673 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

674 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

675 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

676 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

677 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

678 TUBE TUBE 0.179 1.000 0.179 Major Axis B 5 5.760 12.595 12.595 18.662

679 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

680 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

681 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

682 TUBE TUBE 0.167 1.000 0.167 Minor Axis B 5 5.760 12.595 12.595 18.662

683 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

684 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

685 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

686 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

687 TUBE TUBE 0.512 1.000 0.512 Slenderness 3 5.760 12.595 12.595 18.662

688 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

689 TUBE TUBE 0.226 1.000 0.226 Minor Axis B 5 5.760 12.595 12.595 18.662

690 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

691 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

Page 91: Design Report for Acropolis Tower

22/05/2013

692 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

693 TUBE TUBE 0.279 1.000 0.279 Major Axis B 5 5.760 12.595 12.595 18.662

694 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

695 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

696 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

697 TUBE TUBE 0.326 1.000 0.326 Slenderness 3 5.760 12.595 12.595 18.662

698 TUBE TUBE 0.326 1.000 0.326 Slenderness 3 5.760 12.595 12.595 18.662

699 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

700 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

701 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

702 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

703 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

704 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

705 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

706 TUBE TUBE 0.326 1.000 0.326 Slenderness 3 5.760 12.595 12.595 18.662

707 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

708 TUBE TUBE 0.326 1.000 0.326 Slenderness 3 5.760 12.595 12.595 18.662

709 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

710 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

711 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

712 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

713 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

714 TUBE TUBE 0.326 1.000 0.326 Slenderness 3 5.760 12.595 12.595 18.662

715 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

716 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

717 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

718 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

719 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

720 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

721 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

722 TUBE TUBE 0.326 1.000 0.326 Slenderness 3 5.760 12.595 12.595 18.662

723 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

724 TUBE TUBE 0.326 1.000 0.326 Slenderness 3 5.760 12.595 12.595 18.662

725 TUBE TUBE 0.147 1.000 0.147 Slenderness 1 5.760 12.595 12.595 18.662

726 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

727 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

728 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

729 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

730 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

731 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

732 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

733 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

734 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

735 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

736 TUBE TUBE 0.760 1.000 0.760 Minor Axis B 5 8.806 69.625 69.625 104.211

737 TUBE TUBE 0.701 1.000 0.701 Minor Axis B 5 8.806 69.625 69.625 104.211

738 TUBE TUBE 0.639 1.000 0.639 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

739 TUBE TUBE 0.604 1.000 0.604 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

740 TUBE TUBE 0.835 1.000 0.835 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

741 TUBE TUBE 0.911 1.000 0.911 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

742 TUBE TUBE 0.948 1.000 0.948 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

743 TUBE TUBE 0.836 1.000 0.836 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

744 TUBE TUBE 0.839 1.000 0.839 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

745 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

746 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

747 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

748 TUBE TUBE 0.568 1.000 0.568 Major Axis B 5 8.806 69.625 69.625 104.211

749 TUBE TUBE 0.608 1.000 0.608 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

750 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

751 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

752 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

753 TUBE TUBE 0.368 1.000 0.368 Minor Axis B 5 8.806 69.625 69.625 104.211

754 TUBE TUBE 0.290 1.000 0.290 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

755 TUBE TUBE 0.226 1.000 0.226 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

756 TUBE TUBE 0.316 1.000 0.316 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

757 TUBE TUBE 0.427 1.000 0.427 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

758 TUBE TUBE 0.459 1.000 0.459 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

759 TUBE TUBE 0.421 1.000 0.421 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

760 TUBE TUBE 0.342 1.000 0.342 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

Page 92: Design Report for Acropolis Tower

22/05/2013

761 TUBE TUBE 0.269 1.000 0.269 Major Axis B 5 8.806 69.625 69.625 104.211

762 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

763 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

764 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

765 TUBE TUBE 0.088 1.000 0.088 Major Axis B 5 8.806 69.625 69.625 104.211

766 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

767 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

768 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

769 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

770 TUBE TUBE 0.379 1.000 0.379 Minor Axis B 5 8.806 69.625 69.625 104.211

771 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

772 TUBE TUBE 0.257 1.000 0.257 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

773 TUBE TUBE 0.270 1.000 0.270 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

774 TUBE TUBE 0.261 1.000 0.261 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

775 TUBE TUBE 0.499 1.000 0.499 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

776 TUBE TUBE 0.458 1.000 0.458 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

777 TUBE TUBE 0.367 1.000 0.367 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

778 TUBE TUBE 0.202 1.000 0.202 Slenderness 1 8.806 69.625 69.625 104.211

779 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

780 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

781 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

782 TUBE TUBE 0.359 1.000 0.359 Major Axis B 5 8.806 69.625 69.625 104.211

783 TUBE TUBE 0.384 1.000 0.384 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

784 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

785 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

786 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

787 TUBE TUBE 0.811 1.000 0.811 Minor Axis B 5 8.806 69.625 69.625 104.211

788 TUBE TUBE 0.671 1.000 0.671 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

789 TUBE TUBE 0.528 1.000 0.528 Minor Axis B 5 8.806 69.625 69.625 104.211

790 TUBE TUBE 0.418 1.000 0.418 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

791 TUBE TUBE 0.587 1.000 0.587 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

792 TUBE TUBE 0.790 1.000 0.790 Major Axis B 5 8.806 69.625 69.625 104.211

793 TUBE TUBE 0.881 1.000 0.881 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

794 TUBE TUBE 0.732 1.000 0.732 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

795 TUBE TUBE 0.605 1.000 0.605 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

796 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

797 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

798 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

799 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

800 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

801 TUBE TUBE 0.568 1.000 0.568 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

802 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

803 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

804 TUBE TUBE 0.808 1.000 0.808 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

805 TUBE TUBE 0.662 1.000 0.662 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

806 TUBE TUBE 0.520 1.000 0.520 Minor Axis B 5 8.806 69.625 69.625 104.211

807 TUBE TUBE 0.437 1.000 0.437 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

808 TUBE TUBE 0.610 1.000 0.610 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

809 TUBE TUBE 0.753 1.000 0.753 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

810 TUBE TUBE 0.835 1.000 0.835 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

811 TUBE TUBE 0.701 1.000 0.701 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

812 TUBE TUBE 0.609 1.000 0.609 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

813 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

814 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

815 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

816 TUBE TUBE 0.436 1.000 0.436 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

817 TUBE TUBE 0.426 1.000 0.426 Major Axis B 5 8.806 69.625 69.625 104.211

818 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

819 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

820 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

821 TUBE TUBE 0.346 1.000 0.346 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

822 TUBE TUBE 0.274 1.000 0.274 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

823 TUBE TUBE 0.209 1.000 0.209 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

824 TUBE TUBE 0.284 1.000 0.284 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

825 TUBE TUBE 0.361 1.000 0.361 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

826 TUBE TUBE 0.442 1.000 0.442 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

827 TUBE TUBE 0.274 1.000 0.274 Major Axis B 5 8.806 69.625 69.625 104.211

828 TUBE TUBE 0.261 1.000 0.261 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

829 TUBE TUBE 0.234 1.000 0.234 Major Axis B 5 8.806 69.625 69.625 104.211

Page 93: Design Report for Acropolis Tower

22/05/2013

830 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

831 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

832 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

833 TUBE TUBE 0.085 1.000 0.085 Major Axis B 5 8.806 69.625 69.625 104.211

834 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

835 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

836 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

837 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

838 TUBE TUBE 0.322 1.000 0.322 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

839 TUBE TUBE 0.255 1.000 0.255 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

840 TUBE TUBE 0.195 1.000 0.195 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

841 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

842 TUBE TUBE 0.201 1.000 0.201 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

843 TUBE TUBE 0.407 1.000 0.407 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

844 TUBE TUBE 0.243 1.000 0.243 Major Axis B 5 8.806 69.625 69.625 104.211

845 TUBE TUBE 0.187 1.000 0.187 Major Axis B 5 8.806 69.625 69.625 104.211

846 TUBE TUBE 0.182 1.000 0.182 Slenderness 1 8.806 69.625 69.625 104.211

847 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

848 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

849 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

850 TUBE TUBE 0.344 1.000 0.344 Major Axis B 5 8.806 69.625 69.625 104.211

851 TUBE TUBE 0.361 1.000 0.361 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

852 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

853 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

854 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

855 TUBE TUBE 0.714 1.000 0.714 Minor Axis B 5 8.806 69.625 69.625 104.211

856 TUBE TUBE 0.619 1.000 0.619 Minor Axis B 5 8.806 69.625 69.625 104.211

857 TUBE TUBE 0.496 1.000 0.496 Minor Axis B 5 8.806 69.625 69.625 104.211

858 TUBE TUBE 0.438 1.000 0.438 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

859 TUBE TUBE 0.590 1.000 0.590 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

860 TUBE TUBE 0.696 1.000 0.696 Major Axis B 5 8.806 69.625 69.625 104.211

861 TUBE TUBE 0.631 1.000 0.631 Major Axis B 5 8.806 69.625 69.625 104.211

862 TUBE TUBE 0.486 1.000 0.486 Major Axis B 5 8.806 69.625 69.625 104.211

863 TUBE TUBE 0.406 1.000 0.406 Major Axis B 5 8.806 69.625 69.625 104.211

864 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

865 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

866 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

867 TUBE TUBE 0.172 1.000 0.172 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

868 TUBE TUBE 0.095 1.000 0.095 Major Axis B 5 8.806 69.625 69.625 104.211

869 TUBE TUBE 0.498 1.000 0.498 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

870 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

871 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

872 TUBE TUBE 0.731 1.000 0.731 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

873 TUBE TUBE 0.601 1.000 0.601 Minor Axis B 5 8.806 69.625 69.625 104.211

874 TUBE TUBE 0.469 1.000 0.469 Minor Axis B 5 8.806 69.625 69.625 104.211

875 TUBE TUBE 0.301 1.000 0.301 Minor Axis B 5 8.806 69.625 69.625 104.211

876 TUBE TUBE 0.418 1.000 0.418 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

877 TUBE TUBE 0.786 1.000 0.786 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

878 TUBE TUBE 0.624 1.000 0.624 Major Axis B 5 8.806 69.625 69.625 104.211

879 TUBE TUBE 0.470 1.000 0.470 Major Axis B 5 8.806 69.625 69.625 104.211

880 TUBE TUBE 0.312 1.000 0.312 Major Axis B 5 8.806 69.625 69.625 104.211

881 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

882 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

883 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

884 TUBE TUBE 0.234 1.000 0.234 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

885 TUBE TUBE 0.236 1.000 0.236 Major Axis B 5 8.806 69.625 69.625 104.211

886 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

887 TUBE TUBE 0.219 1.000 0.219 Slenderness 2 8.806 69.625 69.625 104.211

888 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

889 TUBE TUBE 0.353 1.000 0.353 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

890 TUBE TUBE 0.240 1.000 0.240 Minor Axis B 5 8.806 69.625 69.625 104.211

891 TUBE TUBE 0.181 1.000 0.181 Slenderness 3 8.806 69.625 69.625 104.211

892 TUBE TUBE 0.191 1.000 0.191 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

893 TUBE TUBE 0.181 1.000 0.181 Slenderness 1 8.806 69.625 69.625 104.211

894 TUBE TUBE 0.432 1.000 0.432 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

895 TUBE TUBE 0.253 1.000 0.253 Major Axis B 5 8.806 69.625 69.625 104.211

896 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 3 8.806 69.625 69.625 104.211

897 TUBE TUBE 0.181 1.000 0.181 Slenderness 2 8.806 69.625 69.625 104.211

898 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

Page 94: Design Report for Acropolis Tower

22/05/2013

899 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

900 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

901 TUBE TUBE 0.103 1.000 0.103 Major Axis B 5 8.806 69.625 69.625 104.211

902 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

903 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

904 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

905 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

906 TUBE TUBE 0.300 1.000 0.300 Minor Axis B 5 8.806 69.625 69.625 104.211

907 TUBE TUBE 0.227 1.000 0.227 Minor Axis B 5 8.806 69.625 69.625 104.211

908 TUBE TUBE 0.185 1.000 0.185 Minor Axis B 5 8.806 69.625 69.625 104.211

909 TUBE TUBE 0.222 1.000 0.222 Minor Axis B 5 8.806 69.625 69.625 104.211

910 TUBE TUBE 0.314 1.000 0.314 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

911 TUBE TUBE 0.355 1.000 0.355 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

912 TUBE TUBE 0.235 1.000 0.235 Major Axis B 5 8.806 69.625 69.625 104.211

913 TUBE TUBE 0.181 1.000 0.181 Slenderness 3 8.806 69.625 69.625 104.211

914 TUBE TUBE 0.212 1.000 0.212 Major Axis B 5 8.806 69.625 69.625 104.211

915 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

916 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

917 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

918 TUBE TUBE 0.426 1.000 0.426 Major Axis B 5 8.806 69.625 69.625 104.211

919 TUBE TUBE 0.403 1.000 0.403 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

920 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

921 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

922 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

923 TUBE TUBE 0.217 1.000 0.217 Minor Axis B 5 8.806 69.625 69.625 104.211

924 TUBE TUBE 0.173 1.000 0.173 Minor Axis B 5 8.806 69.625 69.625 104.211

925 TUBE TUBE 0.188 1.000 0.188 Minor Axis B 5 8.806 69.625 69.625 104.211

926 TUBE TUBE 0.328 1.000 0.328 Minor Axis B 5 8.806 69.625 69.625 104.211

927 TUBE TUBE 0.461 1.000 0.461 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

928 TUBE TUBE 0.204 1.000 0.204 Major Axis B 5 8.806 69.625 69.625 104.211

929 TUBE TUBE 0.192 1.000 0.192 Minor Axis B 5 8.806 69.625 69.625 104.211

930 TUBE TUBE 0.198 1.000 0.198 Minor Axis B 5 8.806 69.625 69.625 104.211

931 TUBE TUBE 0.258 1.000 0.258 Major Axis B 5 8.806 69.625 69.625 104.211

932 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

933 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

934 TUBE TUBE 0.396 1.000 0.396 Major Axis B 5 8.806 69.625 69.625 104.211

935 TUBE TUBE 0.348 1.000 0.348 Major Axis B 5 8.806 69.625 69.625 104.211

936 TUBE TUBE 0.338 1.000 0.338 Major Axis B 5 8.806 69.625 69.625 104.211

937 TUBE TUBE 0.219 1.000 0.219 Slenderness 1 8.806 69.625 69.625 104.211

938 TUBE TUBE 0.239 1.000 0.239 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

939 TUBE TUBE 0.334 1.000 0.334 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

940 TUBE TUBE 0.537 1.000 0.537 Minor Axis B 5 8.806 69.625 69.625 104.211

941 TUBE TUBE 0.459 1.000 0.459 Minor Axis B 5 8.806 69.625 69.625 104.211

942 TUBE TUBE 0.249 1.000 0.249 Minor Axis B 5 8.806 69.625 69.625 104.211

943 TUBE TUBE 0.568 1.000 0.568 Major Axis B 5 8.806 69.625 69.625 104.211

944 TUBE TUBE 0.420 1.000 0.420 Sec. 9.3.2.2 3 8.806 69.625 69.625 104.211

945 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 3 8.806 69.625 69.625 104.211

946 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

947 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

948 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

949 TUBE TUBE 0.099 1.000 0.099 Slenderness 1 8.806 69.625 69.625 104.211

950 TUBE TUBE 0.570 1.000 0.570 Major Axis B 5 8.806 69.625 69.625 104.211

951 TUBE TUBE 0.344 1.000 0.344 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

952 TUBE TUBE 0.212 1.000 0.212 Minor Axis B 5 8.806 69.625 69.625 104.211

953 TUBE TUBE 0.275 1.000 0.275 Major Axis B 5 8.806 69.625 69.625 104.211

954 TUBE TUBE 0.517 1.000 0.517 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

955 TUBE TUBE 0.099 1.000 0.099 Shear along 5 41.760 3.16E 3 1.06E 3 2.45E 3

956 TUBE TUBE 0.475 1.000 0.475 Minor Axis B 5 8.806 69.625 69.625 104.211

957 TUBE TUBE 0.177 1.000 0.177 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

958 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

959 TUBE TUBE 0.131 1.000 0.131 Minor Axis B 5 8.806 69.625 69.625 104.211

960 TUBE TUBE 0.068 1.000 0.068 Major Axis B 3 8.806 69.625 69.625 104.211

961 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

962 TUBE TUBE 0.216 1.000 0.216 Slenderness 1 8.806 69.625 69.625 104.211

963 TUBE TUBE 0.345 1.000 0.345 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

964 TUBE TUBE 0.153 1.000 0.153 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

965 TUBE TUBE 0.216 1.000 0.216 Slenderness 1 8.806 69.625 69.625 104.211

966 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

967 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

Page 95: Design Report for Acropolis Tower

22/05/2013

968 TUBE TUBE 0.155 1.000 0.155 Major Axis B 5 8.806 69.625 69.625 104.211

969 TUBE TUBE 0.209 1.000 0.209 Major Axis B 5 8.806 69.625 69.625 104.211

970 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

971 TUBE TUBE 0.216 1.000 0.216 Slenderness 1 8.806 69.625 69.625 104.211

972 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

973 TUBE TUBE 0.057 1.000 0.057 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

974 TUBE TUBE 0.216 1.000 0.216 Slenderness 1 8.806 69.625 69.625 104.211

975 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

976 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

977 TUBE TUBE 0.205 1.000 0.205 Major Axis B 5 8.806 69.625 69.625 104.211

978 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

979 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

980 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

981 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

982 TUBE TUBE 0.120 1.000 0.120 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

983 TUBE TUBE 0.216 1.000 0.216 Slenderness 3 8.806 69.625 69.625 104.211

984 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

985 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

986 TUBE TUBE 0.243 1.000 0.243 Major Axis B 5 8.806 69.625 69.625 104.211

987 TUBE TUBE 0.163 1.000 0.163 Major Axis B 5 8.806 69.625 69.625 104.211

988 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

989 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

990 TUBE TUBE 0.216 1.000 0.216 Slenderness 2 8.806 69.625 69.625 104.211

991 TUBE TUBE 0.043 1.000 0.043 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

992 TUBE TUBE 0.157 1.000 0.157 Minor Axis B 5 8.806 69.625 69.625 104.211

993 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

994 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

995 TUBE TUBE 0.072 1.000 0.072 Slenderness 2 8.806 69.625 69.625 104.211

996 TUBE TUBE 0.072 1.000 0.072 Slenderness 2 8.806 69.625 69.625 104.211

997 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

998 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

999 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

1000 TUBE TUBE 0.190 1.000 0.190 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1001 TUBE TUBE 0.214 1.000 0.214 Slenderness 1 8.806 69.625 69.625 104.211

1002 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

1003 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1004 TUBE TUBE 0.221 1.000 0.221 Major Axis B 5 8.806 69.625 69.625 104.211

1005 TUBE TUBE 0.167 1.000 0.167 Major Axis B 5 8.806 69.625 69.625 104.211

1006 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

1007 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

1008 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

1009 TUBE TUBE 0.063 1.000 0.063 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1010 TUBE TUBE 0.214 1.000 0.214 Slenderness 1 8.806 69.625 69.625 104.211

1011 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1012 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

1013 TUBE TUBE 0.213 1.000 0.213 Major Axis B 5 8.806 69.625 69.625 104.211

1014 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

1015 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

1016 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

1017 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

1018 TUBE TUBE 0.119 1.000 0.119 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

1019 TUBE TUBE 0.214 1.000 0.214 Slenderness 3 8.806 69.625 69.625 104.211

1020 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1021 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1022 TUBE TUBE 0.195 1.000 0.195 Minor Axis B 5 8.806 69.625 69.625 104.211

1023 TUBE TUBE 0.181 1.000 0.181 Major Axis B 5 8.806 69.625 69.625 104.211

1024 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

1025 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

1026 TUBE TUBE 0.214 1.000 0.214 Slenderness 2 8.806 69.625 69.625 104.211

1027 TUBE TUBE 0.030 1.000 0.030 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1028 TUBE TUBE 0.166 1.000 0.166 Minor Axis B 5 8.806 69.625 69.625 104.211

1029 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1030 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1031 TUBE TUBE 0.072 1.000 0.072 Slenderness 2 8.806 69.625 69.625 104.211

1032 TUBE TUBE 0.072 1.000 0.072 Slenderness 2 8.806 69.625 69.625 104.211

1033 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

1034 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

1035 TUBE TUBE 0.215 1.000 0.215 Slenderness 1 8.806 69.625 69.625 104.211

1036 TUBE TUBE 0.155 1.000 0.155 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

Page 96: Design Report for Acropolis Tower

22/05/2013

1037 TUBE TUBE 0.215 1.000 0.215 Slenderness 1 8.806 69.625 69.625 104.211

1038 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

1039 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1040 TUBE TUBE 0.146 1.000 0.146 Major Axis B 5 8.806 69.625 69.625 104.211

1041 TUBE TUBE 0.165 1.000 0.165 Major Axis B 5 8.806 69.625 69.625 104.211

1042 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

1043 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

1044 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

1045 TUBE TUBE 0.055 1.000 0.055 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1046 TUBE TUBE 0.215 1.000 0.215 Slenderness 1 8.806 69.625 69.625 104.211

1047 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1048 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1049 TUBE TUBE 0.207 1.000 0.207 Major Axis B 5 8.806 69.625 69.625 104.211

1050 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

1051 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

1052 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

1053 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

1054 TUBE TUBE 0.120 1.000 0.120 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

1055 TUBE TUBE 0.215 1.000 0.215 Slenderness 3 8.806 69.625 69.625 104.211

1056 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1057 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1058 TUBE TUBE 0.242 1.000 0.242 Major Axis B 5 8.806 69.625 69.625 104.211

1059 TUBE TUBE 0.183 1.000 0.183 Major Axis B 5 8.806 69.625 69.625 104.211

1060 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

1061 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

1062 TUBE TUBE 0.215 1.000 0.215 Slenderness 2 8.806 69.625 69.625 104.211

1063 TUBE TUBE 0.040 1.000 0.040 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1064 TUBE TUBE 0.166 1.000 0.166 Minor Axis B 5 8.806 69.625 69.625 104.211

1065 TUBE TUBE 0.156 1.000 0.156 Slenderness 2 8.806 69.625 69.625 104.211

1066 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

1067 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

1068 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

1069 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

1070 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

1071 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

1072 TUBE TUBE 0.188 1.000 0.188 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1073 TUBE TUBE 0.199 1.000 0.199 Slenderness 1 8.806 69.625 69.625 104.211

1074 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1075 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1076 TUBE TUBE 0.205 1.000 0.205 Major Axis B 5 8.806 69.625 69.625 104.211

1077 TUBE TUBE 0.166 1.000 0.166 Major Axis B 5 8.806 69.625 69.625 104.211

1078 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

1079 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

1080 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

1081 TUBE TUBE 0.064 1.000 0.064 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1082 TUBE TUBE 0.199 1.000 0.199 Slenderness 1 8.806 69.625 69.625 104.211

1083 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1084 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1085 TUBE TUBE 0.204 1.000 0.204 Major Axis B 5 8.806 69.625 69.625 104.211

1086 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

1087 TUBE TUBE 0.199 1.000 0.199 Slenderness 1 8.806 69.625 69.625 104.211

1088 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

1089 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

1090 TUBE TUBE 0.111 1.000 0.111 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

1091 TUBE TUBE 0.199 1.000 0.199 Slenderness 3 8.806 69.625 69.625 104.211

1092 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

1093 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1094 TUBE TUBE 0.152 1.000 0.152 Minor Axis B 5 8.806 69.625 69.625 104.211

1095 TUBE TUBE 0.140 1.000 0.140 Major Axis B 5 8.806 69.625 69.625 104.211

1096 TUBE TUBE 0.199 1.000 0.199 Slenderness 1 8.806 69.625 69.625 104.211

1097 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

1098 TUBE TUBE 0.199 1.000 0.199 Slenderness 2 8.806 69.625 69.625 104.211

1099 TUBE TUBE 0.042 1.000 0.042 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1100 TUBE TUBE 0.120 1.000 0.120 Minor Axis B 5 8.806 69.625 69.625 104.211

1101 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1102 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1103 TUBE TUBE 0.032 1.000 0.032 Slenderness 1 8.806 69.625 69.625 104.211

1104 TUBE TUBE 0.032 1.000 0.032 Slenderness 1 8.806 69.625 69.625 104.211

1105 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

Page 97: Design Report for Acropolis Tower

22/05/2013

1106 TUBE TUBE 0.188 1.000 0.188 Slenderness 2 8.806 69.625 69.625 104.211

1107 TUBE TUBE 0.188 1.000 0.188 Slenderness 2 8.806 69.625 69.625 104.211

1108 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1109 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

1110 TUBE TUBE 0.156 1.000 0.156 Slenderness 2 8.806 69.625 69.625 104.211

1111 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

1112 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

1113 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

1114 TUBE TUBE 0.101 1.000 0.101 Slenderness 2 8.806 69.625 69.625 104.211

1115 TUBE TUBE 0.101 1.000 0.101 Slenderness 2 8.806 69.625 69.625 104.211

1116 TUBE TUBE 0.101 1.000 0.101 Slenderness 2 8.806 69.625 69.625 104.211

1117 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1118 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

1119 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1120 TUBE TUBE 0.156 1.000 0.156 Slenderness 1 8.806 69.625 69.625 104.211

1121 TUBE TUBE 0.032 1.000 0.032 Slenderness 1 8.806 69.625 69.625 104.211

1122 TUBE TUBE 0.072 1.000 0.072 Slenderness 3 8.806 69.625 69.625 104.211

1123 TUBE TUBE 0.062 1.000 0.062 Slenderness 2 8.806 69.625 69.625 104.211

1124 TUBE TUBE 0.062 1.000 0.062 Slenderness 2 8.806 69.625 69.625 104.211

1125 TUBE TUBE 0.065 1.000 0.065 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

1126 TUBE TUBE 0.125 1.000 0.125 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1127 TUBE TUBE 0.109 1.000 0.109 Minor Axis B 5 8.806 69.625 69.625 104.211

1128 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

1129 TUBE TUBE 0.156 1.000 0.156 Slenderness 2 8.806 69.625 69.625 104.211

1130 TUBE TUBE 0.111 1.000 0.111 Minor Axis B 5 8.806 69.625 69.625 104.211

1131 TUBE TUBE 0.133 1.000 0.133 Major Axis B 5 8.806 69.625 69.625 104.211

1132 TUBE TUBE 0.045 1.000 0.045 Major Axis B 4 8.806 69.625 69.625 104.211

1133 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

1134 TUBE TUBE 0.039 1.000 0.039 Major Axis B 4 8.806 69.625 69.625 104.211

1135 TUBE TUBE 0.230 1.000 0.230 Slenderness 1 5.760 12.595 12.595 18.662

1136 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

1137 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1138 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1139 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1140 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1141 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1142 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1143 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1144 TUBE TUBE 0.387 1.000 0.387 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

1145 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

1146 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

1147 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1148 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1149 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1150 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1151 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1152 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1153 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1154 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1155 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

1156 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

1157 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1158 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1159 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1160 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1161 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1162 TUBE TUBE 0.401 1.000 0.401 Major Axis B 5 5.760 12.595 12.595 18.662

1163 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1164 TUBE TUBE 0.376 1.000 0.376 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

1165 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

1166 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

1167 TUBE TUBE 0.406 1.000 0.406 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

1168 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1169 TUBE TUBE 0.217 1.000 0.217 Tension 5 5.760 12.595 12.595 18.662

1170 TUBE TUBE 0.550 1.000 0.550 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

1171 TUBE TUBE 0.409 1.000 0.409 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

1172 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1173 TUBE TUBE 0.217 1.000 0.217 Tension 5 5.760 12.595 12.595 18.662

1174 TUBE TUBE 0.541 1.000 0.541 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

Page 98: Design Report for Acropolis Tower

22/05/2013

1175 TUBE TUBE 0.230 1.000 0.230 Slenderness 1 5.760 12.595 12.595 18.662

1176 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

1177 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1178 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1179 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1180 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1181 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1182 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1183 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1184 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1185 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

1186 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

1187 TUBE TUBE 0.163 1.000 0.163 Slenderness 1 5.760 12.595 12.595 18.662

1188 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1189 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1190 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1191 TUBE TUBE 0.163 1.000 0.163 Slenderness 1 5.760 12.595 12.595 18.662

1192 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1193 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1194 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1195 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

1196 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

1197 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1198 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1199 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1200 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1201 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1202 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1203 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1204 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1205 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

1206 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

1207 TUBE TUBE 0.387 1.000 0.387 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

1208 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1209 TUBE TUBE 0.192 1.000 0.192 Tension 5 5.760 12.595 12.595 18.662

1210 TUBE TUBE 0.505 1.000 0.505 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

1211 TUBE TUBE 0.372 1.000 0.372 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

1212 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1213 TUBE TUBE 0.192 1.000 0.192 Tension 5 5.760 12.595 12.595 18.662

1214 TUBE TUBE 0.494 1.000 0.494 Sec. 9.3.2.2 5 5.760 12.595 12.595 18.662

1215 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

1216 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

1217 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1218 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1219 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1220 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1221 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1222 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1223 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1224 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1225 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

1226 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

1227 TUBE TUBE 0.163 1.000 0.163 Slenderness 1 5.760 12.595 12.595 18.662

1228 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1229 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1230 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1231 TUBE TUBE 0.163 1.000 0.163 Slenderness 1 5.760 12.595 12.595 18.662

1232 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1233 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1234 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1235 TUBE TUBE 0.512 1.000 0.512 Slenderness 2 5.760 12.595 12.595 18.662

1236 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

1237 TUBE TUBE 0.190 1.000 0.190 Major Axis B 5 5.760 12.595 12.595 18.662

1238 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1239 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1240 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1241 TUBE TUBE 0.177 1.000 0.177 Major Axis B 5 5.760 12.595 12.595 18.662

1242 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1243 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

Page 99: Design Report for Acropolis Tower

22/05/2013

1244 TUBE TUBE 0.362 1.000 0.362 Slenderness 2 5.760 12.595 12.595 18.662

1245 TUBE TUBE 0.230 1.000 0.230 Slenderness 1 5.760 12.595 12.595 18.662

1246 TUBE TUBE 0.512 1.000 0.512 Slenderness 1 5.760 12.595 12.595 18.662

1247 TUBE TUBE 0.175 1.000 0.175 Major Axis B 5 5.760 12.595 12.595 18.662

1248 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1249 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1250 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1251 TUBE TUBE 0.188 1.000 0.188 Major Axis B 5 5.760 12.595 12.595 18.662

1252 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1253 TUBE TUBE 0.362 1.000 0.362 Slenderness 1 5.760 12.595 12.595 18.662

1254 TUBE TUBE 0.362 1.000 0.362 Slenderness 3 5.760 12.595 12.595 18.662

1255 TUBE TUBE 0.147 1.000 0.147 Slenderness 1 5.760 12.595 12.595 18.662

1256 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

1257 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1258 TUBE TUBE 0.147 1.000 0.147 Slenderness 1 5.760 12.595 12.595 18.662

1259 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1260 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

1261 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1262 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

1263 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1264 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1265 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1266 TUBE TUBE 0.147 1.000 0.147 Slenderness 1 5.760 12.595 12.595 18.662

1267 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1268 TUBE TUBE 0.147 1.000 0.147 Slenderness 1 5.760 12.595 12.595 18.662

1269 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

1270 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

1271 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1272 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1273 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1274 TUBE TUBE 0.147 1.000 0.147 Slenderness 1 5.760 12.595 12.595 18.662

1275 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1276 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

1277 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

1278 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

1279 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1280 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1281 TUBE TUBE 0.326 1.000 0.326 Slenderness 2 5.760 12.595 12.595 18.662

1282 TUBE TUBE 0.147 1.000 0.147 Slenderness 1 5.760 12.595 12.595 18.662

1283 TUBE TUBE 0.147 1.000 0.147 Slenderness 1 5.760 12.595 12.595 18.662

1284 TUBE TUBE 0.147 1.000 0.147 Slenderness 1 5.760 12.595 12.595 18.662

1285 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

1286 TUBE TUBE 0.326 1.000 0.326 Slenderness 1 5.760 12.595 12.595 18.662

1597 TUBE TUBE 0.133 1.000 0.133 Major Axis B 5 8.806 69.625 69.625 104.211

1598 TUBE TUBE 0.112 1.000 0.112 Major Axis B 5 8.806 69.625 69.625 104.211

1599 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

1600 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

1601 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

1602 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

1621 TUBE TUBE 0.156 1.000 0.156 Slenderness 3 8.806 69.625 69.625 104.211

1622 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

1623 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

1642 TUBE TUBE 0.070 1.000 0.070 Slenderness 1 8.806 69.625 69.625 104.211

1643 TUBE TUBE 0.091 1.000 0.091 Minor Axis B 5 8.806 69.625 69.625 104.211

1644 TUBE TUBE 0.078 1.000 0.078 Minor Axis B 5 8.806 69.625 69.625 104.211

1645 TUBE TUBE 0.237 1.000 0.237 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1646 TUBE TUBE 0.339 1.000 0.339 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1647 TUBE TUBE 0.200 1.000 0.200 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1648 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1649 TUBE TUBE 0.141 1.000 0.141 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1650 TUBE TUBE 0.141 1.000 0.141 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1651 TUBE TUBE 0.132 1.000 0.132 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1652 TUBE TUBE 0.106 1.000 0.106 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1653 TUBE TUBE 0.236 1.000 0.236 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1654 TUBE TUBE 0.324 1.000 0.324 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1655 TUBE TUBE 0.199 1.000 0.199 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1656 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1657 TUBE TUBE 0.142 1.000 0.142 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1658 TUBE TUBE 0.141 1.000 0.141 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

Page 100: Design Report for Acropolis Tower

22/05/2013

1659 TUBE TUBE 0.132 1.000 0.132 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1660 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

1662 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1663 TUBE TUBE 0.195 1.000 0.195 Slenderness 1 8.806 104.529 34.720 80.392

1665 TUBE TUBE 0.250 1.000 0.250 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1666 TUBE TUBE 0.433 1.000 0.433 Slenderness 2 8.806 104.529 34.720 80.392

1667 TUBE TUBE 0.433 1.000 0.433 Slenderness 1 8.806 104.529 34.720 80.392

1669 TUBE TUBE 0.433 1.000 0.433 Slenderness 1 8.806 104.529 34.720 80.392

1670 TUBE TUBE 0.433 1.000 0.433 Slenderness 1 8.806 104.529 34.720 80.392

1671 TUBE TUBE 0.514 1.000 0.514 Sec. 9.3.2.2 5 8.806 104.529 34.720 80.392

1672 TUBE TUBE 0.533 1.000 0.533 Major Axis B 5 8.806 104.529 34.720 80.392

1673 TUBE TUBE 0.526 1.000 0.526 Major Axis B 5 8.806 104.529 34.720 80.392

1674 TUBE TUBE 0.445 1.000 0.445 Sec. 9.3.2.2 5 8.806 104.529 34.720 80.392

1675 TUBE TUBE 0.433 1.000 0.433 Slenderness 3 8.806 104.529 34.720 80.392

1676 TUBE TUBE 0.433 1.000 0.433 Slenderness 3 8.806 104.529 34.720 80.392

1677 TUBE TUBE 0.433 1.000 0.433 Slenderness 1 8.806 104.529 34.720 80.392

1678 TUBE TUBE 0.513 1.000 0.513 Sec. 9.3.2.2 5 8.806 104.529 34.720 80.392

1679 TUBE TUBE 0.534 1.000 0.534 Major Axis B 5 8.806 104.529 34.720 80.392

1680 TUBE TUBE 0.521 1.000 0.521 Major Axis B 5 8.806 104.529 34.720 80.392

1681 TUBE TUBE 0.438 1.000 0.438 Sec. 9.3.2.2 5 8.806 104.529 34.720 80.392

1682 TUBE TUBE 0.433 1.000 0.433 Slenderness 3 8.806 104.529 34.720 80.392

1683 TUBE TUBE 0.058 1.000 0.058 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1684 TUBE TUBE 0.071 1.000 0.071 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1685 TUBE TUBE 0.086 1.000 0.086 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1686 TUBE TUBE 0.160 1.000 0.160 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1687 TUBE TUBE 0.073 1.000 0.073 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1688 TUBE TUBE 0.059 1.000 0.059 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1689 TUBE TUBE 0.084 1.000 0.084 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1690 TUBE TUBE 0.133 1.000 0.133 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1691 TUBE TUBE 0.073 1.000 0.073 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1692 TUBE TUBE 0.057 1.000 0.057 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1693 TUBE TUBE 0.084 1.000 0.084 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1694 TUBE TUBE 0.158 1.000 0.158 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1695 TUBE TUBE 0.076 1.000 0.076 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1696 TUBE TUBE 0.049 1.000 0.049 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1697 TUBE TUBE 0.082 1.000 0.082 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1698 TUBE TUBE 0.080 1.000 0.080 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1699 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1700 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1702 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1703 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1704 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1705 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1706 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1707 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1708 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1709 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1710 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1711 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1712 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1713 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1714 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1715 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1716 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1718 TUBE TUBE 0.320 1.000 0.320 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1719 TUBE TUBE 0.442 1.000 0.442 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1720 TUBE TUBE 0.274 1.000 0.274 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1721 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1722 TUBE TUBE 0.214 1.000 0.214 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1723 TUBE TUBE 0.213 1.000 0.213 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1724 TUBE TUBE 0.202 1.000 0.202 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1725 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

1726 TUBE TUBE 0.322 1.000 0.322 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1727 TUBE TUBE 0.428 1.000 0.428 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1728 TUBE TUBE 0.273 1.000 0.273 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1729 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1730 TUBE TUBE 0.214 1.000 0.214 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1731 TUBE TUBE 0.213 1.000 0.213 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1732 TUBE TUBE 0.201 1.000 0.201 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

Page 101: Design Report for Acropolis Tower

22/05/2013

1733 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

1734 TUBE TUBE 0.438 1.000 0.438 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1735 TUBE TUBE 0.338 1.000 0.338 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1736 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1737 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1739 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1740 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1741 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1742 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1743 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1744 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1745 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1746 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1747 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1748 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1749 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1750 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1751 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1752 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1753 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1755 TUBE TUBE 0.334 1.000 0.334 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1756 TUBE TUBE 0.458 1.000 0.458 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1757 TUBE TUBE 0.287 1.000 0.287 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1758 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1759 TUBE TUBE 0.225 1.000 0.225 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1760 TUBE TUBE 0.225 1.000 0.225 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1761 TUBE TUBE 0.214 1.000 0.214 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1762 TUBE TUBE 0.168 1.000 0.168 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1763 TUBE TUBE 0.337 1.000 0.337 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1764 TUBE TUBE 0.445 1.000 0.445 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1765 TUBE TUBE 0.285 1.000 0.285 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1766 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1767 TUBE TUBE 0.225 1.000 0.225 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1768 TUBE TUBE 0.224 1.000 0.224 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1769 TUBE TUBE 0.213 1.000 0.213 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1770 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

1771 TUBE TUBE 0.455 1.000 0.455 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1772 TUBE TUBE 0.353 1.000 0.353 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1773 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1774 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1776 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1777 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1778 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1779 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1780 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1781 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1782 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1783 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1784 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1785 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1786 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1787 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1788 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1789 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1790 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1792 TUBE TUBE 0.332 1.000 0.332 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1793 TUBE TUBE 0.455 1.000 0.455 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1794 TUBE TUBE 0.285 1.000 0.285 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1795 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1796 TUBE TUBE 0.223 1.000 0.223 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1797 TUBE TUBE 0.223 1.000 0.223 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1798 TUBE TUBE 0.214 1.000 0.214 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1799 TUBE TUBE 0.167 1.000 0.167 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1800 TUBE TUBE 0.335 1.000 0.335 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1801 TUBE TUBE 0.443 1.000 0.443 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1802 TUBE TUBE 0.284 1.000 0.284 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1803 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1804 TUBE TUBE 0.223 1.000 0.223 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1805 TUBE TUBE 0.223 1.000 0.223 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

Page 102: Design Report for Acropolis Tower

22/05/2013

1806 TUBE TUBE 0.212 1.000 0.212 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1807 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

1808 TUBE TUBE 0.452 1.000 0.452 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1809 TUBE TUBE 0.351 1.000 0.351 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1810 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1811 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1813 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1814 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1815 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1816 TUBE TUBE 0.381 1.000 0.381 Slenderness 2 8.806 104.529 34.720 80.392

1817 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1818 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1819 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1820 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1821 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1822 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1823 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1824 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1825 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1826 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1827 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1829 TUBE TUBE 0.331 1.000 0.331 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1830 TUBE TUBE 0.453 1.000 0.453 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1831 TUBE TUBE 0.284 1.000 0.284 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1832 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1833 TUBE TUBE 0.222 1.000 0.222 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1834 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1835 TUBE TUBE 0.212 1.000 0.212 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1836 TUBE TUBE 0.166 1.000 0.166 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1837 TUBE TUBE 0.334 1.000 0.334 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1838 TUBE TUBE 0.441 1.000 0.441 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1839 TUBE TUBE 0.282 1.000 0.282 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1840 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1841 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1842 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1843 TUBE TUBE 0.211 1.000 0.211 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1844 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

1845 TUBE TUBE 0.450 1.000 0.450 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1846 TUBE TUBE 0.350 1.000 0.350 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1847 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1848 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1850 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1851 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1852 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1853 TUBE TUBE 0.381 1.000 0.381 Slenderness 2 8.806 104.529 34.720 80.392

1854 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1855 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1856 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1857 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1858 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1859 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1860 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1861 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1862 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1863 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1864 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1866 TUBE TUBE 0.330 1.000 0.330 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1867 TUBE TUBE 0.453 1.000 0.453 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1868 TUBE TUBE 0.283 1.000 0.283 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1869 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1870 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1871 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1872 TUBE TUBE 0.212 1.000 0.212 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1873 TUBE TUBE 0.203 1.000 0.203 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

1874 TUBE TUBE 0.333 1.000 0.333 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1875 TUBE TUBE 0.441 1.000 0.441 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1876 TUBE TUBE 0.282 1.000 0.282 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1877 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1878 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

Page 103: Design Report for Acropolis Tower

22/05/2013

1879 TUBE TUBE 0.220 1.000 0.220 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1880 TUBE TUBE 0.211 1.000 0.211 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1881 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

1882 TUBE TUBE 0.450 1.000 0.450 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1883 TUBE TUBE 0.349 1.000 0.349 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1884 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1885 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1887 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1888 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1889 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1890 TUBE TUBE 0.381 1.000 0.381 Slenderness 2 8.806 104.529 34.720 80.392

1891 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1892 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1893 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1894 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1895 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1896 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1897 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1898 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1899 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1900 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1901 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1903 TUBE TUBE 0.331 1.000 0.331 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1904 TUBE TUBE 0.453 1.000 0.453 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1905 TUBE TUBE 0.283 1.000 0.283 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1906 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1907 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1908 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1909 TUBE TUBE 0.212 1.000 0.212 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1910 TUBE TUBE 0.203 1.000 0.203 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

1911 TUBE TUBE 0.333 1.000 0.333 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1912 TUBE TUBE 0.441 1.000 0.441 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1913 TUBE TUBE 0.282 1.000 0.282 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1914 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1915 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1916 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1917 TUBE TUBE 0.211 1.000 0.211 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1918 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

1919 TUBE TUBE 0.450 1.000 0.450 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1920 TUBE TUBE 0.349 1.000 0.349 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1921 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1922 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1924 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1925 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1926 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1927 TUBE TUBE 0.381 1.000 0.381 Slenderness 2 8.806 104.529 34.720 80.392

1928 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1929 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1930 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1931 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1932 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1933 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1934 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1935 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1936 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1937 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1938 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1940 TUBE TUBE 0.331 1.000 0.331 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1941 TUBE TUBE 0.454 1.000 0.454 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1942 TUBE TUBE 0.284 1.000 0.284 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1943 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1944 TUBE TUBE 0.222 1.000 0.222 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1945 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1946 TUBE TUBE 0.212 1.000 0.212 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1947 TUBE TUBE 0.203 1.000 0.203 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

1948 TUBE TUBE 0.334 1.000 0.334 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1949 TUBE TUBE 0.441 1.000 0.441 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1950 TUBE TUBE 0.282 1.000 0.282 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1951 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

Page 104: Design Report for Acropolis Tower

22/05/2013

1952 TUBE TUBE 0.222 1.000 0.222 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1953 TUBE TUBE 0.221 1.000 0.221 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1954 TUBE TUBE 0.211 1.000 0.211 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1955 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

1956 TUBE TUBE 0.451 1.000 0.451 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1957 TUBE TUBE 0.350 1.000 0.350 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1958 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1959 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1961 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1962 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1963 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1964 TUBE TUBE 0.381 1.000 0.381 Slenderness 2 8.806 104.529 34.720 80.392

1965 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1966 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1967 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1968 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1969 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1970 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1971 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

1972 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1973 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1974 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1975 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

1977 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1978 TUBE TUBE 0.457 1.000 0.457 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1979 TUBE TUBE 0.286 1.000 0.286 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1980 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1981 TUBE TUBE 0.224 1.000 0.224 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1982 TUBE TUBE 0.223 1.000 0.223 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1983 TUBE TUBE 0.214 1.000 0.214 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1984 TUBE TUBE 0.203 1.000 0.203 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

1985 TUBE TUBE 0.335 1.000 0.335 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1986 TUBE TUBE 0.443 1.000 0.443 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1987 TUBE TUBE 0.284 1.000 0.284 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1988 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

1989 TUBE TUBE 0.224 1.000 0.224 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1990 TUBE TUBE 0.223 1.000 0.223 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1991 TUBE TUBE 0.212 1.000 0.212 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1992 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

1993 TUBE TUBE 0.454 1.000 0.454 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

1994 TUBE TUBE 0.351 1.000 0.351 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

1995 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1996 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1998 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

1999 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2000 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2001 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

2002 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2003 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2004 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2005 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2006 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2007 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2008 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

2009 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2010 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2011 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2012 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2014 TUBE TUBE 0.335 1.000 0.335 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2015 TUBE TUBE 0.460 1.000 0.460 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2016 TUBE TUBE 0.287 1.000 0.287 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2017 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2018 TUBE TUBE 0.226 1.000 0.226 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2019 TUBE TUBE 0.225 1.000 0.225 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2020 TUBE TUBE 0.215 1.000 0.215 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2021 TUBE TUBE 0.203 1.000 0.203 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

2022 TUBE TUBE 0.337 1.000 0.337 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2023 TUBE TUBE 0.445 1.000 0.445 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2024 TUBE TUBE 0.286 1.000 0.286 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

Page 105: Design Report for Acropolis Tower

22/05/2013

2025 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2026 TUBE TUBE 0.226 1.000 0.226 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2027 TUBE TUBE 0.225 1.000 0.225 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2028 TUBE TUBE 0.213 1.000 0.213 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2029 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

2030 TUBE TUBE 0.457 1.000 0.457 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2031 TUBE TUBE 0.353 1.000 0.353 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2032 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2033 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2035 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2036 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2037 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2038 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

2039 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2040 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2041 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2042 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2043 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2044 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2045 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

2046 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2047 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2048 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2049 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2051 TUBE TUBE 0.322 1.000 0.322 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2052 TUBE TUBE 0.446 1.000 0.446 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2053 TUBE TUBE 0.276 1.000 0.276 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2054 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2055 TUBE TUBE 0.216 1.000 0.216 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2056 TUBE TUBE 0.215 1.000 0.215 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2057 TUBE TUBE 0.203 1.000 0.203 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2058 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

2059 TUBE TUBE 0.323 1.000 0.323 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2060 TUBE TUBE 0.429 1.000 0.429 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2061 TUBE TUBE 0.274 1.000 0.274 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2062 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2063 TUBE TUBE 0.216 1.000 0.216 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2064 TUBE TUBE 0.215 1.000 0.215 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2065 TUBE TUBE 0.202 1.000 0.202 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2066 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

2067 TUBE TUBE 0.442 1.000 0.442 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2068 TUBE TUBE 0.339 1.000 0.339 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2069 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2070 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2072 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2073 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2074 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2075 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

2076 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2077 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2078 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2079 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2080 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2081 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2082 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

2083 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2084 TUBE TUBE 0.381 1.000 0.381 Slenderness 1 8.806 104.529 34.720 80.392

2085 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2086 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2088 TUBE TUBE 0.242 1.000 0.242 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2089 TUBE TUBE 0.348 1.000 0.348 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2090 TUBE TUBE 0.204 1.000 0.204 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2091 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2092 TUBE TUBE 0.145 1.000 0.145 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2093 TUBE TUBE 0.144 1.000 0.144 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2094 TUBE TUBE 0.134 1.000 0.134 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2095 TUBE TUBE 0.203 1.000 0.203 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

2096 TUBE TUBE 0.239 1.000 0.239 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2097 TUBE TUBE 0.329 1.000 0.329 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

Page 106: Design Report for Acropolis Tower

22/05/2013

2098 TUBE TUBE 0.202 1.000 0.202 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2099 TUBE TUBE 0.203 1.000 0.203 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2100 TUBE TUBE 0.146 1.000 0.146 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2101 TUBE TUBE 0.145 1.000 0.145 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2102 TUBE TUBE 0.133 1.000 0.133 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2103 TUBE TUBE 0.203 1.000 0.203 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

2104 TUBE TUBE 0.343 1.000 0.343 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2105 TUBE TUBE 0.253 1.000 0.253 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2107 TUBE TUBE 0.434 1.000 0.434 Slenderness 2 8.806 104.529 34.720 80.392

2108 TUBE TUBE 0.434 1.000 0.434 Slenderness 1 8.806 104.529 34.720 80.392

2109 TUBE TUBE 0.434 1.000 0.434 Slenderness 1 8.806 104.529 34.720 80.392

2110 TUBE TUBE 0.434 1.000 0.434 Slenderness 1 8.806 104.529 34.720 80.392

2111 TUBE TUBE 0.451 1.000 0.451 Major Axis B 5 8.806 104.529 34.720 80.392

2112 TUBE TUBE 0.567 1.000 0.567 Sec. 9.3.2.2 5 8.806 104.529 34.720 80.392

2113 TUBE TUBE 0.567 1.000 0.567 Sec. 9.3.2.2 5 8.806 104.529 34.720 80.392

2114 TUBE TUBE 0.434 1.000 0.434 Slenderness 1 8.806 104.529 34.720 80.392

2115 TUBE TUBE 0.195 1.000 0.195 Slenderness 1 8.806 104.529 34.720 80.392

2116 TUBE TUBE 0.195 1.000 0.195 Slenderness 1 8.806 104.529 34.720 80.392

2117 TUBE TUBE 0.434 1.000 0.434 Slenderness 1 8.806 104.529 34.720 80.392

2118 TUBE TUBE 0.452 1.000 0.452 Major Axis B 5 8.806 104.529 34.720 80.392

2119 TUBE TUBE 0.571 1.000 0.571 Sec. 9.3.2.2 5 8.806 104.529 34.720 80.392

2120 TUBE TUBE 0.561 1.000 0.561 Sec. 9.3.2.2 5 8.806 104.529 34.720 80.392

2121 TUBE TUBE 0.434 1.000 0.434 Slenderness 1 8.806 104.529 34.720 80.392

2122 TUBE TUBE 0.195 1.000 0.195 Slenderness 1 8.806 104.529 34.720 80.392

2123 TUBE TUBE 0.058 1.000 0.058 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2124 TUBE TUBE 0.085 1.000 0.085 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2125 TUBE TUBE 0.090 1.000 0.090 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2126 TUBE TUBE 0.165 1.000 0.165 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2127 TUBE TUBE 0.075 1.000 0.075 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2128 TUBE TUBE 0.059 1.000 0.059 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2129 TUBE TUBE 0.089 1.000 0.089 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2130 TUBE TUBE 0.137 1.000 0.137 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2131 TUBE TUBE 0.075 1.000 0.075 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2132 TUBE TUBE 0.057 1.000 0.057 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2133 TUBE TUBE 0.090 1.000 0.090 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2134 TUBE TUBE 0.161 1.000 0.161 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2135 TUBE TUBE 0.077 1.000 0.077 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2136 TUBE TUBE 0.049 1.000 0.049 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2137 TUBE TUBE 0.088 1.000 0.088 Sec. 9.3.2.2 5 41.760 3.16E 3 1.06E 3 2.45E 3

2138 TUBE TUBE 0.082 1.000 0.082 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2139 TUBE TUBE 0.195 1.000 0.195 Slenderness 1 8.806 104.529 34.720 80.392

2140 TUBE TUBE 0.306 1.000 0.306 Slenderness 1 8.806 69.625 69.625 104.211

2141 TUBE TUBE 0.138 1.000 0.138 Slenderness 1 8.806 69.625 69.625 104.211

2142 TUBE TUBE 0.138 1.000 0.138 Slenderness 1 8.806 69.625 69.625 104.211

2143 TUBE TUBE 0.138 1.000 0.138 Slenderness 1 8.806 69.625 69.625 104.211

2144 TUBE TUBE 0.306 1.000 0.306 Slenderness 1 8.806 69.625 69.625 104.211

2145 TUBE TUBE 0.138 1.000 0.138 Slenderness 1 8.806 69.625 69.625 104.211

2146 TUBE TUBE 0.306 1.000 0.306 Slenderness 3 8.806 69.625 69.625 104.211

2147 TUBE TUBE 0.297 1.000 0.297 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2148 TUBE TUBE 0.306 1.000 0.306 Slenderness 1 8.806 69.625 69.625 104.211

2149 TUBE TUBE 0.035 1.000 0.035 Tension 5 8.806 69.625 69.625 104.211

2150 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2151 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2152 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2153 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2154 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2155 TUBE TUBE 0.032 1.000 0.032 Slenderness 1 8.806 69.625 69.625 104.211

2156 TUBE TUBE 0.115 1.000 0.115 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2157 TUBE TUBE 0.256 1.000 0.256 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2158 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2159 TUBE TUBE 0.269 1.000 0.269 Slenderness 2 8.806 69.625 69.625 104.211

2160 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2161 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2162 TUBE TUBE 0.269 1.000 0.269 Slenderness 1 8.806 69.625 69.625 104.211

2163 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2164 TUBE TUBE 0.269 1.000 0.269 Slenderness 3 8.806 69.625 69.625 104.211

2165 TUBE TUBE 0.394 1.000 0.394 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2166 TUBE TUBE 0.269 1.000 0.269 Slenderness 3 8.806 69.625 69.625 104.211

2167 TUBE TUBE 0.037 1.000 0.037 Tension 5 8.806 69.625 69.625 104.211

Page 107: Design Report for Acropolis Tower

22/05/2013

2168 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2169 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2170 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2171 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2172 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2173 TUBE TUBE 0.034 1.000 0.034 Minor Axis B 3 8.806 69.625 69.625 104.211

2174 TUBE TUBE 0.144 1.000 0.144 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2175 TUBE TUBE 0.272 1.000 0.272 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2176 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2177 TUBE TUBE 0.269 1.000 0.269 Slenderness 3 8.806 69.625 69.625 104.211

2178 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2179 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2180 TUBE TUBE 0.269 1.000 0.269 Slenderness 1 8.806 69.625 69.625 104.211

2181 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2182 TUBE TUBE 0.269 1.000 0.269 Slenderness 3 8.806 69.625 69.625 104.211

2183 TUBE TUBE 0.410 1.000 0.410 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2184 TUBE TUBE 0.269 1.000 0.269 Slenderness 3 8.806 69.625 69.625 104.211

2185 TUBE TUBE 0.038 1.000 0.038 Tension 5 8.806 69.625 69.625 104.211

2186 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2187 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2188 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2189 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2190 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2191 TUBE TUBE 0.036 1.000 0.036 Minor Axis B 3 8.806 69.625 69.625 104.211

2192 TUBE TUBE 0.149 1.000 0.149 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2193 TUBE TUBE 0.278 1.000 0.278 Minor Axis B 5 8.806 69.625 69.625 104.211

2194 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2195 TUBE TUBE 0.269 1.000 0.269 Slenderness 3 8.806 69.625 69.625 104.211

2196 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2197 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2198 TUBE TUBE 0.269 1.000 0.269 Slenderness 1 8.806 69.625 69.625 104.211

2199 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2200 TUBE TUBE 0.269 1.000 0.269 Slenderness 3 8.806 69.625 69.625 104.211

2201 TUBE TUBE 0.408 1.000 0.408 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2202 TUBE TUBE 0.269 1.000 0.269 Slenderness 3 8.806 69.625 69.625 104.211

2203 TUBE TUBE 0.038 1.000 0.038 Tension 5 8.806 69.625 69.625 104.211

2204 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2205 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2206 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2207 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2208 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2209 TUBE TUBE 0.036 1.000 0.036 Minor Axis B 3 8.806 69.625 69.625 104.211

2210 TUBE TUBE 0.148 1.000 0.148 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2211 TUBE TUBE 0.277 1.000 0.277 Minor Axis B 5 8.806 69.625 69.625 104.211

2212 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2213 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2214 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2215 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2216 TUBE TUBE 0.269 1.000 0.269 Slenderness 1 8.806 69.625 69.625 104.211

2217 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2218 TUBE TUBE 0.269 1.000 0.269 Slenderness 3 8.806 69.625 69.625 104.211

2219 TUBE TUBE 0.406 1.000 0.406 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2220 TUBE TUBE 0.269 1.000 0.269 Slenderness 3 8.806 69.625 69.625 104.211

2221 TUBE TUBE 0.038 1.000 0.038 Tension 5 8.806 69.625 69.625 104.211

2222 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2223 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2224 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2225 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2226 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2227 TUBE TUBE 0.036 1.000 0.036 Minor Axis B 3 8.806 69.625 69.625 104.211

2228 TUBE TUBE 0.147 1.000 0.147 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2229 TUBE TUBE 0.276 1.000 0.276 Minor Axis B 5 8.806 69.625 69.625 104.211

2230 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2231 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2232 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2233 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2234 TUBE TUBE 0.269 1.000 0.269 Slenderness 1 8.806 69.625 69.625 104.211

2235 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2236 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

Page 108: Design Report for Acropolis Tower

22/05/2013

2237 TUBE TUBE 0.406 1.000 0.406 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2238 TUBE TUBE 0.269 1.000 0.269 Slenderness 3 8.806 69.625 69.625 104.211

2239 TUBE TUBE 0.038 1.000 0.038 Tension 5 8.806 69.625 69.625 104.211

2240 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2241 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2242 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2243 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2244 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2245 TUBE TUBE 0.036 1.000 0.036 Minor Axis B 3 8.806 69.625 69.625 104.211

2246 TUBE TUBE 0.147 1.000 0.147 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2247 TUBE TUBE 0.276 1.000 0.276 Minor Axis B 5 8.806 69.625 69.625 104.211

2248 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2249 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2250 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2251 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2252 TUBE TUBE 0.269 1.000 0.269 Slenderness 1 8.806 69.625 69.625 104.211

2253 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2254 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2255 TUBE TUBE 0.406 1.000 0.406 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2256 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2257 TUBE TUBE 0.038 1.000 0.038 Tension 5 8.806 69.625 69.625 104.211

2258 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2259 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2260 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2261 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2262 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2263 TUBE TUBE 0.036 1.000 0.036 Minor Axis B 3 8.806 69.625 69.625 104.211

2264 TUBE TUBE 0.147 1.000 0.147 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2265 TUBE TUBE 0.276 1.000 0.276 Minor Axis B 5 8.806 69.625 69.625 104.211

2266 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2267 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2268 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2269 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2270 TUBE TUBE 0.269 1.000 0.269 Slenderness 1 8.806 69.625 69.625 104.211

2271 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2272 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2273 TUBE TUBE 0.406 1.000 0.406 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2274 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2275 TUBE TUBE 0.038 1.000 0.038 Tension 5 8.806 69.625 69.625 104.211

2276 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2277 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2278 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2279 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2280 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2281 TUBE TUBE 0.036 1.000 0.036 Minor Axis B 3 8.806 69.625 69.625 104.211

2282 TUBE TUBE 0.147 1.000 0.147 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2283 TUBE TUBE 0.276 1.000 0.276 Minor Axis B 5 8.806 69.625 69.625 104.211

2284 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2285 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2286 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2287 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2288 TUBE TUBE 0.269 1.000 0.269 Slenderness 1 8.806 69.625 69.625 104.211

2289 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2290 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2291 TUBE TUBE 0.408 1.000 0.408 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2292 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2293 TUBE TUBE 0.038 1.000 0.038 Tension 5 8.806 69.625 69.625 104.211

2294 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2295 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2296 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2297 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2298 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2299 TUBE TUBE 0.036 1.000 0.036 Minor Axis B 3 8.806 69.625 69.625 104.211

2300 TUBE TUBE 0.148 1.000 0.148 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2301 TUBE TUBE 0.277 1.000 0.277 Minor Axis B 5 8.806 69.625 69.625 104.211

2302 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2303 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2304 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2305 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

Page 109: Design Report for Acropolis Tower

22/05/2013

2306 TUBE TUBE 0.269 1.000 0.269 Slenderness 1 8.806 69.625 69.625 104.211

2307 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2308 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2309 TUBE TUBE 0.410 1.000 0.410 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2310 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2311 TUBE TUBE 0.038 1.000 0.038 Tension 5 8.806 69.625 69.625 104.211

2312 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2313 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2314 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2315 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2316 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2317 TUBE TUBE 0.036 1.000 0.036 Minor Axis B 3 8.806 69.625 69.625 104.211

2318 TUBE TUBE 0.149 1.000 0.149 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2319 TUBE TUBE 0.279 1.000 0.279 Minor Axis B 5 8.806 69.625 69.625 104.211

2320 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2321 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2322 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2323 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2324 TUBE TUBE 0.269 1.000 0.269 Slenderness 1 8.806 69.625 69.625 104.211

2325 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2326 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2327 TUBE TUBE 0.395 1.000 0.395 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2328 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2329 TUBE TUBE 0.037 1.000 0.037 Tension 5 8.806 69.625 69.625 104.211

2330 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2331 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2332 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2333 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2334 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2335 TUBE TUBE 0.034 1.000 0.034 Minor Axis B 3 8.806 69.625 69.625 104.211

2336 TUBE TUBE 0.147 1.000 0.147 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2337 TUBE TUBE 0.269 1.000 0.269 Minor Axis B 5 8.806 69.625 69.625 104.211

2338 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2339 TUBE TUBE 0.269 1.000 0.269 Slenderness 2 8.806 69.625 69.625 104.211

2340 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2341 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2342 TUBE TUBE 0.269 1.000 0.269 Slenderness 1 8.806 69.625 69.625 104.211

2343 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2344 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2345 TUBE TUBE 0.301 1.000 0.301 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2346 TUBE TUBE 0.121 1.000 0.121 Slenderness 1 8.806 69.625 69.625 104.211

2347 TUBE TUBE 0.035 1.000 0.035 Tension 5 8.806 69.625 69.625 104.211

2348 TUBE TUBE 0.188 1.000 0.188 Slenderness 1 8.806 69.625 69.625 104.211

2349 TUBE TUBE 0.105 1.000 0.105 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2350 TUBE TUBE 0.072 1.000 0.072 Slenderness 1 8.806 69.625 69.625 104.211

2351 TUBE TUBE 0.101 1.000 0.101 Slenderness 1 8.806 69.625 69.625 104.211

2352 TUBE TUBE 0.056 1.000 0.056 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2353 TUBE TUBE 0.032 1.000 0.032 Slenderness 1 8.806 69.625 69.625 104.211

2354 TUBE TUBE 0.127 1.000 0.127 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2355 TUBE TUBE 0.248 1.000 0.248 Sec. 9.3.2.2 5 8.806 69.625 69.625 104.211

2356 TUBE TUBE 0.138 1.000 0.138 Slenderness 1 8.806 69.625 69.625 104.211

2357 TUBE TUBE 0.307 1.000 0.307 Slenderness 1 8.806 69.625 69.625 104.211

2358 TUBE TUBE 0.138 1.000 0.138 Slenderness 1 8.806 69.625 69.625 104.211

2359 TUBE TUBE 0.138 1.000 0.138 Slenderness 1 8.806 69.625 69.625 104.211

2360 TUBE TUBE 0.138 1.000 0.138 Slenderness 1 8.806 69.625 69.625 104.211

2361 TUBE TUBE 0.307 1.000 0.307 Slenderness 1 8.806 69.625 69.625 104.211

2362 TUBE TUBE 0.307 1.000 0.307 Slenderness 1 8.806 69.625 69.625 104.211

2363 TUBE TUBE 0.138 1.000 0.138 Slenderness 1 8.806 69.625 69.625 104.211

2364 TUBE TUBE 0.162 1.000 0.162 Major Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2365 TUBE TUBE 0.098 1.000 0.098 Minor Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2366 TUBE TUBE 0.055 1.000 0.055 Slenderness 2 41.760 3.16E 3 1.06E 3 2.45E 3

2367 TUBE TUBE 0.055 1.000 0.055 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

2368 TUBE TUBE 0.055 1.000 0.055 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

2369 TUBE TUBE 0.055 1.000 0.055 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

2370 TUBE TUBE 0.055 1.000 0.055 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

2371 TUBE TUBE 0.055 1.000 0.055 Slenderness 3 41.760 3.16E 3 1.06E 3 2.45E 3

2372 TUBE TUBE 0.025 1.000 0.025 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2373 TUBE TUBE 0.025 1.000 0.025 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2374 TUBE TUBE 0.025 1.000 0.025 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

Page 110: Design Report for Acropolis Tower

22/05/2013

2375 TUBE TUBE 0.025 1.000 0.025 Slenderness 1 41.760 3.16E 3 1.06E 3 2.45E 3

2376 TUBE TUBE 0.032 1.000 0.032 Minor Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2377 TUBE TUBE 0.056 1.000 0.056 Minor Axis B 5 41.760 3.16E 3 1.06E 3 2.45E 3

2378 TUBE TUBE 0.433 1.000 0.433 Slenderness 3 8.806 104.529 34.720 80.392

2379 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

2380 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

2381 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

2382 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

2383 TUBE TUBE 0.381 1.000 0.381 Slenderness 3 8.806 104.529 34.720 80.392

2384 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2385 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2386 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2387 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2388 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2389 TUBE TUBE 0.171 1.000 0.171 Slenderness 1 8.806 104.529 34.720 80.392

2390 TUBE TUBE 0.195 1.000 0.195 Slenderness 1 8.806 104.529 34.720 80.392

Utilisation Ratio for all beams are less than 1.00 hence the structure is safe.

Page 111: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

CHECK FOR MS CLAET, SCREW & ALUMINIUM RUNNER

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 112: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

Check for MS Cleat Through Bolt

Shear Check on Bolt

Provide 6 diameter, 25 mm long SS through bolt @ 175 mm c/c

i)Shear Stress Check for Bolt

Loading height of ZCP panel a = 1.55 m

Loading width of ZCP panel b = 0.175 m

Load area of the panel A = 0.27 m2

Wind pressure Pw = 2.52 Kpa (As given in Tender Specification)

DL of ZCP Pd = 0.1 Kpa

Load Factor F = 1.5 -

Total shear load due to WL V = 1025.33 N

Shear load per bolt V/n = 1025.33 N

Number of bolt n = 1.00 -

Required c/c distance(spacing) of bolt S = 175.00 mm

Diameter of Bolt d = 6.00 mm

Unthreaded Shank Area of Bolt As = 20.10 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Bolt psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Bolt Psb = 2912.49 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 1025.33 N

Provide 6 diameter, 25 mm long SS through bolt @ 175 mm c/c Hence ok

Tension Check on Bolt

Unthreaded Shank Area of Bolt At = 20.10 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Width of ZCP Panel b = 0.175 m

Length of ZCP Panel l = 0.925 m

DL of ZCP Pd = 0.1 Kpa

Load Factor F = 1.5 -

Point Load P = 24.28 N

Maximum Eccentricity e = 10 mm

Maximum Bending Moment MZ = 242.81 N-mm

Lever Arm Larm = 25 mm

Number of Bolt n = 1.00 -

Maximum Tension per Bolt Pact = 9.71 N

Tension Strength of Bolt pt = 210.00 N/mm2

or 350.00 N/mm2

Tension Capacity of Bolt Pnom = 3376.80 N

> 9.71

Hence ok

Combined Tension & Shear Check

Unity Ratio UR = 0.35 -

< 1.4 -

Hence ok

Provide 6 diameter, 25 mm long SS through bolt @ 175 mm c/c

PE-02 WITH CLADDING

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.a, Pg. 53

( Refer Fischer India Range Catalogue, Technical Data,

Page-144)

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.c, Pg. 54

Refer P291, Clause 5.2.2.d, Pg. 55

Refer P291, Clause 5.2.2.c, Pg. 54

Page 113: Design Report for Acropolis Tower

Check for Aluminium Runner

Provide (50x50)x2.8 thk Angle (Aluminium) as Runner

Deflection Check

Span Length L = 0.175 m

Load Factor F = 1.5 -

Point Load P = 683.55 N

Elastic Modulas of Aluminium E = 65500 N/mm2

Leg Size of the Angle a = 50 mm

Thickness of the Angle t = 2.8 mm

C.G. Distance to Extreme Fibre y = 36.46 mm

Moment of Inertia I = 67117.12 mm4

Torsional Constant J = 711.24 mm4

C/S Area A = 272.16 mm2

Radius of Gyration r = 15.70 mm

Section Modulas Z = 1840.84 mm3

Actual Deflection δcal = 0.02 mm

Allowable Deflection δallow = 0.97 mm

> 0.02 mm

Hence ok

Torsional Buckling Check

Maximum Load Eccentricity emax = 25.00 mm

Point Load P = 683.55 N

Maximum Torsional Moment Tmax = 17088.75 N-mm

Maximum Torsional Moment in Each Support Tmax, s = 8544.38 N-mm

Torsional Constant J = 711.24 mm3

Actual Torsional Stress ζcal = 33.64 N/mm2

Radius of Curvature of the Section R = 0.00 mm

Slenderness Ratio λt = 92.86 -

Actual Torsional Stress ζallow = 42.00 N/mm2

> 33.64 N/mm2

Hence ok

Check for Aluminium Cleat Screw

Shear Check on Screws

Provide 2 Nos 8 x 25 mm long SS 304 through pan head screw per Alu. cleat

i)Shear Stress Check for Screw

Total shear load due to DL V = 40.69 N

Shear load per screw V/n = 20.34 N

Number of Screw n = 2.00 -

Diameter of Screw d = 4.00 mm

Unthreaded Shank Area of Screw As = 3.14 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Screw Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Screw Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Screw psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Screw Psb = 910.80 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 20.34 N

Provide 2 Nos 8 x 25 mm long SS 304 through pan head screw per Alu. cleat Hence ok

Tension Check on Screws

Unthreaded Shank Area of Screw At = 3.14 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Screw Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Screw Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Number of Screw n = 2.00 -

Maximum Tension per Screw Pact = 512.66 N

Tension Strength of Screw pt = 210.00 N/mm2

or 350.00 N/mm2

Tension Capacity of Screw Pnom = 528.00 N

> 512.66

Hence ok

Combined Tension & Shear Check

Unity Ratio UR = 0.99 -

< 1.4 -

Hence ok

Provide 2 Nos 8 x 25 mm long SS 304 through pan head screw per Alu. cleat

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.c, Pg. 54

Refer P291, Clause 5.2.2.c, Pg. 54

Refer P291, Clause 5.2.2.d, Pg. 55

( Refer Fischer India Range Catalogue, Technical Data,

Page-144)

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.a, Pg. 53

Page 114: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR BOLT & BASE PLATE FOR PE 02 WITH WEST SIDE ZCP

CLADDING R3

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 115: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR 8TH

FL CLADDING BEAM FACE

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 116: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M8 hnom3Effective embedment depth: hef = 70 mm, hnom = 79 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 16 mmAnchor plate: lx x ly x t = 130 x 130 x 16 mm (Recommended plate thickness: not calculated)Profile Square hollow; (L x W x T) = 72 mm x 72 mm x 3 mmBase material: uncracked concrete , C20/25, fc = 20.00 N/mm²; h = 250 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 117: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 8.338 1.406 1.037 0.949

2 0.000 2.957 1.037 2.769

3 8.669 1.230 -0.782 0.949

4 0.000 2.877 -0.782 2.769

max. concrete compressive strain [‰]: 0.34max. concrete compressive stress [N/mm²]: 10.09resulting tension force in (x/y)=(-50/1) [kN]: 17.010resulting compression force in (x/y)=(59/-6) [kN]: 9.965

1 2

3 4

TensionCompressionx

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 8.669 13.071 66 OK

Pullout Strength* 8.669 10.667 81 OK

Concrete Breakout Strength** 17.008 28.093 61 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

18.300

gM,s

1.400

NRd,s [kN]

13.071

NSd [kN]

8.669

Pullout StrengthNRk,p [kN]

16.000

yc

1.000

gM,p

1.500

NRd,p [kN]

10.667

NSd [kN]

8.669

Concrete Breakout StrengthAc,N [mm2]

65100

Ac,N

0 [mm2]

44100

yA,N

1.476

ccr,N [mm]

105

scr,N [mm]

210

ec1,N [mm]

0

yec1,N

1.000

ec2,N [mm]

1

yec2,N

0.991

ys,N

1.000

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

28.811

gM,c

1.500

NRd,c [kN]

28.093

NSd [kN]

17.008

2

Page 118: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 2.957 9.840 30 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 7.451 55.409 13 OK

Concrete edge failure in direction

x+**

5.633 43.514 13 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

12.300

gM,s

1.250

VRd,s [kN]

9.840

VSd [kN]

2.957

Pryout StrengthAc,N [mm2]

96100

Ac,N

0 [mm2]

44100

yA,N

2.179

ccr,N [mm]

105

scr,N [mm]

210

k4

2.000

ec1,V [mm]

49

yec1,N

0.683

ec2,V [mm]

3

yec2,N

0.969

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

28.811

gM,c,p

1.500

VRd,c1 [kN]

55.409

VSd [kN]

7.451

Concrete edge failure in direction x+lf [mm]

70

dnom [mm]

8

kv

2.400

a

0.039

b

0.045

c1 [mm]

450

Ac,V [mm2]

362500

Ac,V

0 [mm2]

911250

yA,V

0.398

ys,V

1.000

yh,V

1.643

ya,V

1.538

ec,V [mm]

24

yec,V

0.966

yre,V

1.000

y90°,V

2.000

VRk,c

0 [kN]

134.455

n

2

gM,c

1.500

VRd,c [kN]

43.514

VSd [kN]

5.633

Note: Resistance limit acc. to fib (07/2011) Eq. (10.2-7) is governing5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

bN bV a Utilization bN,V [%] Status

steel 0.663 0.125 2.0 46 OK

concrete 0.813 0.134 1.5 78 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 6.420 [kN]

VSk = 2.190 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 119: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 120: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Square hollow, 72 mm x 72 mm x 3 mmHole diameter in the fixture: df = 9 mmPlate thickness (input): 16 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M8 hnom3Installation torque: 0.015 kNmHole diameter in the base material: 8 mmHole depth in the base material: 84 mmMinimum thickness of the base material: 120 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 -50 -50 350 450 - -2 50 -50 450 350 - -3 -50 50 350 450 - -4 50 50 450 350 - -

1 2

3 4

65.0 65.0

15.0 15.0

65.0

65.0

15.0

15.01 2

3 4

x

y

5

Page 121: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 122: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE

Factored Tension Force (from Hilti Report) = 8669.00 N

Eccentricity = 14 mm

Maximum Bending Moment = 121366 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 1195.42223 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 271686.87 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 28.02 mm

Required Section Modulas of Plate = 534.01 mm3

Plate Thickness Required = 10.69 mm

Thickness Provided = 16 mm

> 10.69 mm

Provide MS Plate of 130X130X16 thk. Hence ok

t

βb

Tfactored

e

M

fy

Zp

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

Md

b

Zreq.

treq.

Page 123: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR 8TH

FL GLAZING & JUNCTION

BEAM FACE

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 124: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M16 hnom3Effective embedment depth: hef = 120 mm, hnom = 132 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: Engineering judgement SOFA - based on ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 20 mmAnchor plate: lx x ly x t = 600 x 600 x 20 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 600 mm x 120 mm x 6 mmBase material: uncracked concrete , C20/25, fcc = 25.00 N/mm²; h = 250 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to ETAG 001, Annex C, 5.2.2.6 present.

Geometry [mm] & Loading [kN, kNm]

1

Page 125: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 21.250 0.515 0.510 -0.069

2 4.876 0.570 0.510 0.255

3 21.250 0.676 0.672 -0.069

4 4.876 0.719 0.672 0.255

5 21.250 0.892 0.889 -0.069

6 4.875 0.925 0.889 0.255

7 21.250 1.053 1.051 -0.069

8 4.875 1.081 1.051 0.255

max. concrete compressive strain [‰]: 0.15max. concrete compressive stress [N/mm²]: 4.36resulting tension force in (x/y)=(-94/0) [kN]: 104.500resulting compression force in (x/y)=(280/0) [kN]: 79.270

1 2

3 4

5 6

7 8

Tension Compression

x

y

3. Tension loadProof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 21.247 62.643 34 OK

Pullout Strength* 21.247 33.333 64 OK

Concrete Breakout Strength** 104.491 127.325 82 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

87.700

gM,s

1.400

NRd,s [kN]

62.643

NSd [kN]

21.247

Pullout StrengthNRk,p [kN]

50.000

yc

1.000

gM,p

1.500

NRd,p [kN]

33.333

NSd [kN]

21.247

Concrete Breakout StrengthAc,N [mm2]

567600

Ac,N

0 [mm2]

129600

ccr,N [mm]

180

scr,N [mm]

360

ec1,N [mm]

94

yec1,N

0.657

ec2,N [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

k1

10.100

NRk,c

0 [kN]

66.384

gM,c

1.500

NRd,c [kN]

127.325

NSd [kN]

104.491

2

Page 126: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear loadProof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 1.082 45.200 2 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 6.286 368.899 2 OK

Concrete edge failure in direction

x+**

6.325 61.379 10 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

56.500

gM,s

1.250

VRd,s [kN]

45.200

VSd [kN]

1.082

Pryout StrengthAc,N [mm2]

567600

Ac,N

0 [mm2]

129600

ccr,N [mm]

180

scr,N [mm]

360

k-factor

2.900

ec1,V [mm]

10

yec1,N

0.949

ec2,V [mm]

80

yec2,N

0.691

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

66.384

gM,c,p

1.500

VRd,c1 [kN]

368.899

VSd [kN]

6.286

Concrete edge failure in direction x+lf [mm]

120

dnom [mm]

16

k1

2.400

a

0.069

b

0.058

c1 [mm]

250

Ac,V [mm2]

312500

Ac,V

0 [mm2]

281250

ys,V

1.000

yh,V

1.225

ya,V

1.011

ec,V [mm]

50

yec,V

0.883

yre,V

1.000

VRk,c

0 [kN]

75.771

gM,c

1.500

VRd,c [kN]

61.379

VSd [kN]

6.325

5. Combined tension and shear loadsbN bV a Utilization bN,V [%] Status

0.821 0.103 - 77 OK

(bN + bV) / 1.2 <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 15.740 [kN]

VSk = 0.800 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 127: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method SOFA assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by filling the

gap with mortar of sufficient compressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• An SLS-check is not performed for SOFA and has to be provided by the user!• Checking the transfer of loads into the base material is required in accordance with ETAG 001, Annex C(2010)Section 7! The software

considers that the grout is installed under the anchor plate without creating air voids and before application of the loads.• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 4.1 of ETAG 001, Annex C! For largerdiameters of the clearance hole see Chapter 1.1. of ETAG 001, Annex C!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 128: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 600 mm x 120 mm x 6 mmHole diameter in the fixture: df = 18 mmPlate thickness (input): 20 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M16 hnom3Installation torque: 0.080 kNmHole diameter in the base material: 16 mmHole depth in the base material: 140 mmMinimum thickness of the base material: 180 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y Anchor x y c-x c+x c-y c+y

1 -150 250 250 550 - -2 150 250 550 250 - -3 -150 100 250 550 - -4 150 100 550 250 - -

5 -150 -100 250 550 - -6 150 -100 550 250 - -7 -150 -250 250 550 - -8 150 -250 550 250 - -

1 2

3 4

5 6

7 8

300.0 300.0

150.0 150.0

300.

030

0.0

50.0

50.0

1 2

3 4

5 6

7 8

x

y

5

Page 129: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 130: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE

Factored Tension Force (from Hilti Report) = 21250.00 N

Eccentricity = 25 mm

Maximum Bending Moment = 531250 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 3335.44148 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 758054.882 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 50.03 mm

Required Section Modulas of Plate = 2337.50 mm3

Plate Thickness Required = 16.74 mm

Thickness Provided = 20 mm

> 16.74 mm

Provide MS Plate of 600X600X20 thk. Hence ok

t

βb

Tfactored

e

M

fy

Zp

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

Md

b

Zreq.

treq.

Page 131: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR 9TH

& 11TH

FL JUNCTION BEAM

FACE

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 132: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M16 hnom1Effective embedment depth: hef = 65 mm, hnom = 77 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 20 mmAnchor plate: lx x ly x t = 400 x 350 x 20 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 400 mm x 120 mm x 6 mmBase material: uncracked concrete , C20/25, fc = 20.00 N/mm²; h = 250 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 133: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 8.787 2.671 2.054 1.708

2 8.072 2.079 2.054 0.319

3 7.357 2.316 2.054 -1.070

4 5.049 1.833 0.665 1.708

5 4.334 0.738 0.665 0.319

6 3.619 1.260 0.665 -1.070

max. concrete compressive strain [‰]: 0.00max. concrete compressive stress [N/mm²]: 0.00resulting tension force in (x/y)=(-12/-27) [kN]: 37.220resulting compression force in (x/y)=(0/0) [kN]: 0.000

1 2 3

4 5 6

Tension

Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 8.787 62.643 14 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 37.218 56.039 66 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

87.700

gM,s

1.400

NRd,s [kN]

62.643

NSd [kN]

8.787

Concrete Breakout StrengthAc,N [mm2]

170775

Ac,N

0 [mm2]

38025

yA,N

4.491

ccr,N [mm]

98

scr,N [mm]

195

ec1,N [mm]

12

yec1,N

0.894

ec2,N [mm]

23

yec2,N

0.812

ys,N

1.000

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

25.780

gM,c

1.500

NRd,c [kN]

56.039

NSd [kN]

37.218

2

Page 134: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 2.671 45.200 6 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength* 2.671 39.003 7 OK

Concrete edge failure in direction

y+**

6.487 18.252 36 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

56.500

gM,s

1.250

VRd,s [kN]

45.200

VSd [kN]

2.671

Pryout StrengthAc,N [mm2]

29756

Ac,N

0 [mm2]

38025

yA,N

0.783

ccr,N [mm]

98

scr,N [mm]

195

k4

2.900

ec1,V [mm]

0

yec1,N

1.000

ec2,V [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

25.780

gM,c,p

1.500

VRd,c1 [kN]

39.003

VSd [kN]

2.671

Concrete edge failure in direction y+lf [mm]

65

dnom [mm]

16

kv

2.400

a

0.062

b

0.063

c1 [mm]

167

Ac,V [mm2]

200000

Ac,V

0 [mm2]

125000

yA,V

1.600

ys,V

1.000

yh,V

1.000

ya,V

1.306

ec,V [mm]

90

yec,V

0.735

yre,V

1.000

y90°,V

2.500

VRk,c

0 [kN]

35.658

n

2

gM,c

1.500

VRd,c [kN]

18.252

VSd [kN]

6.487

Note: Resistance limit acc. to fib (07/2011) Eq. (10.2-7) is governing5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

bN bV a Utilization bN,V [%] Status

steel 0.140 0.059 2.0 2 OK

concrete 0.664 0.355 1.5 75 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 6.510 [kN]

VSk = 1.980 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 135: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• The anchor plate overlaps the concrete plate edges. A local concrete spalling due to compression has to be checked separately!• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 136: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 400 mm x 120 mm x 6 mmHole diameter in the fixture: df = 18 mmPlate thickness (input): 20 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M16 hnom1Installation torque: 0.080 kNmHole diameter in the base material: 16 mmHole depth in the base material: 85 mmMinimum thickness of the base material: 140 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y Anchor x y c-x c+x c-y c+y

1 -150 25 250 550 - 1502 0 25 400 400 - 1503 150 25 550 250 - 150

4 -150 -125 250 550 - 3005 0 -125 400 400 - 3006 150 -125 550 250 - 300

1 2 3

4 5 6

200.0 200.0

50.0 50.0

175.

017

5.0

150.

050

.0

1 2 3

4 5 6

115.

0

x

y

5

Page 137: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/20/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 138: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE

Factored Tension Force (from Hilti Report) = 8787.00 N

Eccentricity = 25 mm

Maximum Bending Moment = 219675 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 3335.44148 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 758054.882 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 50.03 mm

Required Section Modulas of Plate = 966.57 mm3

Plate Thickness Required = 10.77 mm

Thickness Provided = 20 mm

> 10.77 mm

Provide MS Plate of 400X350X20 thk. Hence ok

t

βb

Tfactored

e

M

fy

Zp

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

Md

b

Zreq.

treq.

Page 139: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR FOR 9TH

& 11TH

FL JUNCTION BEAM SIDE

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 140: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M16 hnom2Effective embedment depth: hef = 80 mm, hnom = 92 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 16 mmAnchor plate: lx x ly x t = 400 x 250 x 16 mm (Recommended plate thickness: not calculated)Profile no profileBase material: uncracked concrete , C20/25, fc = 20.00 N/mm²; h = 250 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 141: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 0.134 2.833 0.000 -2.833

2 0.134 2.833 0.000 -2.833

3 0.134 2.833 0.000 -2.833

4 0.432 2.833 0.000 -2.833

5 0.432 2.833 0.000 -2.833

6 0.432 2.833 0.000 -2.833

max. concrete compressive strain [‰]: 0.00max. concrete compressive stress [N/mm²]: 0.12resulting tension force in (x/y)=(0/-26) [kN]: 1.699resulting compression force in (x/y)=(0/115) [kN]: 0.699

1 2 3

4 5 6

Tension

Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 0.432 62.643 1 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 1.699 40.043 4 OK

Splitting failure** 1.699 35.579 5 OK

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

87.700

gM,s

1.400

NRd,s [kN]

62.643

NSd [kN]

0.432

Concrete Breakout StrengthAc,N [mm2]

135000

Ac,N

0 [mm2]

57600

yA,N

2.344

ccr,N [mm]

120

scr,N [mm]

240

ec1,N [mm]

0

yec1,N

1.000

ec2,N [mm]

26

yec2,N

0.820

ys,N

0.887

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

35.200

gM,c

1.500

NRd,c [kN]

40.043

NSd [kN]

1.699

Splitting failureAc,N [mm2]

145000

Ac,N

0 [mm2]

78400

yA,N

1.849

ccr,sp [mm]

140

scr,sp [mm]

280

yh,sp

1.131

ec1,N [mm]

0

yec1,N

1.000

ec2,N [mm]

26

yec2,N

0.842

ys,N

0.861

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

35.200

gM,sp

1.500

NRd,sp [kN]

35.579

NSd [kN]

1.699

2

Page 142: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 2.833 45.200 6 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 17.000 141.556 12 OK

Concrete edge failure in direction

x+**

5.667 6.463 88 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

56.500

gM,s

1.250

VRd,s [kN]

45.200

VSd [kN]

2.833

Pryout StrengthAc,N [mm2]

135000

Ac,N

0 [mm2]

57600

yA,N

2.344

ccr,N [mm]

120

scr,N [mm]

240

k4

2.900

ec1,V [mm]

0

yec1,N

1.000

ec2,V [mm]

0

yec2,N

1.000

ys,N

0.887

yre,N

1.000

NRk,c

0 [kN]

35.200

gM,c,p

1.500

VRd,c1 [kN]

141.556

VSd [kN]

17.000

Concrete edge failure in direction x+lf [mm]

80

dnom [mm]

16

kv

2.400

a

0.069

b

0.063

c1 [mm]

167

Ac,V [mm2]

62500

Ac,V

0 [mm2]

125000

yA,V

0.500

ys,V

0.790

yh,V

1.000

ya,V

2.000

ec,V [mm]

0

yec,V

1.000

yre,V

1.000

y90°,V

2.000

VRk,c

0 [kN]

36.815

n

3

gM,c

1.500

VRd,c [kN]

6.463

VSd [kN]

5.667

Note: Resistance limit acc. to fib (07/2011) Eq. (10.2-7) is governing5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

bN bV a Utilization bN,V [%] Status

steel 0.007 0.063 2.0 0 OK

concrete 0.048 0.877 1.5 83 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 0.320 [kN]

VSk = 2.100 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 143: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• The anchor plate overlaps the concrete plate edges. A local concrete spalling due to compression has to be checked separately!• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 144: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: no profileHole diameter in the fixture: df = 18 mmPlate thickness (input): 16 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M16 hnom2Installation torque: 0.080 kNmHole diameter in the base material: 16 mmHole depth in the base material: 100 mmMinimum thickness of the base material: 160 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y Anchor x y c-x c+x c-y c+y

1 -150 50 250 550 175 752 0 50 400 400 175 753 150 50 550 250 175 75

4 -150 -50 250 550 75 1755 0 -50 400 400 75 1756 150 -50 550 250 75 175

1 2 3

4 5 6

200.0 200.0

50.0 50.0

125.

012

5.075

.075

.0

1 2 3

4 5 6125.

0

x

y

5

Page 145: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 146: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR FOR 10TH

FL CLADDING BEAM FACE

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 147: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M8 hnom2Effective embedment depth: hef = 40 mm, hnom = 49 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 10 mmAnchor plate: lx x ly x t = 130 x 130 x 10 mm (Recommended plate thickness: not calculated)Profile Square hollow; (L x W x T) = 72 mm x 72 mm x 3 mmBase material: uncracked concrete , C20/25, fc = 20.00 N/mm²; h = 250 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 148: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 3.202 2.664 0.972 2.480

2 1.292 2.766 0.972 2.590

3 4.412 2.626 0.862 2.480

4 2.502 2.730 0.862 2.590

max. concrete compressive strain [‰]: 0.00max. concrete compressive stress [N/mm²]: 0.00resulting tension force in (x/y)=(-17/11) [kN]: 11.410resulting compression force in (x/y)=(0/0) [kN]: 0.000

1 2

3 4

Tension

Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 4.412 13.071 34 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 11.409 18.528 62 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

18.300

gM,s

1.400

NRd,s [kN]

13.071

NSd [kN]

4.412

Concrete Breakout StrengthAc,N [mm2]

48400

Ac,N

0 [mm2]

14400

yA,N

3.361

ccr,N [mm]

60

scr,N [mm]

120

ec1,N [mm]

17

yec1,N

0.782

ec2,N [mm]

11

yec2,N

0.850

ys,N

1.000

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

12.445

gM,c

1.500

NRd,c [kN]

18.528

NSd [kN]

11.409

2

Page 149: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 2.766 9.840 28 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 10.782 40.070 27 OK

Concrete edge failure in direction

x+**

5.494 47.944 11 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

12.300

gM,s

1.250

VRd,s [kN]

9.840

VSd [kN]

2.766

Pryout StrengthAc,N [mm2]

48400

Ac,N

0 [mm2]

14400

yA,N

3.361

ccr,N [mm]

60

scr,N [mm]

120

k4

1.500

ec1,V [mm]

2

yec1,N

0.969

ec2,V [mm]

1

yec2,N

0.989

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

12.445

gM,c,p

1.500

VRd,c1 [kN]

40.070

VSd [kN]

10.782

Concrete edge failure in direction x+lf [mm]

40

dnom [mm]

8

kv

2.400

a

0.030

b

0.045

c1 [mm]

450

Ac,V [mm2]

362500

Ac,V

0 [mm2]

911250

yA,V

0.398

ys,V

1.000

yh,V

1.643

ya,V

1.715

ec,V [mm]

1

yec,V

0.998

yre,V

1.000

y90°,V

2.000

VRk,c

0 [kN]

128.537

n

2

gM,c

1.500

VRd,c [kN]

47.944

VSd [kN]

5.494

Note: Resistance limit acc. to fib (07/2011) Eq. (10.2-7) is governing5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

bN bV a Utilization bN,V [%] Status

steel 0.338 0.267 2.0 19 OK

concrete 0.616 0.269 1.5 62 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 3.270 [kN]

VSk = 2.050 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 150: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 151: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Square hollow, 72 mm x 72 mm x 3 mmHole diameter in the fixture: df = 9 mmPlate thickness (input): 10 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M8 hnom2Installation torque: 0.015 kNmHole diameter in the base material: 8 mmHole depth in the base material: 54 mmMinimum thickness of the base material: 100 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 -50 -50 350 450 - -2 50 -50 450 350 - -3 -50 50 350 450 - -4 50 50 450 350 - -

1 2

3 4

65.0 65.0

15.0 15.0

65.0

65.0

15.0

15.01 2

3 4

x

y

5

Page 152: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 153: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR FOR 10TH

FL GLAZING BEAM FACE

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 154: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M16 hnom1Effective embedment depth: hef = 65 mm, hnom = 77 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 20 mmAnchor plate: lx x ly x t = 300 x 250 x 20 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 300 mm x 120 mm x 6 mmBase material: uncracked concrete , C20/25, fc = 20.00 N/mm²; h = 1000 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 155: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 11.650 2.700 2.691 0.218

2 11.000 2.705 2.691 0.276

3 11.600 2.749 2.740 0.218

4 10.950 2.754 2.740 0.276

max. concrete compressive strain [‰]: 0.00max. concrete compressive stress [N/mm²]: 0.00resulting tension force in (x/y)=(-3/0) [kN]: 45.200resulting compression force in (x/y)=(0/0) [kN]: 0.000

1 2

3 4

Tension

Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 11.651 62.643 19 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 45.198 62.413 72 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

87.700

gM,s

1.400

NRd,s [kN]

62.643

NSd [kN]

11.651

Concrete Breakout StrengthAc,N [mm2]

142350

Ac,N

0 [mm2]

38025

yA,N

3.744

ccr,N [mm]

98

scr,N [mm]

195

ec1,N [mm]

3

yec1,N

0.972

ec2,N [mm]

0

yec2,N

0.998

ys,N

1.000

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

25.780

gM,c

1.500

NRd,c [kN]

62.413

NSd [kN]

45.198

2

Page 156: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 2.754 45.200 6 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 10.907 182.849 6 OK

Concrete edge failure in direction

x+**

5.459 60.782 9 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

56.500

gM,s

1.250

VRd,s [kN]

45.200

VSd [kN]

2.754

Pryout StrengthAc,N [mm2]

142350

Ac,N

0 [mm2]

38025

yA,N

3.744

ccr,N [mm]

98

scr,N [mm]

195

k4

2.900

ec1,V [mm]

0

yec1,N

0.998

ec2,V [mm]

2

yec2,N

0.982

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

25.780

gM,c,p

1.500

VRd,c1 [kN]

182.849

VSd [kN]

10.907

Concrete edge failure in direction x+lf [mm]

65

dnom [mm]

16

kv

2.400

a

0.036

b

0.050

c1 [mm]

500

Ac,V [mm2]

1252500

Ac,V

0 [mm2]

1125000

yA,V

1.113

ys,V

1.000

yh,V

1.000

ya,V

1.002

ec,V [mm]

1

yec,V

0.999

yre,V

1.000

y90°,V

2.000

VRk,c

0 [kN]

163.558

n

2

gM,c

1.500

VRd,c [kN]

60.782

VSd [kN]

5.459

Note: Resistance limit acc. to fib (07/2011) Eq. (10.2-7) is governing5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

bN bV a Utilization bN,V [%] Status

steel 0.186 0.060 2.0 4 OK

concrete 0.724 0.090 1.5 64 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 8.630 [kN]

VSk = 2.040 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 157: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 158: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 300 mm x 120 mm x 6 mmHole diameter in the fixture: df = 18 mmPlate thickness (input): 20 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M16 hnom1Installation torque: 0.080 kNmHole diameter in the base material: 16 mmHole depth in the base material: 85 mmMinimum thickness of the base material: 140 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 -100 85 300 500 - -2 100 85 500 300 - -3 -100 -85 300 500 - -4 100 -85 500 300 - -

1 2

3 4

150.0 150.0

50.0 50.0

125.

012

5.0

40.0

40.0

1 2

3 4

x

y

5

Page 159: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 160: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR 10TH

FL JUNCTION BEAM FACE

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 161: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M16 hnom1Effective embedment depth: hef = 65 mm, hnom = 77 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 20 mmAnchor plate: lx x ly x t = 300 x 250 x 20 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 300 mm x 120 mm x 6 mmBase material: uncracked concrete , C20/25, fc = 20.00 N/mm²; h = 250 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 162: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 11.790 2.558 1.821 1.797

2 11.000 2.658 1.821 1.936

3 4.138 2.644 1.939 1.797

4 3.348 2.740 1.939 1.936

max. concrete compressive strain [‰]: 0.00max. concrete compressive stress [N/mm²]: 0.00resulting tension force in (x/y)=(-5/43) [kN]: 30.270resulting compression force in (x/y)=(0/0) [kN]: 0.000

1 2

3 4

Tension

Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 11.786 62.643 19 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 30.268 42.448 71 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

87.700

gM,s

1.400

NRd,s [kN]

62.643

NSd [kN]

11.786

Concrete Breakout StrengthAc,N [mm2]

142350

Ac,N

0 [mm2]

38025

yA,N

3.744

ccr,N [mm]

98

scr,N [mm]

195

ec1,N [mm]

5

yec1,N

0.950

ec2,N [mm]

43

yec2,N

0.694

ys,N

1.000

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

25.780

gM,c

1.500

NRd,c [kN]

42.448

NSd [kN]

30.268

2

Page 163: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 2.740 45.200 6 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 10.597 175.043 6 OK

Concrete edge failure in direction

x+**

5.398 43.628 12 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

56.500

gM,s

1.250

VRd,s [kN]

45.200

VSd [kN]

2.740

Pryout StrengthAc,N [mm2]

142350

Ac,N

0 [mm2]

38025

yA,N

3.744

ccr,N [mm]

98

scr,N [mm]

195

k4

2.900

ec1,V [mm]

3

yec1,N

0.969

ec2,V [mm]

3

yec2,N

0.968

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

25.780

gM,c,p

1.500

VRd,c1 [kN]

175.043

VSd [kN]

10.597

Concrete edge failure in direction x+lf [mm]

65

dnom [mm]

16

kv

2.400

a

0.036

b

0.050

c1 [mm]

500

Ac,V [mm2]

417500

Ac,V

0 [mm2]

1125000

yA,V

0.371

ys,V

1.000

yh,V

1.732

ya,V

1.248

ec,V [mm]

2

yec,V

0.997

yre,V

1.000

y90°,V

2.000

VRk,c

0 [kN]

163.558

n

2

gM,c

1.500

VRd,c [kN]

43.628

VSd [kN]

5.398

Note: Resistance limit acc. to fib (07/2011) Eq. (10.2-7) is governing5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

bN bV a Utilization bN,V [%] Status

steel 0.188 0.057 2.0 4 OK

concrete 0.713 0.124 1.5 65 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 8.730 [kN]

VSk = 2.030 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 164: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 165: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 300 mm x 120 mm x 6 mmHole diameter in the fixture: df = 18 mmPlate thickness (input): 20 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M16 hnom1Installation torque: 0.080 kNmHole diameter in the base material: 16 mmHole depth in the base material: 85 mmMinimum thickness of the base material: 140 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 -100 85 300 500 - -2 100 85 500 300 - -3 -100 -85 300 500 - -4 100 -85 500 300 - -

1 2

3 4

150.0 150.0

50.0 50.0

125.

012

5.0

40.0

40.0

1 2

3 4

x

y

5

Page 166: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 167: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE

Factored Tension Force (from Hilti Report) = 11790.00 N

Eccentricity = 25 mm

Maximum Bending Moment = 294750 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 3335.44148 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 758054.882 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 50.03 mm

Required Section Modulas of Plate = 1296.90 mm3

Plate Thickness Required = 12.47 mm

Thickness Provided = 20 mm

> 12.47 mm

Provide MS Plate of 300X250X20 thk. Hence ok

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

Md

b

Zreq.

treq.

t

βb

Tfactored

e

M

fy

Zp

Page 168: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR 12TH

FL CLADDING BEAM FACE

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 169: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M8 hnom2Effective embedment depth: hef = 40 mm, hnom = 49 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 10 mmAnchor plate: lx x ly x t = 130 x 130 x 10 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 100 mm x 72 mm x 3 mmBase material: uncracked concrete , C20/25, fc = 20.00 N/mm²; h = 250 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 170: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 4.160 1.622 1.619 0.100

2 0.138 1.624 1.619 0.125

3 3.869 1.647 1.644 0.100

4 0.000 1.649 1.644 0.125

max. concrete compressive strain [‰]: 0.16max. concrete compressive stress [N/mm²]: 4.71resulting tension force in (x/y)=(-48/3) [kN]: 8.167resulting compression force in (x/y)=(60/-13) [kN]: 3.664

1 2

3 4

Tension

Compressionx

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 4.160 13.071 32 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 8.167 11.737 70 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

18.300

gM,s

1.400

NRd,s [kN]

13.071

NSd [kN]

4.160

Concrete Breakout StrengthAc,N [mm2]

38400

Ac,N

0 [mm2]

14400

yA,N

2.667

ccr,N [mm]

60

scr,N [mm]

120

ec1,N [mm]

32

yec1,N

0.655

ec2,N [mm]

14

yec2,N

0.810

ys,N

1.000

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

12.445

gM,c

1.500

NRd,c [kN]

11.737

NSd [kN]

8.167

2

Page 171: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 1.649 9.840 17 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 6.542 41.268 16 OK

Concrete edge failure in direction

x+**

3.273 28.030 12 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

12.300

gM,s

1.250

VRd,s [kN]

9.840

VSd [kN]

1.649

Pryout StrengthAc,N [mm2]

48400

Ac,N

0 [mm2]

14400

yA,N

3.361

ccr,N [mm]

60

scr,N [mm]

120

k4

1.500

ec1,V [mm]

0

yec1,N

0.999

ec2,V [mm]

1

yec2,N

0.987

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

12.445

gM,c,p

1.500

VRd,c1 [kN]

41.268

VSd [kN]

6.542

Concrete edge failure in direction x+lf [mm]

40

dnom [mm]

8

kv

2.400

a

0.030

b

0.045

c1 [mm]

450

Ac,V [mm2]

362500

Ac,V

0 [mm2]

911250

yA,V

0.398

ys,V

1.000

yh,V

1.643

ya,V

1.001

ec,V [mm]

0

yec,V

0.999

yre,V

1.000

y90°,V

2.000

VRk,c

0 [kN]

128.537

n

2

gM,c

1.500

VRd,c [kN]

28.030

VSd [kN]

3.273

Note: Resistance limit acc. to fib (07/2011) Eq. (10.2-7) is governing5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

bN bV a Utilization bN,V [%] Status

steel 0.318 0.165 2.0 13 OK

concrete 0.696 0.159 1.5 64 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 3.080 [kN]

VSk = 1.220 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 172: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 173: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 100 mm x 72 mm x 3 mmHole diameter in the fixture: df = 9 mmPlate thickness (input): 10 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M8 hnom2Installation torque: 0.015 kNmHole diameter in the base material: 8 mmHole depth in the base material: 54 mmMinimum thickness of the base material: 100 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 -50 50 - 450 - -2 50 50 - 350 - -3 -50 -50 - 450 - -4 50 -50 - 350 - -

1 2

3 4

65.0 65.0

15.0 15.0

65.0

65.0

15.0

15.0

1 2

3 4

x

y

5

Page 174: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 175: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE

Factored Tension Force (from Hilti Report) = 4150.00 N

Eccentricity = 14 mm

Maximum Bending Moment = 58100 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 466.961807 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 106127.684 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 28.02 mm

Required Section Modulas of Plate = 255.64 mm3

Plate Thickness Required = 7.40 mm

Thickness Provided = 10 mm

> 7.40 mm

Provide MS Plate of 130X130X10 thk. Hence ok

t

βb

Tfactored

e

M

fy

Zp

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

Md

b

Zreq.

treq.

Page 176: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR 12TH

FL JUNCTION1 & GLAZING

BEAM FACE

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 177: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M16 hnom3Effective embedment depth: hef = 120 mm, hnom = 132 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: Engineering judgement SOFA - based on ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 20 mmAnchor plate: lx x ly x t = 550 x 600 x 20 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 550 mm x 120 mm x 6 mmBase material: uncracked concrete , C20/25, fcc = 25.00 N/mm²; h = 300 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to ETAG 001, Annex C, 5.2.2.6 present.

Geometry [mm] & Loading [kN, kNm]

1

Page 178: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 21.720 1.264 1.263 -0.047

2 3.994 1.287 1.263 0.247

3 21.720 1.411 1.410 -0.047

4 3.990 1.431 1.410 0.247

5 21.710 1.608 1.607 -0.047

6 3.984 1.626 1.607 0.247

7 21.710 1.755 1.754 -0.047

8 3.979 1.771 1.754 0.247

max. concrete compressive strain [‰]: 0.15max. concrete compressive stress [N/mm²]: 4.49resulting tension force in (x/y)=(-103/0) [kN]: 102.800resulting compression force in (x/y)=(256/-1) [kN]: 77.250

1 2

3 4

5 6

7 8

Tension Compression

x

y

3. Tension loadProof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 21.724 62.643 35 OK

Pullout Strength* 21.724 33.333 65 OK

Concrete Breakout Strength** 102.812 123.019 84 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

87.700

gM,s

1.400

NRd,s [kN]

62.643

NSd [kN]

21.724

Pullout StrengthNRk,p [kN]

50.000

yc

1.000

gM,p

1.500

NRd,p [kN]

33.333

NSd [kN]

21.724

Concrete Breakout StrengthAc,N [mm2]

567600

Ac,N

0 [mm2]

129600

ccr,N [mm]

180

scr,N [mm]

360

ec1,N [mm]

103

yec1,N

0.635

ec2,N [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

k1

10.100

NRk,c

0 [kN]

66.384

gM,c

1.500

NRd,c [kN]

123.019

NSd [kN]

102.812

2

Page 179: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear loadProof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 1.772 45.200 4 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 12.096 457.461 3 OK

Concrete edge failure in direction

x+**

12.111 71.054 17 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

56.500

gM,s

1.250

VRd,s [kN]

45.200

VSd [kN]

1.772

Pryout StrengthAc,N [mm2]

567600

Ac,N

0 [mm2]

129600

ccr,N [mm]

180

scr,N [mm]

360

k-factor

2.900

ec1,V [mm]

3

yec1,N

0.986

ec2,V [mm]

38

yec2,N

0.825

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

66.384

gM,c,p

1.500

VRd,c1 [kN]

457.461

VSd [kN]

12.096

Concrete edge failure in direction x+lf [mm]

120

dnom [mm]

16

k1

2.400

a

0.069

b

0.058

c1 [mm]

250

Ac,V [mm2]

375000

Ac,V

0 [mm2]

281250

ys,V

1.000

yh,V

1.118

ya,V

1.003

ec,V [mm]

24

yec,V

0.941

yre,V

1.000

VRk,c

0 [kN]

75.771

gM,c

1.500

VRd,c [kN]

71.054

VSd [kN]

12.111

5. Combined tension and shear loadsbN bV a Utilization bN,V [%] Status

0.836 0.170 1.5 83 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 16.090 [kN]

VSk = 1.310 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 180: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method SOFA assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by filling the

gap with mortar of sufficient compressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• An SLS-check is not performed for SOFA and has to be provided by the user!• Checking the transfer of loads into the base material is required in accordance with ETAG 001, Annex C(2010)Section 7! The software

considers that the grout is installed under the anchor plate without creating air voids and before application of the loads.• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 4.1 of ETAG 001, Annex C! For largerdiameters of the clearance hole see Chapter 1.1. of ETAG 001, Annex C!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 181: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 550 mm x 120 mm x 6 mmHole diameter in the fixture: df = 18 mmPlate thickness (input): 20 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M16 hnom3Installation torque: 0.080 kNmHole diameter in the base material: 16 mmHole depth in the base material: 140 mmMinimum thickness of the base material: 180 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y Anchor x y c-x c+x c-y c+y

1 -150 250 - 550 - -2 150 250 - 250 - -3 -150 100 - 550 - -4 150 100 - 250 - -

5 -150 -100 - 550 - -6 150 -100 - 250 - -7 -150 -250 - 550 - -8 150 -250 - 250 - -

1 2

3 4

5 6

7 8

275.0 275.0

125.0 125.0

300.

030

0.0

50.0

50.0

1 2

3 4

5 6

7 8

x

y

5

Page 182: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 183: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE

Factored Tension Force (from Hilti Report) = 8819.00 N

Eccentricity = 25 mm

Maximum Bending Moment = 220475 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 3335.44148 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 758054.882 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 50.03 mm

Required Section Modulas of Plate = 970.09 mm3

Plate Thickness Required = 10.79 mm

Thickness Provided = 20 mm

> 10.79 mm

Provide MS Plate of 550X400X20 thk. Hence ok

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

Md

b

Zreq.

treq.

t

βb

Tfactored

e

M

fy

Zp

Page 184: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR FOR 12TH

FL JUNCTION2 BEAM FACE

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 185: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HST-R, M16Effective embedment depth: hef = 82 mm, hnom = 95 mmMaterial: A4Evaluation Service Report:: ETA 98/0001Issued I Valid: 2/20/2013 | 2/20/2018Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 20 mmAnchor plate: lx x ly x t = 200 x 250 x 20 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 200 mm x 120 mm x 6 mmBase material: cracked concrete , C20/25, fc = 20.00 N/mm²; h = 300 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 186: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 1.300 0.215 0.178 0.121

2 0.570 0.254 0.178 0.181

3 1.112 0.304 0.279 0.121

4 0.382 0.333 0.279 0.181

max. concrete compressive strain [‰]: 0.00max. concrete compressive stress [N/mm²]: 0.04resulting tension force in (x/y)=(-22/9) [kN]: 3.364resulting compression force in (x/y)=(0/0) [kN]: 0.000

1 2

3 4

Tension

Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 1.300 44.231 3 OK

Pullout Strength* 1.300 16.667 8 OK

Concrete Breakout Strength** 3.364 31.998 11 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

69.000

gM,s

1.560

NRd,s [kN]

44.231

NSd [kN]

1.300

Pullout StrengthNRk,p [kN]

25.000

yc

1.000

gM,p

1.500

NRd,p [kN]

16.667

NSd [kN]

1.300

Concrete Breakout StrengthAc,N [mm2]

143936

Ac,N

0 [mm2]

60516

yA,N

2.378

ccr,N [mm]

123

scr,N [mm]

246

ec1,N [mm]

22

yec1,N

0.850

ec2,N [mm]

9

yec2,N

0.928

ys,N

1.000

yre,N

1.000

k1

7.700

NRk,c

0 [kN]

25.570

gM,c

1.500

NRd,c [kN]

31.998

NSd [kN]

3.364

2

Page 187: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 0.332 38.462 1 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 1.095 81.081 1 OK

Concrete edge failure in direction

x-**

0.243 51.251 0 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

50.000

gM,s

1.300

VRd,s [kN]

38.462

VSd [kN]

0.332

Pryout StrengthAc,N [mm2]

143936

Ac,N

0 [mm2]

60516

yA,N

2.378

ccr,N [mm]

123

scr,N [mm]

246

k4

2.500

ec1,V [mm]

12

yec1,N

0.914

ec2,V [mm]

18

yec2,N

0.875

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

25.570

gM,c,p

1.500

VRd,c1 [kN]

81.081

VSd [kN]

1.095

Concrete edge failure in direction x-lf [mm]

82

dnom [mm]

16

kv

1.700

a

0.043

b

0.051

c1 [mm]

450

Ac,V [mm2]

456000

Ac,V

0 [mm2]

911250

yA,V

0.500

ys,V

1.000

yh,V

1.500

ya,V

2.000

ec,V [mm]

0

yec,V

1.000

yre,V

1.000

y90°,V

2.000

VRk,c

0 [kN]

102.418

n

2

gM,c

1.500

VRd,c [kN]

51.251

VSd [kN]

0.243

Note: Resistance limit acc. to fib (07/2011) Eq. (10.2-7) is governing5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

bN bV a Utilization bN,V [%] Status

steel 0.029 0.006 2.0 0 OK

concrete 0.105 0.014 1.5 4 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 0.960 [kN]

VSk = 0.250 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 188: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 189: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 200 mm x 120 mm x 6 mmHole diameter in the fixture: df = 18 mmPlate thickness (input): 20 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HST-R, M16Installation torque: 0.110 kNmHole diameter in the base material: 16 mmHole depth in the base material: 115 mmMinimum thickness of the base material: 160 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 -50 85 350 - - -2 50 85 450 - - -3 -50 -85 350 - - -4 50 -85 450 - - -

1 2

3 4

100.0 100.0

50.0 50.0

125.

012

5.0

40.0

40.0

1 2

3 4

x

y

5

Page 190: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/17/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 191: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR FOR 12TH

FL JUNCTION3 BEAM FACE

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 192: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M8 hnom2Effective embedment depth: hef = 40 mm, hnom = 49 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 10 mmAnchor plate: lx x ly x t = 100 x 180 x 10 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 100 mm x 120 mm x 6 mmBase material: uncracked concrete , C20/25, fc = 20.00 N/mm²; h = 250 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 193: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 0.992 0.084 -0.067 0.050

2 0.959 0.569 0.567 0.050

max. concrete compressive strain [‰]: 0.08max. concrete compressive stress [N/mm²]: 2.48resulting tension force in (x/y)=(25/1) [kN]: 1.951resulting compression force in (x/y)=(48/-3) [kN]: 1.551

1

2

TensionCompression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 0.992 13.071 8 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 1.951 16.320 12 OK

Splitting failure** 1.951 17.308 11 OK

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

18.300

gM,s

1.400

NRd,s [kN]

13.071

NSd [kN]

0.992

Concrete Breakout StrengthAc,N [mm2]

28800

Ac,N

0 [mm2]

14400

yA,N

2.000

ccr,N [mm]

60

scr,N [mm]

120

ec1,N [mm]

0

yec1,N

1.000

ec2,N [mm]

1

yec2,N

0.984

ys,N

1.000

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

12.445

gM,c

1.500

NRd,c [kN]

16.320

NSd [kN]

1.951

Splitting failureAc,N [mm2]

54450

Ac,N

0 [mm2]

32400

yA,N

1.681

ccr,sp [mm]

90

scr,sp [mm]

180

yh,sp

1.325

ec1,N [mm]

0

yec1,N

1.000

ec2,N [mm]

1

yec2,N

0.986

ys,N

0.950

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

12.445

gM,sp

1.500

NRd,sp [kN]

17.308

NSd [kN]

1.951

2

Page 194: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 0.569 9.840 6 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength* 0.569 12.445 5 OK

Concrete edge failure in direction

x-**

0.120 16.665 1 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

12.300

gM,s

1.250

VRd,s [kN]

9.840

VSd [kN]

0.569

Pryout StrengthAc,N [mm2]

14400

Ac,N

0 [mm2]

14400

yA,N

1.000

ccr,N [mm]

60

scr,N [mm]

120

k4

1.500

ec1,V [mm]

0

yec1,N

1.000

ec2,V [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

12.445

gM,c,p

1.500

VRd,c1 [kN]

12.445

VSd [kN]

0.569

Concrete edge failure in direction x-lf [mm]

40

dnom [mm]

8

kv

2.400

a

0.073

b

0.064

c1 [mm]

75

Ac,V [mm2]

42188

Ac,V

0 [mm2]

25313

yA,V

1.667

ys,V

1.000

yh,V

1.000

ya,V

2.000

ec,V [mm]

42

yec,V

0.730

yre,V

1.000

y90°,V

2.000

VRk,c

0 [kN]

10.272

gM,c

1.500

VRd,c [kN]

16.665

VSd [kN]

0.120

5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)bN bV a Utilization bN,V [%] Status

steel 0.073 0.058 2.0 1 OK

concrete 0.120 0.046 1.5 5 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 0.730 [kN]

VSk = 0.420 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 195: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 196: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 100 mm x 120 mm x 6 mmHole diameter in the fixture: df = 9 mmPlate thickness (input): 10 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M8 hnom2Installation torque: 0.015 kNmHole diameter in the base material: 8 mmHole depth in the base material: 54 mmMinimum thickness of the base material: 100 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 25 75 75 - - -2 25 -75 75 - - -

1

2

50.0 50.0

75.0 25.0

90.0

90.0

15.0

15.0

1

2

x

y

5

Page 197: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/18/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 198: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

STRUCTURAL CALCULATION FOR PE - 04

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 199: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

WIND PRESSURE CALCULATION

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 200: Design Report for Acropolis Tower

PROJECT : ACCROPOLIS TOWER, KOLKATA

= 50 m/sec

Building Classification

Terrain Category = 2 (Assumed)

Building Class = C (Max. Dimension > 50 m)

Building Dimensions

Height (H) = 99.96 m H / W = 2.95 > 1.5 & < 6.0

Width (W) = 33.93 m L / W = 2.431 > 1.5 & < 4

Length (L) = 82.47 m

= Vb x K1 x K2 x K3

Where

= 1.00

= 1.067 (Upto Maximum 39.1 m Height)

= 1.00

= 53.37 m/sec

=

= 1708.694 N/m2

= CP x Pz

Where

= 0.8

= -0.7

= Cpe - Cpi

= 1.5

= CP x Pz

= 1.5 x 1708.69 N/m2

Calculated Design Wind Pressure = 2563.041 N/m2

= 2.56 KPa

= 256.30 kg/m2

Design Wind Pressure = 256 kg/m2

(SAY)

Cpi (Internal Pressure Coeff)

CP (Pressure Coeff)

Design Wind Pressure ( Pd )

K3 (Topography Factor)

Design Wind Speed ( Vz )

Wind Pressure (Pz) 0.6 x Vz2

Design Wind Pressure (Pd)

Cpe (External Pressure Coeff)

Basic Wind Speed (Vb) (Kolkata)

Design Wind Speed (Vz)

K1 (Probability Factor)

K2 (Terrain, Height, Size Factor)

By Interpolation Method

NITSON AND AMITSU PRIVATE LIMITED

WIND PRESSURE DATA

WIND LOAD COMPUTATION FOR EXTERNAL CLADDING / GLAZING WORK

(As per IS:875, Part III-1987 Date: 16.05.2012

Page 201: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

DESIGN OF ALUMINIUM MULLION

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 202: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

PROJECT NAME

ITEM

Wind Pressure Calculation

Location Kolkata

Design Wind Pressure Pd 2563.04 N/m2

2.56 KPA

Deflection Calculation of Mullion

MI due to Trapezoidal load on Mullion due to right panel:

Span L 2.95 m (Refer Drgn. No. NAP/BS/ACROPOLIS-T/026)

Load width B = B1/2 1.11 m

Factor a = B 1.11 m

load Rate w = B x Pd 2851.38 N/m

Deflection allowed fadm L/175 or 19 mm (Whichever is minimum)

i.e. 16.86 or 19 mm (Whichever is minimum)

Elasticity modulus E 65500 N/mm2

MI on Mullion, I -1

Mullion

mm4

cm4

2950

MI due to Trapezoidal load on Mullion due to left panel:

Span L 2.95 m

Load width B = B1/2 0.76 m

Factor a = B 0.76 m 1525

load Rate w = B x Pd 1954.32 N/m

Deflection allowed fadm L/175 or 19 mm (Whichever is minimum)

i.e. 16.86 or 19 mm (Whichever is minimum)

Elasticity modulus E 65500 N/mm2

MI on Mullion, I -1

mm4

cm4

Total MI on Mullion I = I-1 + I-2 cm4

Provide Profile- wictec 50 135006-as Mullion M.o.I. = 547.48 cm4

Actual deflection δactual = 10.97 mm

< 16.86 mm

HENCE OK

(Refer IS : 8147 - 1976, Table-1, Page 13, for Alloy 63400-WP)

w x L4

[25 - 40(a/L)2+16(a/L)

4]

1920 x E x fadm

w x L4

[25 - 40(a/L)2+16(a/L)

4]

1920 x E x fadm

3.31522E+15

356.39

2225

4.24006E+15

2119954286

2000069.986

200.01

2119954286

1563818.763

156.38

Page 203: Design Report for Acropolis Tower

Bending Stress Check :

Maximum Bending Moment Mmax = 4450.15 N-m

Section Modulas Zxx = 56.80 cm3

Actual Bending Stress fbt = 78.35 N/mm2

Depth of Section a = 186 mm

Width of Section b = 50 mm

Depth to Width Ratio a / b = 3.72 -

Factor Klat = 3.9 -

Factor K1 = 1 -

Factor K2 = 0.6 -

Effective Unrestrained Length of Beam lf = 0.81 m

Slenderness Ratio λ = 15.70 -

Permissible Bending Stress pbt = 90 N/mm2

> 78.35 N/mm2

Hence ok

Axial Compressive Stress Check

Axial Compression F = 902.19 N

c/s Area A = 1153 mm2

Minimum radius of gyration r = 2.22 cm

Slenderness ratio λ = 60.82 -

Axial Compressive Stress ft = 0.78 N/mm2

Permissible Compressive Stress pt = 61 N/mm2

> 0.78 N/mm2

Hence ok

Combined Bending and Axial Compressive Check

Unity Ratio U.R. = 0.88 -

< 1.00 -

Hence ok

Shear Stress Check

Total Shear S = 7088.41 N

c/s Area A = 744 mm2

Actual Shear Stress ζcal = 9.53 N/mm2

Permissible Shear Stress ζallow = 51 N/mm2

(Refer: IS : 8147 - 1976, Table 4, Pg. 25)

> 9.53 N/mm2

Hence ok

Note: As the end mullions are being screwed throughout the length @ 300 c/c , hence calculation of end mullion profile 135002 is not

required as this profile is already safe in 2.225 m span.

Page 204: Design Report for Acropolis Tower
Page 205: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

DESIGN OF ALUMINIUM TRANSOM

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 206: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

PROJECT NAME

ITEM

BENDING DUE TO WIND LOAD :

Wind Pressure Calculation

Location Kolkata

Design Wind Pressure Pd 2563.04 N/m2 ( GIVEN )

2.56 KPA

Deflection Calculation of Transom

MI due to Trapezoidal load on Transom due to top panel:

Span L 2.23 m

Load width B = B1/2 0.68 m

Factor a = B 0.68 m

load Rate w = B x Pd 1730.05 N/m

Deflection allowed fadm L/175 or 19 mm (Whichever is minimum)

i.e 12.71 or 19 mm (Whichever is minimum)

Elasticity modulus E 65500 N/mm2

MI on Transom, I -1

Transom

mm4

1350

cm4

MI due to Triangular load on Transom due to bottom panel: 925

Span L 2.23 m

Load width B = B1/2 0.46 m

Factor a = B 0.46 m 1525 mullion

load Rate w = B x Pd 1185.41 N/m

Deflection allowed fadm L/175 or 19 mm (Whichever is minimum)

i.e. 12.71 or 19 mm (Whichever is minimum)

Elasticity modulus E 65500 N/mm2

MI on Transom, I -1

6.76974E+14

mm4

cm4

Total MI on Transom I = I-1 + I-2 cm4

Provide Profile135002 as Transom M.o.I. = 109.19 cm4

Actual deflection δactual = 11.55 mm

< 12.71 mm

Hence Ok

(Refer IS : 8147 - 1976, Table-1, Page 13, for Alloy 63400-WP)

w x L4

1920 x E x fadm

2225

9.09685E+14

1598948571

568926.87

56.89

99.23

1598948571

423387.0462

42.34

w x L4

[25 - 40(a/L)2+16(a/L)

4]

1920 x E x fadm

[25 - 40(a/L)2+16(a/L)

4]

Page 207: Design Report for Acropolis Tower

BENDING STRESS CHECK :

Maximum Bending Moment Mmax = 1630.53 N-m

Section Modulas Z = 19.66 cm3

Actual Bending Stress fbt = 82.94 N/mm3

Depth of Section a = 106.00 mm

Width of Section b = 50.00 mm

Depth to Width Ratio a / b = 2.12 -

Factor Klat = 3.20 -

Factor K1 = 1.00 -

Factor K2 = 0.60 -

Effective Unrestrained Length of Beam lf = 1.34 m

Slenderness Ratio λ = 16.54 -

Permissible Bending Stress pbt = 90.00 N/mm3

> 82.94 N/mm3

Hence ok

BENDING DUE TO DEAD LOAD :

Total Dead Load DL = 945.27 N

Point load on Transom p = 472.63 N

Distance of setting block from centre of mullion a = 0.10 m

Span L = 2.23 m

Allowable Deflection δallow = 7.42 mm or 3 mm (whichever is minimum)

Actual Deflection δactual = 1.47 mm

< 3.00 mm

Hence ok

Maximum Bending Moment Mmax = 47.26 N-m

Section Modulas Zyy = 12.13 cm3

Actual Bending Stress fbt = 3.90 N/mm2

Depth of Section a = 106.00 mm

Width of Section b = 50.00 mm

Depth to Width Ratio a / b = 2.12 -

Factor Klat = 3.20 -

Factor K1 = 1.00 -

Factor K2 = 0.60 -

Effective Unrestrained Length of Beam lf = 1.34 m

Slenderness Ratio λ = 16.54 -

Permissible Bending Stress pbt = 90.00 N/mm2

> 3.90 N/mm2

Hence ok

Combined Stress Check :

Utilisation Ratio U.R. = 0.96 -

< 1.0 -

Hence ok

Page 208: Design Report for Acropolis Tower
Page 209: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

TOP & BOTTOM SHOE BRACKET, THROUGH BOLT & SCREW CHECK

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 210: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

PROJECT NAME ACROPOLIS KOLKATA

ITEM

Wind Pressure Calculation

Location Kolkata

Design Wind Pressure Pd 2563.04 N/m2

Total Load on Bracket P = 7088.41 N

Point Load per Bracket (on one side of box) PD = 3544.20 N

Eccentricity e = 45 mm

Maximum Bending Moment Mmax = 159.49 N-m

Depth of bracket d = 90 mm

Width of bracket b = 5 mm

Section Modulas of Bracket Z = 6.75 cm3

42 mm

Actual Bending Stress σcal = 23.63 N/mm2

Allowable Bending Stress σbc = 187.50 N/mm2 (Refer IS:800- 2007, Cl. 11.4.1. (c), Pg. 85)

> 23.63 N/mm2

Hence ok

c) Check for Bearing in Box

Shear Force due to WL (Double Shear) 2 Nos. S1 = 3544.20 N

Shear Force due to DL (Double Shear) 2 Nos. S2 = 512.29 N

Combined Shear Force (Double Shear) 2 Nos. S = 3581.04 N

Diameter of Bolt D = 16.00 mm (stress area dia of 12dia bolt)

Thickness of Box Wall t = 2.00 mm

Contact Area A = 32.00 mm2

Actual Bearing Stress ζcal = 111.91 N/mm2

Permissible Bearing Stress ζa= 139.00 N/mm

2

> 111.91 N/mm2

Hence ok

Check for Through Bolt

Shear Check on Bolt

Provide SS304 (A2), 16 dia SS Hexagonal Head Bolt

i)Shear Stress Check for Through Bolt

Shear on each bolt due to WL S = 3581.04 N

Diameter of Bolt d = 16.00 mm

Stress Area of Bolt As = 157.00 mm2

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Bolt psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Bolt Psb = 22749.30 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 3581.04 N

Provide SS304 (A2), 16 dia SS Hexagonal Head Bolt Hence ok

STRUCTURAL CALCULATION OF BRACKETS FOR CURTAIN GLAZING

48 mm

Minimum of these two for Usb ≤ 800 N/mm2

as per P291, Clause 5.2.2.a, Pg. 53

35 mm

45mm

(Refer IS:8147- 1976, Table- 4, Pg. 25 for

WP 63400(H9))

Page 211: Design Report for Acropolis Tower

ii)Bearing Stress Check for Through Bolt

Combined Shear Force (Double Shear) S = 3581.04 N

Diameter of Bolt d = 16.00 mm

Thickness of Box Wall tp = 2.00 mm

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Bearing Strength of the Bolt pbb = 511.20 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

Bearing Capacity of the Bolt Pbb = 16358.40 N (Refer P291, Clause 5.2.2.b, Pg. 54)

> 3581.04 N

Provide SS304 (A2), 16 dia SS Hexagonal Head Bolt Hence ok

Slenderness Check of Horizontal Plate

Plate Thickness t = 2.00 mm

Plate Width b = 90.00 mm

Moment of Inertia MoI = 60.00 N/mm2

c/s Area A = 180.00 mm2

Minimum Radius of Gyration rmin = 0.58 mm

Plate Span L = 80.00 mm

Slenderness Ratio λ = 138.56 -

< 180 - (Refer IS:800- 1984, Table 3.1, Pg. 30)

Hence ok

Actual compressive stress σac,cal = 21.56 N/mm2

Allowable compressive stress σac = 112 N/mm2

(Refer IS:800- 1984, Table 5.1, Pg. 39)

> 21.56 N/mm2

Hence ok

Page 212: Design Report for Acropolis Tower

P P

BENDING STRESS CHECK

Point Load on Bolt P = 3581.04 N

a = 5.00 mm a = 5.00 mm

Point Load Distance from End Support a = 4.50 mm

Maximum Bending Moment M = 16.11 N-m

Diameter of Bolt d = 16.00 mm

Design value of 0.2 % Proof Stress Py = 190.91 N/mm2

(Refer P291, Clause 2.2.2.(ii), Pg. 12)

Section Modulas of Bolt Z = 402.29 mm3

Moment Capacity of the c/s of the Bolt Mc = 76.8 N-m

> 16.11 N-m

Provide SS304 (A2), 12 dia, SS Hexagonal Head Bolt Hence ok

Plate Thickness Check for Tension 3 mm

Provide 2 Plates of size (90X90)X6 thk. for Bracket

Total Load on Bracket P = 3544.20 N

Effective Width of bracket beff = 72.00 mm

Actual Tensile Stress σac = 9.85 N/mm2

Allowable Tensile Stress σat = 172.50 N/mm2 V

(Refer IS:800- 2007, Cl.11.2.1. (b-1), Pg. 84)

Required Thickness of Plate treq = 0.29 mm

Thickness of Plate Provided t = 5.00 mm P

> 0.29 mm

Hence ok 42 mm

Combined Bending & Axial Tension Check

Unity Ratio U.R. = 0.18 - (Refer IS:800- 2007, Cl.11.5.3, Pg. 86)

< 1.00 -

Hence ok

Weld Calculation:

Provide 3 mm Fillet Weld on both Side of the Plate

Axial Load on Weld P = 3544.20 N

Shear on Weld Due to WL V = 512.29 N

Permissible Stress in Fillet Weld σfillet weld = 110 N/mm2 (Refer IS : 816 - 1969, Clause 7.1.2, Page 17)

Permissible Stress in Site Welds (Fillet Weld) σsite weld = 88 N/mm2 (Refer IS : 816 - 1969, Clause 7.2, Page 17)

Increasing the Weld Stess by 25 Percent σweld, allow = 110 N/mm2 (Refer IS : 816 - 1969, Clause 7.3, Page 17)

Weld Size Provided s = 3 mm

Effective Throat Thickness a = 2.12 mm

Effective Length l = 180 mm

Actual Tensile Stress on Weld f = 9.28 N/mm2

(Refer IS : 816 - 1969, Clause 7.4.2, Page 17)

Actual Shear Stress on Weld q = 1.34 N/mm2

(Refer IS : 816 - 1969, Clause 7.4.2, Page 17)

Sum of Axial and Shear Stresses on Weld fcal = 10.63 N/mm2

< 110 N/mm2

(Refer IS : 816 - 1969, Clause 7.5.1.3 (b), Page 18)

Hence ok

45mm

35 mm

48 mm

(Refer P291, Clause 4.4.2. Equation (4.20), Pg. 39) as Applied

Shear is less than 0.6 times of Shear Capacity of the Bolt

Page 213: Design Report for Acropolis Tower

Check for Fischer Screw

Shear Check on Screws

Provide Fischer N 8 x 60 Z A2 @ 150 mm c/c

i)Shear Stress Check for Screw

Longer dimension of glass panel a = 2.225 m

Shorter dimension of glass panel b = 1.350 m

Area of glass panel A = 3.00375 m2

Wind pressure Pw = 2.563 Kpa

DL of glass Pd = 0.3 Kpa

Total shear load due to WL & DL V = 8599.74 N

Shear load along 1.35 length due to WL & DL V/2 = 4299.87 N

Number of Screw n = 4.00 -

Required c/c distance(spacing) of screws S = 337.50 mm

Diameter of Screw d = 5.00 mm

Unthreaded Shank Area of Screw As = 14.20 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Bolt psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Bolt Psb = 8230.32 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 4299.87 N

Provide Fischer N 8 x 60 Z A2 @ 300 mm c/c Hence ok

Minimum of these two for Usb ≤ 800 N/mm2 as per

P291, Clause 5.2.2.a, Pg. 53

( Refer Fischer India Range Catalogue, Technical Data,

Page-144)

Page 214: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR BOLT & PLATE THICKNESS FOR PE - 02

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 215: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR BOTTOM SHOE BRACKET

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 216: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HST-R, M10Effective embedment depth: hef = 60 mm, hnom = 69 mmMaterial: A4Evaluation Service Report:: ETA 98/0001Issued I Valid: 2/20/2013 | 2/20/2018Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 8 mmAnchor plate: lx x ly x t = 180 x 120 x 8 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 90 mm x 44 mm x 5 mmBase material: cracked concrete , C20/25, fc = 20.00 N/mm²; h = 250 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 217: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 1.461 3.544 3.544 0.000

2 1.461 3.544 3.544 0.000

max. concrete compressive strain [‰]: 0.08max. concrete compressive stress [N/mm²]: 2.39resulting tension force in (x/y)=(0/0) [kN]: 2.922resulting compression force in (x/y)=(81/0) [kN]: 3.947 1

2

Tension Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 1.461 18.667 8 OK

Pullout Strength* 1.461 6.000 24 OK

Concrete Breakout Strength** 2.922 16.004 18 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

28.000

gM,s

1.500

NRd,s [kN]

18.667

NSd [kN]

1.461

Pullout StrengthNRk,p [kN]

9.000

yc

1.000

gM,p

1.500

NRd,p [kN]

6.000

NSd [kN]

1.461

Concrete Breakout StrengthAc,N [mm2]

48600

Ac,N

0 [mm2]

32400

yA,N

1.500

ccr,N [mm]

90

scr,N [mm]

180

ec1,N [mm]

0

yec1,N

1.000

ec2,N [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

k1

7.700

NRk,c

0 [kN]

16.004

gM,c

1.500

NRd,c [kN]

16.004

NSd [kN]

2.922

2

Page 218: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 3.544 16.000 22 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 7.089 32.008 22 OK

Concrete edge failure in direction

x+**

7.089 10.197 70 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

20.000

gM,s

1.250

VRd,s [kN]

16.000

VSd [kN]

3.544

Pryout StrengthAc,N [mm2]

48600

Ac,N

0 [mm2]

32400

yA,N

1.500

ccr,N [mm]

90

scr,N [mm]

180

k4

2.000

ec1,V [mm]

0

yec1,N

1.000

ec2,V [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

16.004

gM,c,p

1.500

VRd,c1 [kN]

32.008

VSd [kN]

7.089

Concrete edge failure in direction x+lf [mm]

60

dnom [mm]

10

kv

1.700

a

0.077

b

0.063

c1 [mm]

100

Ac,V [mm2]

58500

Ac,V

0 [mm2]

45000

yA,V

1.300

ys,V

1.000

yh,V

1.000

ya,V

1.000

ec,V [mm]

0

yec,V

1.000

yre,V

1.000

y90°,V

-

VRk,c

0 [kN]

11.766

gM,c

1.500

VRd,c [kN]

10.197

VSd [kN]

7.089

5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)bN bV a Utilization bN,V [%] Status

steel 0.078 0.222 2.0 6 OK

concrete 0.244 0.695 1.5 70 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 1.080 [kN]

VSk = 2.630 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 219: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 220: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 90 mm x 44 mm x 5 mmHole diameter in the fixture: df = 12 mmPlate thickness (input): 8 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HST-R, M10Installation torque: 0.045 kNmHole diameter in the base material: 10 mmHole depth in the base material: 80 mmMinimum thickness of the base material: 120 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 0 -45 100 100 - -2 0 45 100 100 - -

1

2

90.0 90.0

90.0 90.0

60.0

60.0

15.0

15.0

1

2

x

y

5

Page 221: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 222: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR TOP SHOE BRACKET

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 223: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HST-R, M12Effective embedment depth: hef = 70 mm, hnom = 80 mmMaterial: A4Evaluation Service Report:: ETA 98/0001Issued I Valid: 2/20/2013 | 2/20/2018Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 8 mmAnchor plate: lx x ly x t = 110 x 126 x 8 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 90 mm x 44 mm x 5 mmBase material: cracked concrete , C20/25, fc = 20.00 N/mm²; h = 250 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 224: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 3.795 3.544 3.544 0.000

2 3.795 3.544 3.544 0.000

max. concrete compressive strain [‰]: 0.18max. concrete compressive stress [N/mm²]: 5.42resulting tension force in (x/y)=(0/0) [kN]: 7.590resulting compression force in (x/y)=(49/0) [kN]: 6.565

1

2

Tension Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 3.795 26.667 14 OK

Pullout Strength* 3.795 8.000 47 OK

Concrete Breakout Strength** 7.590 18.951 40 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

40.000

gM,s

1.500

NRd,s [kN]

26.667

NSd [kN]

3.795

Pullout StrengthNRk,p [kN]

12.000

yc

1.000

gM,p

1.500

NRd,p [kN]

8.000

NSd [kN]

3.795

Concrete Breakout StrengthAc,N [mm2]

62160

Ac,N

0 [mm2]

44100

yA,N

1.410

ccr,N [mm]

105

scr,N [mm]

210

ec1,N [mm]

0

yec1,N

1.000

ec2,N [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

k1

7.700

NRk,c

0 [kN]

20.168

gM,c

1.500

NRd,c [kN]

18.951

NSd [kN]

7.590

2

Page 225: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 3.544 24.000 15 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 7.089 41.692 17 OK

Concrete edge failure in direction

x+**

7.089 13.682 52 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

30.000

gM,s

1.250

VRd,s [kN]

24.000

VSd [kN]

3.544

Pryout StrengthAc,N [mm2]

62160

Ac,N

0 [mm2]

44100

yA,N

1.410

ccr,N [mm]

105

scr,N [mm]

210

k4

2.200

ec1,V [mm]

0

yec1,N

1.000

ec2,V [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

20.168

gM,c,p

1.500

VRd,c1 [kN]

41.692

VSd [kN]

7.089

Concrete edge failure in direction x+lf [mm]

70

dnom [mm]

12

kv

1.700

a

0.075

b

0.063

c1 [mm]

125

Ac,V [mm2]

86438

Ac,V

0 [mm2]

70313

yA,V

1.229

ys,V

1.000

yh,V

1.000

ya,V

1.000

ec,V [mm]

0

yec,V

1.000

yre,V

1.000

y90°,V

-

VRk,c

0 [kN]

16.694

gM,c

1.500

VRd,c [kN]

13.682

VSd [kN]

7.089

5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)bN bV a Utilization bN,V [%] Status

steel 0.142 0.148 2.0 4 OK

concrete 0.474 0.518 1.5 70 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 2.810 [kN]

VSk = 2.630 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 226: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 227: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 90 mm x 44 mm x 5 mmHole diameter in the fixture: df = 14 mmPlate thickness (input): 8 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HST-R, M12Installation torque: 0.060 kNmHole diameter in the base material: 12 mmHole depth in the base material: 95 mmMinimum thickness of the base material: 140 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 0 -43 - 125 - -2 0 43 - 125 - -

1

2

55.0 55.0

55.0 55.0

63.0

63.0

20.0

20.01

2

x

y

5

Page 228: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: Specifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 3/16/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 229: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE (TOP SHOE BRACKET)

Tension Force (from Hilti Report) = 3795.00 N

Fctor of Safety (Load Factor) = 1.50 - (Refer IS 800-2007, Table 4, Pg-29)

Tension Force (from Hilti Report) = 5692.50 N

Eccentricity = 21 mm

Maximum Bending Moment = 119542.5 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 776.714635 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 176526.053 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 72.82 mm

Required Section Modulas of Plate = 525.99 mm3

Plate Thickness Required = 6.58 mm

Thickness Provided = 8 mm

> 6.58 mm

Provide MS Plate of 110X126X8 thk. Hence ok

CHECK FOR BASE PLATE (BOTTOM SHOE BRACKET)

Tension Force (from Hilti Report) = 3947.00 N

Fctor of Safety = 1.50 - (Refer IS 800-2007, Table 4, Pg-29)

Compressive Force (from Hilti Report) = 5920.50 N

Eccentricity = 39 mm

Maximum Bending Moment = 230899.5 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 1280 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 290909.091 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 120.00 mm

Required Section Modulas of Plate = 1015.96 mm3

Plate Thickness Required = 7.13 mm

Thickness Provided = 8 mm

> 7.13 mm

Provide MS Plate of 120X180X8 thk. Hence ok

t

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

βb

Md

b

Zreq.

treq.

Cfactored

e

M

fy

Zp

γm0

Md

b

Zreq.

treq.

t

T

FoS

FoS

C

βb

Tfactored

e

M

fy

Zp

Page 230: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

GLASS THICKNESS CHECK

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 231: Design Report for Acropolis Tower

Project: Acropolis Tower

Date: 19 / 04 / 2013

Symbols/

Formulas

Longer dimension of a glass panel a 2.225 m

Shorter dimension of a glass panel b 1.350 m

Ratio a/b 1.65 -

Maximum wind pressure P 2.56 Kpa

Area of the glass panel A 3.00 m2

Required glass thickness trequired 6+6 mm

Provided glass thickness tprovided 6+6 mm

6+6 mm

NITSON AND AMITSU PRIVATE LIMITED

>

Hence ok

Top Plate Thickness Determination

Specifications Values Units

As per AS : 1288-1994, Figure-E12, Page-60

Page 232: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ZCP CLADDING AT SLAB BOTTOM

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 233: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

STAAD REPORT FOR ZCP CLADDING BACK-UP

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 234: Design Report for Acropolis Tower

22/05/2013

STAAD.Pro Report

To: ACROPOLIS

TOWER,

KOLKATA

From: NITSON AND AMITSU PRIVATE LIMITED

Copy to: Date: 24/04/20123

14:58:00

Ref: DRG NO. :

NAP/BS/ACROPOLIS/-T/031

Job Information

Engineer Checked Approved

Name:

Date: 24-Apr-13

Structure Type SPACE FRAME

Number of Nodes 70 Highest Node 70

Number of Elements 99 Highest Beam 123

Number of Basic Load Cases 2

Number of Combination Load Cases 1

Included in this printout are data for:

All The Whole Structure

Included in this printout are results for load cases:

Type L/C Name

Primary 1 DL

Primary 2 WL

Combination 3 COMBINATION LOAD CASE 3

Page 235: Design Report for Acropolis Tower

22/05/2013

Whole Structure

Whole Structure

LOADS CONSIDERED :

1) DEAD LOAD :

a. Self Weight of Structure b. Dead load of ZCP Sheet (10 Kg/m2)

2) WIND LOAD :

a. Design Wind Pressure as per Tender Specification is 2520 N/m2

Page 236: Design Report for Acropolis Tower

22/05/2013

Section Properties Prop Section Area

(cm2)

Iyy (cm

4)

Izz (cm

4)

J (cm

4)

Material

1 User Defined Tube 6.682 24.120 24.120 35.963 STEEL

Materials

Mat Name E (kN/mm

2)

Density (kg/m

3)

(/°C)

1 STEEL 205.000 0.300 7.83E 3 12E -6

Supports Node X

(kN/mm) Y

(kN/mm) Z

(kN/mm) rX

(kN-m/deg)

rY (kN

-m/deg)

rZ (kN

-m/deg)

4 Fixed Fixed Fixed Fixed Fixed Fixed

5 Fixed Fixed Fixed Fixed Fixed Fixed

6 Fixed Fixed Fixed Fixed Fixed Fixed

8 Fixed Fixed Fixed Fixed Fixed Fixed

10 Fixed Fixed Fixed Fixed Fixed Fixed

14 Fixed Fixed Fixed Fixed Fixed Fixed

15 Fixed Fixed Fixed Fixed Fixed Fixed

16 Fixed Fixed Fixed Fixed Fixed Fixed

18 Fixed Fixed Fixed Fixed Fixed Fixed

20 Fixed Fixed Fixed Fixed Fixed Fixed

24 Fixed Fixed Fixed Fixed Fixed Fixed

25 Fixed Fixed Fixed Fixed Fixed Fixed

26 Fixed Fixed Fixed Fixed Fixed Fixed

28 Fixed Fixed Fixed Fixed Fixed Fixed

30 Fixed Fixed Fixed Fixed Fixed Fixed

34 Fixed Fixed Fixed Fixed Fixed Fixed

35 Fixed Fixed Fixed Fixed Fixed Fixed

36 Fixed Fixed Fixed Fixed Fixed Fixed

38 Fixed Fixed Fixed Fixed Fixed Fixed

40 Fixed Fixed Fixed Fixed Fixed Fixed

44 Fixed Fixed Fixed Fixed Fixed Fixed

45 Fixed Fixed Fixed Fixed Fixed Fixed

46 Fixed Fixed Fixed Fixed Fixed Fixed

48 Fixed Fixed Fixed Fixed Fixed Fixed

50 Fixed Fixed Fixed Fixed Fixed Fixed

54 Fixed Fixed Fixed Fixed Fixed Fixed

55 Fixed Fixed Fixed Fixed Fixed Fixed

56 Fixed Fixed Fixed Fixed Fixed Fixed

58 Fixed Fixed Fixed Fixed Fixed Fixed

60 Fixed Fixed Fixed Fixed Fixed Fixed

64 Fixed Fixed Fixed Fixed Fixed Fixed

65 Fixed Fixed Fixed Fixed Fixed Fixed

66 Fixed Fixed Fixed Fixed Fixed Fixed

68 Fixed Fixed Fixed Fixed Fixed Fixed

70 Fixed Fixed Fixed Fixed Fixed Fixed

Basic Load Cases

Number Name

1 DL

2 WL

Page 237: Design Report for Acropolis Tower

22/05/2013

Combination Load Cases

Comb. Combination L/C Name Primary Primary L/C Name Factor

3 COMBINATION LOAD CASE 3 1 DL 1.50

2 WL 1.50

Statics Check Results

L/C FX (N)

FY (N)

FZ (N)

MX (kNm)

MY (kNm)

MZ (kNm)

1:DL Loads 0.000 -6.24E 3 0.000 18.732 0.000 -9.780

1:DL Reactions 0.000 6.24E 3 0.000 -18.732 0.000 9.780

Difference 0.000 0.000 0.000 0.000 0.000 0.000

2:WL Loads 0.000 -55.6E 3 0.000 166.925 0.000 -88.470

2:WL Reactions -0.000 55.6E 3 0.000 -166.925 0.000 88.470

Difference -0.000 0.000 0.000 0.000 0.000 0.000

Node Displacement Summary

Node L/C X (mm)

Y (mm)

Z (mm)

Resultant (mm)

rX (rad)

rY (rad)

rZ (rad)

Max X 39 3:COMBINATION LOAD CASE 3

0.000 -0.001 0.000 0.001 -0.000 -0.000 0.000

Min X 31 3:COMBINATION LOAD CASE 3

-0.004 -0.019 -0.000 0.020 -0.000 -0.000 -0.001

Max Y 27 3:COMBINATION LOAD CASE 3

-0.004 0.043 -0.000 0.043 0.000 0.000 -0.000

Min Y 52 3:COMBINATION LOAD CASE 3

-0.002 -0.029 0.003 0.029 0.000 0.000 0.000

Max Z 62 3:COMBINATION LOAD CASE 3

-0.001 -0.014 0.005 0.015 -0.000 0.000 0.000

Min Z 2 3:COMBINATION LOAD CASE 3

-0.001 -0.014 -0.005 0.015 0.000 -0.000 0.000

Max rX 2 3:COMBINATION LOAD CASE 3

-0.001 -0.014 -0.005 0.015 0.000 -0.000 0.000

Min rX 62 3:COMBINATION LOAD CASE 3

-0.001 -0.014 0.005 0.015 -0.000 0.000 0.000

Max rY 7 3:COMBINATION LOAD CASE 3

-0.003 0.041 -0.001 0.041 0.000 0.000 -0.000

Min rY 67 3:COMBINATION LOAD CASE 3

-0.003 0.041 0.001 0.041 -0.000 -0.000 -0.000

Max rZ 33 3:COMBINATION LOAD CASE 3

-0.000 -0.021 0.000 0.021 -0.000 -0.000 0.000

Min rZ 21 3:COMBINATION LOAD CASE 3

-0.004 -0.019 -0.001 0.019 0.000 0.000 -0.001

Max Rst 27 3:COMBINATION LOAD CASE 3

-0.004 0.043 -0.000 0.043 0.000 0.000 -0.000

Beam Displacement Detail Summary Displacements shown in italic indicate the presence of an offset

Beam L/C d (m)

X (mm)

Y (mm)

Z (mm)

Resultant (mm)

Max X 39 3:COMBINATION LOAD CASE 3

0.300 0.051 -0.011 0.000 0.052

Min X 41 3:COMBINATION LOAD CASE 3

0.225 -0.047 -0.015 -0.000 0.050

Max Y 35 3:COMBINATION LOAD CASE 3

1.000 -0.004 0.043 -0.000 0.043

Min Y 62 3:COMBINATION LOAD CASE 3

0.600 -0.003 -0.445 0.000 0.445

Max Z 2 3:COMBINATION LOAD CASE 3

0.300 -0.002 -0.008 0.049 0.049

Min Z 116 3:COMBINATION LOAD CASE 3

0.300 -0.002 -0.008 -0.049 0.049

Max Rst 62 3:COMBINATION LOAD CASE 3

0.600 -0.003 -0.445 0.000 0.445

A maximum deflection of 0.445 mm is observed at Node No. 58 for Combination Load Case 4. Therefore, ∂max = 0.445 mm Allowable Deflection is,

Page 238: Design Report for Acropolis Tower

22/05/2013

∂allow = 1200/300 = 4.0 mm > 0.445 mm The ∂max is less than the allowable, Hence ok.

Reaction Summary

Horizontal Vertical Horizontal Moment

Node L/C FX (N)

FY (N)

FZ (N)

MX (kNm)

MY (kNm)

MZ (kNm)

Max FX 36 3:COMBINATION LOAD CASE 3

224.068 3.9E 3 0.000 -0.000 0.000 0.055

Min FX 24 3:COMBINATION LOAD CASE 3

-249.994 3.49E 3 -2.856 0.001 -0.000 -0.061

Max FY 55 3:COMBINATION LOAD CASE 3

3.648 5.25E 3 -36.556 0.009 -0.000 0.001

Min FY 70 1:DL 5.242 53.939 23.200 0.000 0.000 0.000

Max FZ 70 3:COMBINATION LOAD CASE 3

53.010 487.636 291.231 0.006 0.001 0.001

Min FZ 10 3:COMBINATION LOAD CASE 3

53.010 487.636 -291.231 -0.006 -0.001 0.001

Max MX 68 3:COMBINATION LOAD CASE 3

-19.506 933.274 -20.189 0.181 0.001 0.023

Min MX 8 3:COMBINATION LOAD CASE 3

-19.506 933.274 20.189 -0.181 -0.001 0.023

Max MY 70 3:COMBINATION LOAD CASE 3

53.010 487.636 291.231 0.006 0.001 0.001

Min MY 10 3:COMBINATION LOAD CASE 3

53.010 487.636 -291.231 -0.006 -0.001 0.001

Max MZ 36 3:COMBINATION LOAD CASE 3

224.068 3.9E 3 0.000 -0.000 0.000 0.055

Min MZ 24 3:COMBINATION LOAD CASE 3

-249.994 3.49E 3 -2.856 0.001 -0.000 -0.061

Utilization Ratio Beam Analysis

Property Design Property

Actual Ratio

Allowable Ratio

Ratio (Act./All

ow.)

Clause L/C

Ax (cm

2)

Iz (cm

4)

Iy (cm

4)

Ix (cm

4)

1 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

2 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

3 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

4 User Defined Tube

User Defined Tube

0.033 1.000 0.033 Slenderness 1 6.682 24.120 24.120 35.963

5 User Defined Tube

User Defined Tube

0.158 1.000 0.158 Slenderness 1 6.682 24.120 24.120 35.963

6 User Defined Tube

User Defined Tube

0.158 1.000 0.158 Slenderness 1 6.682 24.120 24.120 35.963

7 User Defined Tube

User Defined Tube

0.164 1.000 0.164 Slenderness 1 6.682 24.120 24.120 35.963

8 User Defined Tube

User Defined Tube

0.062 1.000 0.062 Slenderness 1 6.682 24.120 24.120 35.963

9 User Defined Tube

User Defined Tube

0.021 1.000 0.021 Slenderness 1 6.682 24.120 24.120 35.963

10 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

11 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

12 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

16 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

17 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

18 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

20 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

21 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

22 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

23 User Defined Tube

User Defined Tube

0.073 1.000 0.073 Slenderness 1 6.682 24.120 24.120 35.963

24 User Defined Tube

User Defined Tube

0.351 1.000 0.351 Slenderness 1 6.682 24.120 24.120 35.963

25 User Defined Tube

User Defined Tube

0.351 1.000 0.351 Slenderness 1 6.682 24.120 24.120 35.963

26 User Defined Tube

User Defined Tube

0.164 1.000 0.164 Slenderness 1 6.682 24.120 24.120 35.963

27 User Defined Tube

User Defined Tube

0.062 1.000 0.062 Slenderness 1 6.682 24.120 24.120 35.963

28 User Defined Tube

User Defined Tube

0.021 1.000 0.021 Slenderness 1 6.682 24.120 24.120 35.963

29 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

30 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

31 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

35 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

36 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

37 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

39 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

40 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

41 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

42 User Defined Tube

User Defined Tube

0.073 1.000 0.073 Slenderness 1 6.682 24.120 24.120 35.963

43 User Defined Tube

User Defined Tube

0.351 1.000 0.351 Slenderness 1 6.682 24.120 24.120 35.963

Page 239: Design Report for Acropolis Tower

22/05/2013

44 User Defined Tube

User Defined Tube

0.351 1.000 0.351 Slenderness 1 6.682 24.120 24.120 35.963

45 User Defined Tube

User Defined Tube

0.164 1.000 0.164 Slenderness 1 6.682 24.120 24.120 35.963

46 User Defined Tube

User Defined Tube

0.062 1.000 0.062 Slenderness 1 6.682 24.120 24.120 35.963

47 User Defined Tube

User Defined Tube

0.021 1.000 0.021 Slenderness 1 6.682 24.120 24.120 35.963

48 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

49 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

50 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

54 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

55 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

56 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

58 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

59 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

60 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

61 User Defined Tube

User Defined Tube

0.073 1.000 0.073 Slenderness 1 6.682 24.120 24.120 35.963

62 User Defined Tube

User Defined Tube

0.351 1.000 0.351 Slenderness 1 6.682 24.120 24.120 35.963

63 User Defined Tube

User Defined Tube

0.351 1.000 0.351 Slenderness 1 6.682 24.120 24.120 35.963

64 User Defined Tube

User Defined Tube

0.164 1.000 0.164 Slenderness 1 6.682 24.120 24.120 35.963

65 User Defined Tube

User Defined Tube

0.062 1.000 0.062 Slenderness 1 6.682 24.120 24.120 35.963

66 User Defined Tube

User Defined Tube

0.021 1.000 0.021 Slenderness 1 6.682 24.120 24.120 35.963

67 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

68 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

69 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

73 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

74 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

75 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

77 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

78 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

79 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

80 User Defined Tube

User Defined Tube

0.073 1.000 0.073 Slenderness 1 6.682 24.120 24.120 35.963

81 User Defined Tube

User Defined Tube

0.351 1.000 0.351 Slenderness 1 6.682 24.120 24.120 35.963

82 User Defined Tube

User Defined Tube

0.351 1.000 0.351 Slenderness 1 6.682 24.120 24.120 35.963

83 User Defined Tube

User Defined Tube

0.164 1.000 0.164 Slenderness 1 6.682 24.120 24.120 35.963

84 User Defined Tube

User Defined Tube

0.062 1.000 0.062 Slenderness 1 6.682 24.120 24.120 35.963

85 User Defined Tube

User Defined Tube

0.021 1.000 0.021 Slenderness 1 6.682 24.120 24.120 35.963

86 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

87 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

88 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

92 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

93 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

94 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

96 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

97 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

98 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

99 User Defined Tube

User Defined Tube

0.073 1.000 0.073 Slenderness 1 6.682 24.120 24.120 35.963

100 User Defined Tube

User Defined Tube

0.351 1.000 0.351 Slenderness 1 6.682 24.120 24.120 35.963

101 User Defined Tube

User Defined Tube

0.351 1.000 0.351 Slenderness 1 6.682 24.120 24.120 35.963

102 User Defined Tube

User Defined Tube

0.164 1.000 0.164 Slenderness 1 6.682 24.120 24.120 35.963

103 User Defined Tube

User Defined Tube

0.062 1.000 0.062 Slenderness 1 6.682 24.120 24.120 35.963

104 User Defined Tube

User Defined Tube

0.021 1.000 0.021 Slenderness 1 6.682 24.120 24.120 35.963

105 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

106 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

107 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

111 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

112 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

113 User Defined Tube

User Defined Tube

0.132 1.000 0.132 Slenderness 1 6.682 24.120 24.120 35.963

115 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

116 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

117 User Defined Tube

User Defined Tube

0.099 1.000 0.099 Slenderness 1 6.682 24.120 24.120 35.963

118 User Defined Tube

User Defined Tube

0.033 1.000 0.033 Slenderness 1 6.682 24.120 24.120 35.963

119 User Defined Tube

User Defined Tube

0.158 1.000 0.158 Slenderness 1 6.682 24.120 24.120 35.963

120 User Defined Tube

User Defined Tube

0.158 1.000 0.158 Slenderness 1 6.682 24.120 24.120 35.963

121 User Defined Tube

User Defined Tube

0.164 1.000 0.164 Slenderness 1 6.682 24.120 24.120 35.963

122 User Defined Tube

User Defined Tube

0.062 1.000 0.062 Slenderness 1 6.682 24.120 24.120 35.963

123 User Defined Tube

User Defined Tube

0.021 1.000 0.021 Slenderness 1 6.682 24.120 24.120 35.963

Utilisation Ratio for all beams are less than 1.00 hence the structure is safe.

Page 240: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR SLAB BOTTOM

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 241: Design Report for Acropolis Tower

Print sender

StreetPostcode / City Phone FaxProject

COMPUFIX 8.48.4.4840.25953/31/1941

Page 1ApplicationRemarks Provide 6 mm thk plate

Date: 4/24/2013

fischer COMPUFIX: Designed in accordance with ETAG, Annex C

Type of loading: Static actionsAnchor: Anchor Bolt FAZ II 8 / 10 A4 (Art. Nr. 501396) made from stainless steel (grade 316)Base material: Cracked concrete, normal reinforcement

Concrete compressive strength class: C 20/25Edge Reinforcement: No influenceAnchor bending: UnavailableAnchor plate: No design available

Dimensions/loads:

Design actions(*) Not true to scale[mm], [kN], [kNm]

Page 242: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor Anchor Bolt FAZ II 8 / 10 A4 Page 2

Important:• As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be

sufficiently stiff. The COMPUFIX anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by COMPUFIX.

• The design utilises specific values for each anchor. When alterations will be made, even for similar products, a new design calculation is required.

• With slotted holes the design is carried out under the assumption that the anchor is located in the centre of the hole.• Please check that the fixing thickness of the fixing is adequate.• Maximum hole diameter in the attachement: 9 mm.• To ensure the structural component's capacity, the proofs in accordance with Section 7 of ETAG Annex C must be observed.• All additional conditions of the Approvals are to be observed.• Due to the following reasons splitting failure will not occur:

- Cracked concrete is assumed.- Reinforcement is present which limits the crack width to wk = 0.3 mm, taking into account the splitting forces according to ETAG 001, Annex C, chapter 7.3.

Anchor-No. Unit Sd

N V1 kN 2.60 0.002 kN 2.54 0.00

Tension load, Steel failure:Unit Sd

NRk,s kN 16.00gMs - 1.50NRd,s kN 10.67Nh

Sd kN 2.60bN,s - 0.24

Tension load, Concrete cone failure:Unit Sd

N0Rk,c kN 10.87

A c,N cm2 308.00A0

c,N cm2 196.00Ac,N / A0

c,N - 1.57ys,N - 1.00yec1,N - 0.99yec2,N - 1.00y re,N - 1.00NRk,c kN 16.96gM,c - 1.50NRd,c kN 11.31Ng

Sd kN 5.13bN,c - 0.45

Tension load, Pull-out:Unit Sd

NRk,p kN 5.00gMp - 1.50NRd,p kN 3.33Nh

Sd kN 2.60bN,p - 0.78

Shear load, Steel failure:Unit Sd

VRk,s kN 12.00gMs - 1.25VRd,s kN 9.60Vh

Sd kN 0.00bV,s - 0.00

Shear load, Concrete failure on the opposing side of the load:Unit Sd

N0Rk,c kN 10.87

A c,N cm2 308.00A0

c,N cm2 196.00Ac,N / A0

c,N - 1.57ys,N - 1.00yec1,N - 1.00yec2,N - 1.00y re,N - 1.00k - 2.00VRk,cp kN 34.15gM,cp - 1.50VRd,cp kN 22.77Vg

Sd kN 0.01bV,cp - 0.00

Page 243: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor Anchor Bolt FAZ II 8 / 10 A4 Page 3

Tension load Used capacity Shear load Used capacityCombined tensile and shear load

Used capacity

Steel failure: 24.4 % Steel failure: 0.0 % 65.0 %

Concrete cone failure: 45.4 %Concrete failure on the opposing side of the load:

0.0 %

Pull-through / pull-out: 78.0 %

Result: Proof of anchor was successful

Page 244: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor Anchor Bolt FAZ II 8 / 10 A4 Page 4

Installation details

Max fixing thickness tfix [mm] 10Thread diameter M [mm] 8Setting torque MD [Nm] 20Spanner A/F [mm] 13Hole diameter in the attachment df [mm] 9Anchorage depth hef [mm] 45Drill diameter d0 [mm] 8Minimum drill hole depth (through fixing) td [mm] 65

Page 245: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor Anchor Bolt FAZ II 8 / 10 A4 Page 5

Page 246: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR SLAB FRONT

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 247: Design Report for Acropolis Tower

Print sender

StreetPostcode / City Phone FaxProject

COMPUFIX 8.48.4.4840.25953/32/1941

Page No 1 of print-out No 50ApplicationRemarks Provide 6 mm thk plate

Date: 4/24/2013

fischer COMPUFIX: Designed in accordance with ETAG, Annex C

Type of loading: Static actionsAnchor: fischer Bolt FBN II 8/10 A4 (hef=40 mm) (Art. Nr. 507555) made from stainless steel (grade 316)Base material: Non-cracked concrete, normal reinforcement

Concrete compressive strength class: C 20/25Edge Reinforcement: No influenceAnchor bending: UnavailableAnchor plate: No design available

Dimensions/loads:

Design actions(*) Not true to scale[mm], [kN], [kNm]

Page 248: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 8/10 A4 (hef=40 mm) Page No 2 of print-out No 50

Important:• As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be

sufficiently stiff. The COMPUFIX anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by COMPUFIX.

• The design utilises specific values for each anchor. When alterations will be made, even for similar products, a new design calculation is required.

• With slotted holes the design is carried out under the assumption that the anchor is located in the centre of the hole.• Please check that the fixing thickness of the fixing is adequate.• Maximum hole diameter in the attachement: 9 mm.• To ensure the structural component's capacity, the proofs in accordance with Section 7 of ETAG Annex C must be observed.• All additional conditions of the Approvals are to be observed.

Anchor-No. Unit Sd

N V1 kN 0.10 0.502 kN 0.10 0.50

Tension load, Steel failure:Unit Sd

NRk,s kN 16.50gMs - 1.40NRd,s kN 11.79Nh

Sd kN 0.10bN,s - 0.01

Tension load, Concrete cone failure:Unit Sd

N0Rk,c kN 12.78

A c,N cm2 252.00A0

c,N cm2 144.00Ac,N / A0

c,N - 1.75ys,N - 1.00yec1,N - 1.00yec2,N - 1.00y re,N - 1.00NRk,c kN 22.36gM,c - 1.50NRd,c kN 14.90Ng

Sd kN 0.21bN,c - 0.01

Shear load, Steel failure:Unit Sd

VRk,s kN 12.80gMs - 1.25VRd,s kN 10.24Vh

Sd kN 0.50bV,s - 0.05

Shear load, Concrete failure on the opposing side of the load:Unit Sd

N0Rk,c kN 12.78

A c,N cm2 252.00A0

c,N cm2 144.00Ac,N / A0

c,N - 1.75ys,N - 1.00yec1,N - 1.00yec2,N - 1.00y re,N - 1.00k - 1.00VRk,cp kN 22.36gM,cp - 1.50VRd,cp kN 14.90Vg

Sd kN 1.00bV,cp - 0.07

Page 249: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 8/10 A4 (hef=40 mm) Page No 3 of print-out No 50

Tension load, Splitting:Unit Sd

N0Rk,c kN 12.78

A c,N cm2 375.20A0

c,N cm2 361.00Ac,N / A0

c,N - 1.04ys,N - 0.91yec1,N - 1.00yec2,N - 1.00y re,N - 1.00yh,sp - 1.22NRk,sp kN 14.78gM,sp - 1.50NRd,sp kN 9.86Ng

Sd kN 0.21bN,sp - 0.02

Shear load, Concrete edge failure:Unit Sd

V0Rk,c kN 9.84

Ac,V cm2 292.45A0

c,V cm2 202.01Ac,V / A

0c,V - 1.45

ys,V - 1.00yh,V - 1.00ya,V - 1.00yec,V - 1.00y re,V - 1.00VRk,c kN 14.24gM,c - 1.50VRd,c kN 9.49Vg

Sd kN 1.00bV,c - 0.11

Tension load Used capacity Shear load Used capacityCombined tensile and shear load

Used capacity

Steel failure: 0.9 % Steel failure: 4.9 % 3.7 %Concrete cone failure: 1.4 % Concrete edge failure: 10.6 %

Splitting: 2.1 %Concrete failure on the opposing side of the load:

6.7 %

Result: Proof of anchor was successful

Page 250: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 8/10 A4 (hef=40 mm) Page No 4 of print-out No 50

Installation details

Max fixing thickness tfix [mm] 10Thread diameter M [mm] 8Setting torque MD [Nm] 10Spanner A/F [mm] 13Hole diameter in the attachment df [mm] 9Anchorage depth hef [mm] 40Drill diameter d0 [mm] 8Minimum drill hole depth (through fixing) td [mm] 66

Page 251: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 8/10 A4 (hef=40 mm) Page No 5 of print-out No 50

Page 252: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

Project : ACROPOLIS TOWER, KOLKATA

Location: Kolkata

CHECK FOR BASE PLATE

Tension Force (from Hilti Report) = 2600.00 N

Eccentricity = 15 mm

Maximum Bending Moment = 39000 N-mm

Yield Stress = 250 N/mm2

Actual Section Modulas of Plate = 312.072845 mm3

Partial Factor of Safety = 1.1 - (Refer IS 800-2007, Table 5, Pg-30)

Factor = 1.0 - (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Design Bending Strength = 70925.6465 N-mm (Refer IS 800-2007, Cl: 8.2.1.2, Pg-53)

Width of Plate = 52.01 mm

Required Section Modulas of Plate = 171.60 mm3

Plate Thickness Required = 4.45 mm

Thickness Provided = 6 mm

> 4.45 mm

Provide MS Plate of 70X120X6 thk. Hence ok

t

βb

Tfactored

e

M

fy

Zp

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

γm0

Md

b

Zreq.

treq.

Page 253: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

STRUCTURAL CALCULATION FOR PE – 05 & 06

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 254: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

WIND PRESSURE CALCULATION

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 255: Design Report for Acropolis Tower

PROJECT : ACCROPOLIS TOWER, KOLKATA

= 50 m/sec

Building Classification

Terrain Category = 2 (Assumed)

Building Class = C (Max. Dimension > 50 m)

Building Dimensions

Height (H) = 99.96 m H / W = 2.95 > 1.5 & < 6.0

Width (W) = 33.93 m L / W = 2.431 > 1.5 & < 4

Length (L) = 82.47 m

= Vb x K1 x K2 x K3

Where

= 1.00

= 1.156 (Upto Maximum 90 m Height)

= 1.00

= 57.80 m/sec

=

= 2004.504 N/m2

= CP x Pz

Where

= 0.8

= -0.7

= Cpe - Cpi

= 1.5

= CP x Pz

= 1.5 x 2004.504 N/m2

Calculated Design Wind Pressure = 3006.756 N/m2

= 3.01 KPa

= 300.68 kg/m2

Design Wind Pressure = 301 kg/m2

(SAY)

NITSON AND AMITSU PRIVATE LIMITED

WIND PRESSURE DATA

WIND LOAD COMPUTATION FOR EXTERNAL CLADDING / GLAZING WORK

(As per IS:875, Part III-1987 Date: 16.05.2012

0.6 x Vz2

Design Wind Pressure (Pd)

Cpe (External Pressure Coeff)

Basic Wind Speed (Vb) (Kolkata)

Design Wind Speed (Vz)

K1 (Probability Factor)

K2 (Terrain, Height, Size Factor)

By Interpolation Method

Cpi (Internal Pressure Coeff)

CP (Pressure Coeff)

Design Wind Pressure ( Pd )

K3 (Topography Factor)

Design Wind Speed ( Vz )

Wind Pressure (Pz)

Page 256: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

STAAD REPORT FOR LOUVER & ZCP BACK-UP (PE-05 & 06)

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 257: Design Report for Acropolis Tower

23/05/2013

STAAD.Pro Report

To: ACROPOLIS

TOWER,

KOLKATA

From: NITSON AND AMITSU PRIVATE LIMITED

Copy to: Date: 22/04/20123

15:43:00

Ref: DRG NO. :

NAP/BS/ACROPOLIS-T /

023

Job Information

Engineer Checked Approved

Name:

Date: 22-Apr-13

Structure Type SPACE FRAME

Number of Nodes 68 Highest Node 68

Number of Elements 115 Highest Beam 116

Number of Basic Load Cases 3

Number of Combination Load Cases 1

Included in this printout are data for:

All The Whole Structure

Included in this printout are results for load cases:

Type L/C Name

Primary 1 DL

Primary 2 WL

Primary 3 LOUVER LOADS

Combination 4 COMBINATION LOAD CASE 4

Page 258: Design Report for Acropolis Tower

23/05/2013

Whole Structure

Whole Structure

LOADS CONSIDERED :

1) DEAD LOAD :

a. Self Weight of Structure b. Dead load of Louver (0.8402 Kg/m) c. Dead load of ZCP Sheet (10 Kg/m2)

2) WIND LOAD :

a. Design Wind Pressure as per Tender Specification is 2520 N/m2

Page 259: Design Report for Acropolis Tower

23/05/2013

Section Properties Prop Section Area

(cm2) Iyy

(cm4) Izz

(cm4) J

(cm4) Material

1 User Defined Tube 4.930 18.515 18.515 27.689 STEEL

2 User Defined Tube 12.658 81.791 244.748 189.165 STEEL

Materials

Mat Name E

(kN/mm2) Density

(kg/m3)

(/°C)

1 STEEL 205.000 0.300 7.83E 3 12E -6

Supports Node X

(kN/mm) Y

(kN/mm) Z

(kN/mm) rX

(kN-m/deg) rY

(kN-m/deg) rZ

(kN-m/deg)

5 Fixed Fixed Fixed - - -

7 Fixed Fixed Fixed - - -

25 Fixed Fixed Fixed - - -

27 Fixed Fixed Fixed - - -

45 Fixed Fixed Fixed - - -

47 Fixed Fixed Fixed - - -

65 Fixed Fixed Fixed - - -

67 Fixed Fixed Fixed - - -

Basic Load Cases

Number Name

1 DL

2 WL

3 LOUVER LOADS

Combination Load Cases

Comb. Combination L/C Name Primary Primary L/C Name Factor

4 COMBINATION LOAD CASE 4 1 DL 1.50

2 WL 1.50

3 LOUVER LOADS 1.50

Page 260: Design Report for Acropolis Tower

23/05/2013

Statics Check Results

L/C FX (N)

FY (N)

FZ (N)

MX (kNm)

MY (kNm)

MZ (kNm)

1:DL Loads 0.000 -7.63E 3 0.000 2.254 0.000 -2.861

1:DL Reactions 0.000 7.63E 3 -0.000 -2.254 0.000 2.861

Difference 0.000 -0.000 -0.000 0.000 0.000 -0.000

2:WL Loads 20.7E 3 0.000 25.9E 3 177.367 -3.496 -141.894

2:WL Reactions -20.7E 3 -0.000 -25.9E 3 -177.367 3.496 141.894

Difference 0.000 -0.000 0.000 0.000 0.000 -0.000

3:LOUVER LOADS Loads 0.000 -19.5E 3 21.4E 3 146.822 -8.038 -7.321

3:LOUVER LOADS Reactions 0.000 19.5E 3 -21.4E 3 -146.822 8.038 7.321

Difference 0.000 0.000 0.000 0.000 0.000 0.000

Node Displacement Summary

Node L/C X (mm)

Y (mm)

Z (mm)

Resultant (mm)

rX (rad)

rY (rad)

rZ (rad)

Max X 60 4:COMBINATION

LOAD CASE 4

7.191 0.140 3.808 8.138 -0.001 0.002 0.001

Min X 1 4:COMBINATION LOAD CASE 4

-1.452 0.001 -0.906 1.712 0.001 0.004 -0.002

Max Y 68 4:COMBINATION LOAD CASE 4

2.491 0.224 0.003 2.501 -0.001 0.002 0.002

Min Y 4 4:COMBINATION

LOAD CASE 4

0.615 -0.397 -1.265 1.462 0.001 0.002 -0.001

Max Z 58 4:COMBINATION LOAD CASE 4

7.191 0.024 4.664 8.571 -0.001 0.001 0.001

Min Z 3 4:COMBINATION LOAD CASE 4

-1.425 0.001 -1.266 1.906 0.002 0.004 -0.002

Max rX 49 4:COMBINATION

LOAD CASE 4

2.882 -0.001 2.319 3.699 0.003 0.004 -0.004

Min rX 65 4:COMBINATION LOAD CASE 4

0.000 0.000 0.000 0.000 -0.003 0.004 0.005

Max rY 45 4:COMBINATION LOAD CASE 4

0.000 0.000 0.000 0.000 0.000 0.005 -0.001

Min rY 4 1:DL 0.000 -0.084 -0.052 0.099 0.000 -0.000 0.000

Max rZ 65 4:COMBINATION LOAD CASE 4

0.000 0.000 0.000 0.000 -0.003 0.004 0.005

Min rZ 49 4:COMBINATION LOAD CASE 4

2.882 -0.001 2.319 3.699 0.003 0.004 -0.004

Max Rst 58 4:COMBINATION

LOAD CASE 4

7.191 0.024 4.664 8.571 -0.001 0.001 0.001

Beam Displacement Detail Summary Displacements shown in italic indicate the presence of an offset

Beam L/C d (m)

X (mm)

Y (mm)

Z (mm)

Resultant (mm)

Max X 97 4:COMBINATION

LOAD CASE 4

0.463 7.428 0.011 4.864 8.879

Min X 1 4:COMBINATION LOAD CASE 4

0.000 -1.452 0.001 -0.906 1.712

Max Y 114 4:COMBINATION LOAD CASE 4

0.180 0.875 0.246 0.007 0.909

Min Y 3 4:COMBINATION

LOAD CASE 4

0.750 0.615 -0.397 -1.265 1.462

Max Z 96 4:COMBINATION LOAD CASE 4

0.463 6.453 -0.010 4.963 8.141

Min Z 4 4:COMBINATION LOAD CASE 4

0.000 -1.425 0.001 -1.266 1.906

Max Rst 97 4:COMBINATION

LOAD CASE 4

0.463 7.428 0.011 4.864 8.879

A maximum deflection of 8.571 mm is observed at Node No. 58 for Combination Load Case 4.

Therefore, ∂max = 8.571 mm Allowable Deflection is,

∂allow = 4350/300 = 14.50 mm > 8.571 mm

The ∂max is less than the allowable, Hence ok.

Page 261: Design Report for Acropolis Tower

23/05/2013

Reaction Summary

Horizontal

Vertical Horizontal Moment

Node L/C FX

(N)

FY

(N)

FZ

(N)

MX

(kNm)

MY

(kNm)

MZ

(kNm)

Max FX 67 1:DL 0.335 633.395 -86.699 0.000 0.000 0.000

Min FX 45 4:COMBINATION

LOAD CASE 4

-5.6E 3 5.31E 3 -15.9E 3 0.000 0.000 0.000

Max FY 27 4:COMBINATION LOAD CASE 4

-4.76E 3 8.16E 3 -7.95E 3 0.000 0.000 0.000

Min FY 5 2:WL -2.16E 3 -1.54E 3 -4.25E 3 0.000 0.000 0.000

Max FZ 5 1:DL 0.217 749.850 92.599 0.000 0.000 0.000

Min FZ 45 4:COMBINATION LOAD CASE 4

-5.6E 3 5.31E 3 -15.9E 3 0.000 0.000 0.000

Max MX 5 1:DL 0.217 749.850 92.599 0.000 0.000 0.000

Min MX 5 1:DL 0.217 749.850 92.599 0.000 0.000 0.000

Max MY 5 1:DL 0.217 749.850 92.599 0.000 0.000 0.000

Min MY 5 1:DL 0.217 749.850 92.599 0.000 0.000 0.000

Max MZ 5 1:DL 0.217 749.850 92.599 0.000 0.000 0.000

Min MZ 5 1:DL 0.217 749.850 92.599 0.000 0.000 0.000

Utilization Ratio Beam Analysis

Property Design Property

Actual Ratio

Allowable Ratio

Ratio (Act./Allo

w.)

Clause L/C

Ax (cm2)

Iz (cm4)

Iy (cm4)

Ix (cm4)

1 User Defined Tube

User Defined Tube

0.187 1.000 0.187 4.930 18.515 18.515 27.689

3 User Defined

Tube

User Defined

Tube

0.179 1.000 0.179 4.930 18.515 18.515 27.689

4 User Defined Tube

User Defined Tube

0.172 1.000 0.172 4.930 18.515 18.515 27.689

5 User Defined Tube

User Defined Tube

0.181 1.000 0.181 12.658 244.748 81.791 189.165

6 User Defined

Tube

User Defined

Tube

0.186 1.000 0.186 4.930 18.515 18.515 27.689

7 User Defined Tube

User Defined Tube

0.142 1.000 0.142 12.658 244.748 81.791 189.165

8 User Defined Tube

User Defined Tube

0.186 1.000 0.186 4.930 18.515 18.515 27.689

9 User Defined

Tube

User Defined

Tube

0.295 1.000 0.295 4.930 18.515 18.515 27.689

10 User Defined Tube

User Defined Tube

0.238 1.000 0.238 4.930 18.515 18.515 27.689

11 User Defined Tube

User Defined Tube

0.256 1.000 0.256 4.930 18.515 18.515 27.689

12 User Defined

Tube

User Defined

Tube

0.283 1.000 0.283 12.658 244.748 81.791 189.165

13 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

14 User Defined Tube

User Defined Tube

0.202 1.000 0.202 12.658 244.748 81.791 189.165

15 User Defined

Tube

User Defined

Tube

0.174 1.000 0.174 4.930 18.515 18.515 27.689

16 User Defined Tube

User Defined Tube

0.372 1.000 0.372 4.930 18.515 18.515 27.689

17 User Defined Tube

User Defined Tube

0.244 1.000 0.244 4.930 18.515 18.515 27.689

18 User Defined

Tube

User Defined

Tube

0.243 1.000 0.243 4.930 18.515 18.515 27.689

19 User Defined Tube

User Defined Tube

0.236 1.000 0.236 12.658 244.748 81.791 189.165

20 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

21 User Defined

Tube

User Defined

Tube

0.202 1.000 0.202 12.658 244.748 81.791 189.165

22 User Defined Tube

User Defined Tube

0.119 1.000 0.119 4.930 18.515 18.515 27.689

23 User Defined Tube

User Defined Tube

0.172 1.000 0.172 4.930 18.515 18.515 27.689

24 User Defined

Tube

User Defined

Tube

0.215 1.000 0.215 4.930 18.515 18.515 27.689

25 User Defined Tube

User Defined Tube

0.172 1.000 0.172 4.930 18.515 18.515 27.689

26 User Defined Tube

User Defined Tube

0.227 1.000 0.227 12.658 244.748 81.791 189.165

27 User Defined

Tube

User Defined

Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

28 User Defined Tube

User Defined Tube

0.202 1.000 0.202 12.658 244.748 81.791 189.165

29 User Defined Tube

User Defined Tube

0.119 1.000 0.119 4.930 18.515 18.515 27.689

30 User Defined

Tube

User Defined

Tube

0.315 1.000 0.315 4.930 18.515 18.515 27.689

31 User Defined Tube

User Defined Tube

0.215 1.000 0.215 4.930 18.515 18.515 27.689

32 User Defined Tube

User Defined Tube

0.297 1.000 0.297 4.930 18.515 18.515 27.689

33 User Defined

Tube

User Defined

Tube

0.202 1.000 0.202 12.658 244.748 81.791 189.165

34 User Defined Tube

User Defined Tube

0.218 1.000 0.218 4.930 18.515 18.515 27.689

35 User Defined Tube

User Defined Tube

0.110 1.000 0.110 12.658 244.748 81.791 189.165

36 User Defined

Tube

User Defined

Tube

0.190 1.000 0.190 4.930 18.515 18.515 27.689

37 User Defined Tube

User Defined Tube

0.427 1.000 0.427 4.930 18.515 18.515 27.689

38 User Defined Tube

User Defined Tube

0.232 1.000 0.232 4.930 18.515 18.515 27.689

39 User Defined

Tube

User Defined

Tube

0.425 1.000 0.425 4.930 18.515 18.515 27.689

40 User Defined Tube

User Defined Tube

0.331 1.000 0.331 12.658 244.748 81.791 189.165

41 User Defined Tube

User Defined Tube

0.245 1.000 0.245 4.930 18.515 18.515 27.689

Page 262: Design Report for Acropolis Tower

23/05/2013

42 User Defined Tube

User Defined Tube

0.221 1.000 0.221 12.658 244.748 81.791 189.165

43 User Defined Tube

User Defined Tube

0.191 1.000 0.191 4.930 18.515 18.515 27.689

44 User Defined

Tube

User Defined

Tube

0.321 1.000 0.321 4.930 18.515 18.515 27.689

45 User Defined Tube

User Defined Tube

0.313 1.000 0.313 4.930 18.515 18.515 27.689

46 User Defined Tube

User Defined Tube

0.259 1.000 0.259 4.930 18.515 18.515 27.689

47 User Defined

Tube

User Defined

Tube

0.511 1.000 0.511 12.658 244.748 81.791 189.165

48 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

49 User Defined Tube

User Defined Tube

0.379 1.000 0.379 12.658 244.748 81.791 189.165

50 User Defined

Tube

User Defined

Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

51 User Defined Tube

User Defined Tube

0.330 1.000 0.330 4.930 18.515 18.515 27.689

52 User Defined Tube

User Defined Tube

0.179 1.000 0.179 4.930 18.515 18.515 27.689

53 User Defined

Tube

User Defined

Tube

0.191 1.000 0.191 4.930 18.515 18.515 27.689

54 User Defined Tube

User Defined Tube

0.211 1.000 0.211 12.658 244.748 81.791 189.165

55 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

56 User Defined

Tube

User Defined

Tube

0.202 1.000 0.202 12.658 244.748 81.791 189.165

57 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

58 User Defined Tube

User Defined Tube

0.172 1.000 0.172 4.930 18.515 18.515 27.689

59 User Defined

Tube

User Defined

Tube

0.097 1.000 0.097 4.930 18.515 18.515 27.689

60 User Defined Tube

User Defined Tube

0.172 1.000 0.172 4.930 18.515 18.515 27.689

61 User Defined Tube

User Defined Tube

0.202 1.000 0.202 12.658 244.748 81.791 189.165

62 User Defined

Tube

User Defined

Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

63 User Defined Tube

User Defined Tube

0.202 1.000 0.202 12.658 244.748 81.791 189.165

64 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

65 User Defined

Tube

User Defined

Tube

0.240 1.000 0.240 4.930 18.515 18.515 27.689

66 User Defined Tube

User Defined Tube

0.215 1.000 0.215 4.930 18.515 18.515 27.689

67 User Defined Tube

User Defined Tube

0.172 1.000 0.172 4.930 18.515 18.515 27.689

68 User Defined

Tube

User Defined

Tube

0.202 1.000 0.202 12.658 244.748 81.791 189.165

69 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

70 User Defined Tube

User Defined Tube

0.202 1.000 0.202 12.658 244.748 81.791 189.165

71 User Defined

Tube

User Defined

Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

72 User Defined Tube

User Defined Tube

0.344 1.000 0.344 4.930 18.515 18.515 27.689

73 User Defined Tube

User Defined Tube

0.209 1.000 0.209 4.930 18.515 18.515 27.689

74 User Defined

Tube

User Defined

Tube

0.208 1.000 0.208 4.930 18.515 18.515 27.689

75 User Defined Tube

User Defined Tube

0.335 1.000 0.335 12.658 244.748 81.791 189.165

76 User Defined Tube

User Defined Tube

0.209 1.000 0.209 4.930 18.515 18.515 27.689

77 User Defined

Tube

User Defined

Tube

0.218 1.000 0.218 12.658 244.748 81.791 189.165

78 User Defined Tube

User Defined Tube

0.186 1.000 0.186 4.930 18.515 18.515 27.689

79 User Defined Tube

User Defined Tube

0.323 1.000 0.323 4.930 18.515 18.515 27.689

80 User Defined

Tube

User Defined

Tube

0.316 1.000 0.316 4.930 18.515 18.515 27.689

81 User Defined Tube

User Defined Tube

0.261 1.000 0.261 4.930 18.515 18.515 27.689

82 User Defined Tube

User Defined Tube

0.538 1.000 0.538 12.658 244.748 81.791 189.165

83 User Defined

Tube

User Defined

Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

84 User Defined Tube

User Defined Tube

0.408 1.000 0.408 12.658 244.748 81.791 189.165

85 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

86 User Defined

Tube

User Defined

Tube

0.442 1.000 0.442 4.930 18.515 18.515 27.689

87 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

88 User Defined Tube

User Defined Tube

0.355 1.000 0.355 4.930 18.515 18.515 27.689

89 User Defined

Tube

User Defined

Tube

0.238 1.000 0.238 12.658 244.748 81.791 189.165

90 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

91 User Defined Tube

User Defined Tube

0.202 1.000 0.202 12.658 244.748 81.791 189.165

92 User Defined

Tube

User Defined

Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

93 User Defined Tube

User Defined Tube

0.204 1.000 0.204 4.930 18.515 18.515 27.689

94 User Defined Tube

User Defined Tube

0.147 1.000 0.147 4.930 18.515 18.515 27.689

95 User Defined

Tube

User Defined

Tube

0.191 1.000 0.191 4.930 18.515 18.515 27.689

96 User Defined Tube

User Defined Tube

0.225 1.000 0.225 12.658 244.748 81.791 189.165

97 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

98 User Defined

Tube

User Defined

Tube

0.202 1.000 0.202 12.658 244.748 81.791 189.165

99 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

100 User Defined Tube

User Defined Tube

0.190 1.000 0.190 4.930 18.515 18.515 27.689

101 User Defined

Tube

User Defined

Tube

0.215 1.000 0.215 4.930 18.515 18.515 27.689

102 User Defined Tube

User Defined Tube

0.172 1.000 0.172 4.930 18.515 18.515 27.689

103 User Defined Tube

User Defined Tube

0.243 1.000 0.243 12.658 244.748 81.791 189.165

104 User Defined

Tube

User Defined

Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

105 User Defined Tube

User Defined Tube

0.209 1.000 0.209 12.658 244.748 81.791 189.165

106 User Defined Tube

User Defined Tube

0.265 1.000 0.265 4.930 18.515 18.515 27.689

107 User Defined

Tube

User Defined

Tube

0.493 1.000 0.493 4.930 18.515 18.515 27.689

108 User Defined Tube

User Defined Tube

0.319 1.000 0.319 4.930 18.515 18.515 27.689

109 User Defined Tube

User Defined Tube

0.423 1.000 0.423 4.930 18.515 18.515 27.689

110 User Defined

Tube

User Defined

Tube

0.094 1.000 0.094 12.658 244.748 81.791 189.165

Page 263: Design Report for Acropolis Tower

23/05/2013

111 User Defined Tube

User Defined Tube

0.337 1.000 0.337 4.930 18.515 18.515 27.689

112 User Defined Tube

User Defined Tube

0.069 1.000 0.069 12.658 244.748 81.791 189.165

113 User Defined

Tube

User Defined

Tube

0.248 1.000 0.248 4.930 18.515 18.515 27.689

114 User Defined Tube

User Defined Tube

0.468 1.000 0.468 4.930 18.515 18.515 27.689

115 User Defined Tube

User Defined Tube

0.268 1.000 0.268 4.930 18.515 18.515 27.689

116 User Defined

Tube

User Defined

Tube

0.343 1.000 0.343 4.930 18.515 18.515 27.689

Utilisation Ratio for all beams are less than 1.00 hence the structure is safe.

Page 264: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

Check for MS Cleat Through Bolt

Shear Check on Bolt

Provide 6 diameter, 25 mm long SS through bolt @ 175 mm c/c

i)Shear Stress Check for Bolt

Loading height of ZCP panel a = 1.55 m

Loading width of ZCP panel b = 0.175 m

Load area of the panel A = 0.27 m2

Wind pressure Pw = 2.52 Kpa (As given in Tender Specification)

DL of ZCP Pd = 0.1 Kpa

Load Factor F = 1.5 -

Total shear load due to WL V = 1025.33 N

Shear load per bolt V/n = 1025.33 N

Number of bolt n = 1.00 -

Required c/c distance(spacing) of bolt S = 175.00 mm

Diameter of Bolt d = 6.00 mm

Unthreaded Shank Area of Bolt As = 20.10 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Bolt psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Bolt Psb = 2912.49 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 1025.33 N

Provide 6 diameter, 25 mm long SS through bolt @ 175 mm c/c Hence ok

Tension Check on Bolt

Unthreaded Shank Area of Bolt At = 20.10 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Width of ZCP Panel b = 0.175 m

Length of ZCP Panel l = 0.925 m

DL of ZCP Pd = 0.1 Kpa

Load Factor F = 1.5 -

Point Load P = 24.28 N

Maximum Eccentricity e = 10 mm

Maximum Bending Moment MZ = 242.81 N-mm

Lever Arm Larm = 25 mm

Number of Bolt n = 1.00 -

Maximum Tension per Bolt Pact = 9.71 N

Tension Strength of Bolt pt = 210.00 N/mm2

or 350.00 N/mm2

Tension Capacity of Bolt Pnom = 3376.80 N

> 9.71

Hence ok

Combined Tension & Shear Check

Unity Ratio UR = 0.35 -

< 1.4 -

Hence ok

Provide 6 diameter, 25 mm long SS through bolt @ 175 mm c/c

PE-02 WITH CLADDING

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.a, Pg. 53

( Refer Fischer India Range Catalogue, Technical Data,

Page-144)

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.c, Pg. 54

Refer P291, Clause 5.2.2.d, Pg. 55

Refer P291, Clause 5.2.2.c, Pg. 54

Page 265: Design Report for Acropolis Tower

Check for Aluminium Runner

Provide (50x50)x2.8 thk Angle (Aluminium) as Runner

Deflection Check

Span Length L = 0.175 m

Load Factor F = 1.5 -

Point Load P = 683.55 N

Elastic Modulas of Aluminium E = 65500 N/mm2

Leg Size of the Angle a = 50 mm

Thickness of the Angle t = 2.8 mm

C.G. Distance to Extreme Fibre y = 36.46 mm

Moment of Inertia I = 67117.12 mm4

Torsional Constant J = 711.24 mm4

C/S Area A = 272.16 mm2

Radius of Gyration r = 15.70 mm

Section Modulas Z = 1840.84 mm3

Actual Deflection δcal = 0.02 mm

Allowable Deflection δallow = 0.97 mm

> 0.02 mm

Hence ok

Torsional Buckling Check

Maximum Load Eccentricity emax = 25.00 mm

Point Load P = 683.55 N

Maximum Torsional Moment Tmax = 17088.75 N-mm

Maximum Torsional Moment in Each Support Tmax, s = 8544.38 N-mm

Torsional Constant J = 711.24 mm3

Actual Torsional Stress ζcal = 33.64 N/mm2

Radius of Curvature of the Section R = 0.00 mm

Slenderness Ratio λt = 92.86 -

Actual Torsional Stress ζallow = 42.00 N/mm2

> 33.64 N/mm2

Hence ok

Check for Aluminium Cleat Screw

Shear Check on Screws

Provide 2 Nos 8 x 25 mm long SS 304 through pan head screw per Alu. cleat

i)Shear Stress Check for Screw

Total shear load due to DL V = 40.69 N

Shear load per screw V/n = 20.34 N

Number of Screw n = 2.00 -

Diameter of Screw d = 4.00 mm

Unthreaded Shank Area of Screw As = 3.14 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Screw Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Screw Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Screw psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Screw Psb = 910.80 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 20.34 N

Provide 2 Nos 8 x 25 mm long SS 304 through pan head screw per Alu. cleat Hence ok

Tension Check on Screws

Unthreaded Shank Area of Screw At = 3.14 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Screw Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Screw Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Number of Screw n = 2.00 -

Maximum Tension per Screw Pact = 512.66 N

Tension Strength of Screw pt = 210.00 N/mm2

or 350.00 N/mm2

Tension Capacity of Screw Pnom = 528.00 N

> 512.66

Hence ok

Combined Tension & Shear Check

Unity Ratio UR = 0.99 -

< 1.4 -

Hence ok

Provide 2 Nos 8 x 25 mm long SS 304 through pan head screw per Alu. cleat

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.c, Pg. 54

Refer P291, Clause 5.2.2.c, Pg. 54

Refer P291, Clause 5.2.2.d, Pg. 55

( Refer Fischer India Range Catalogue, Technical Data,

Page-144)

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.a, Pg. 53

Page 266: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

Check for MS Cleat Through Bolt

Shear Check on Bolt

Provide 6 diameter, 25 mm long SS through bolt @ 250 mm c/c

i)Shear Stress Check for Bolt

Loading height of ZCP panel a = 0.925 m

Loading width of ZCP panel b = 0.250 m

Load area of the panel A = 0.23 m2

Wind pressure Pw = 2.52 Kpa (As given in Tender Specification)

DL of ZCP Pd = 0.1 Kpa

Load Factor F = 1.5 -

Total shear load due to WL V = 874.13 N

Shear load per bolt V/n = 874.13 N

Number of bolt n = 1.00 -

Required c/c distance(spacing) of bolt S = 250.000 mm

Diameter of Bolt d = 6.00 mm

Unthreaded Shank Area of Bolt As = 20.10 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Bolt psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Bolt Psb = 2912.49 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 874.13 N

Provide 6 diameter, 25 mm long SS through bolt @ 250 mm c/c Hence ok

Tension Check on Bolt

Unthreaded Shank Area of Bolt At = 20.10 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Width of ZCP Panel b = 0.250 m

Length of ZCP Panel l = 0.925 m

DL of ZCP Pd = 0.1 Kpa

Load Factor F = 1.5 -

Point Load P = 34.69 N

Maximum Eccentricity e = 10 mm

Maximum Bending Moment MZ = 346.88 N-mm

Lever Arm Larm = 25 mm

Number of Bolt n = 1.00 -

Maximum Tension per Bolt Pact = 13.88 N

Tension Strength of Bolt pt = 210.00 N/mm2

or 350.00 N/mm2

Tension Capacity of Bolt Pnom = 3376.80 N

> 13.88

Hence ok

Combined Tension & Shear Check

Unity Ratio UR = 0.30 -

< 1.4 -

Hence ok

Provide 6 diameter, 25 mm long SS through bolt @ 250 mm c/c

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.c, Pg. 54

Refer P291, Clause 5.2.2.d, Pg. 55

Refer P291, Clause 5.2.2.c, Pg. 54

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.a, Pg. 53

( Refer Fischer India Range Catalogue, Technical Data,

Page-144)

PE-05 & 06

Page 267: Design Report for Acropolis Tower

Check for Aluminium Runner

Provide (50x50)x2.8 thk Angle (Aluminium) as Runner

Deflection Check

Span Length L = 0.250 m

Load Factor F = 1.5 -

Point Load P = 582.75 N

Elastic Modulas of Aluminium E = 65500 N/mm2

Leg Size of the Angle a = 50 mm

Thickness of the Angle t = 2.8 mm

C.G. Distance to Extreme Fibre y = 36.46 mm

Moment of Inertia I = 67117.12 mm4

Torsional Constant J = 711.24 mm4

C/S Area A = 272.16 mm2

Radius of Gyration r = 15.70 mm

Section Modulas Z = 1840.84 mm3

Actual Deflection δcal = 0.04 mm

Allowable Deflection δallow = 1.39 mm

> 0.04 mm

Hence ok

Torsional Buckling Check

Maximum Load Eccentricity emax = 25.00 mm

Point Load P = 582.75 N

Maximum Torsional Moment Tmax = 14568.75 N-mm

Maximum Torsional Moment in Each Support Tmax, s = 7284.38 N-mm

Torsional Constant J = 711.24 mm3

Actual Torsional Stress ζcal = 28.68 N/mm2

Radius of Curvature of the Section R = 0.00 mm

Slenderness Ratio λt = 92.86 -

Actual Torsional Stress ζallow = 42.00 N/mm2

> 28.68 N/mm2

Hence ok

Check for Aluminium Cleat Screw

Shear Check on Screws

Provide 2 Nos 8 x 25 mm long SS 304 through pan head screw per Alu. cleat

i)Shear Stress Check for Screw

Total shear load due to DL V = 34.69 N

Shear load per screw V/n = 17.34 N

Number of Screw n = 2.00 -

Diameter of Screw d = 4.00 mm

Unthreaded Shank Area of Screw As = 3.14 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Screw Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Screw Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Screw psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Screw Psb = 910.80 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 17.34 N

Provide 2 Nos 8 x 25 mm long SS 304 through pan head screw per Alu. cleat Hence ok

Tension Check on Screws

Unthreaded Shank Area of Screw At = 3.14 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Screw Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Screw Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Number of Screw n = 2.00 -

Maximum Tension per Screw Pact = 437.06 N

Tension Strength of Screw pt = 210.00 N/mm2

or 350.00 N/mm2

Tension Capacity of Screw Pnom = 528.00 N

> 437.06

Hence ok

Combined Tension & Shear Check

Unity Ratio UR = 0.85 -

< 1.4 -

Hence ok

Provide 2 Nos 8 x 25 mm long SS 304 through pan head screw per Alu. cleat

Refer P291, Clause 5.2.2.c, Pg. 54

Refer P291, Clause 5.2.2.d, Pg. 55

( Refer Fischer India Range Catalogue, Technical Data,

Page-144)

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.a, Pg. 53

Minimum of these two for Usb ≤ 800 N/mm2 as

per P291, Clause 5.2.2.c, Pg. 54

Page 268: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR BOLT & PLATE THICKNESS

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 269: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

BRACKET & THROUGH BOLT CHECK

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 270: Design Report for Acropolis Tower

Print sender

StreetPostcode / City Phone FaxProject

COMPUFIX 8.48.4.4840.25953/29/1939

Page 1ApplicationRemarks Provide 12 mm thk plate

Date: 4/22/2013

fischer COMPUFIX: Designed in accordance with ETAG, Annex C

Type of loading: Static actionsAnchor: fischer Bolt FBN II 10/10 A4 (hef=50 mm) (Art. Nr. 507558) made from stainless steel (grade 316)Base material: Non-cracked concrete, normal reinforcement

Concrete compressive strength class: C 20/25Edge Reinforcement: No influenceAnchor bending: UnavailableAnchor plate: No design available

Dimensions/loads:

Design actions(*) Not true to scale[mm], [kN], [kNm]

Page 271: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 10/10 A4 (hef=50 mm) Page 2

Important:• As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be

sufficiently stiff. The COMPUFIX anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by COMPUFIX.

• The design utilises specific values for each anchor. When alterations will be made, even for similar products, a new design calculation is required.

• With slotted holes the design is carried out under the assumption that the anchor is located in the centre of the hole.• Please check that the fixing thickness of the fixing is adequate.• Maximum hole diameter in the attachement: 12 mm.• To ensure the structural component's capacity, the proofs in accordance with Section 7 of ETAG Annex C must be observed.• All additional conditions of the Approvals are to be observed.

Anchor-No. Unit Sd

N V1 kN 9.83 2.322 kN 5.32 2.323 kN 0.00 2.324 kN 3.72 2.32

Tension load, Steel failure:Unit Sd

NRk,s kN 27.20gMs - 1.40NRd,s kN 19.43Nh

Sd kN 9.83bN,s - 0.51

Tension load, Concrete cone failure:Unit Sd

N0Rk,c kN 17.85

A c,N cm2 546.00A0

c,N cm2 225.00Ac,N / A0

c,N - 2.43ys,N - 1.00yec1,N - 0.93yec2,N - 0.83y re,N - 1.00NRk,c kN 33.72gM,c - 1.50NRd,c kN 22.48Ng

Sd kN 18.88bN,c - 0.84

Shear load, Steel failure:Unit Sd

VRk,s kN 20.30gMs - 1.25VRd,s kN 16.24Vh

Sd kN 2.32bV,s - 0.14

Shear load, Concrete failure on the opposing side of the load:Unit Sd

N0Rk,c kN 17.85

A c,N cm2 660.40A0

c,N cm2 225.00Ac,N / A0

c,N - 2.94ys,N - 1.00yec1,N - 1.00yec2,N - 1.00y re,N - 1.00k - 1.00VRk,cp kN 52.40gM,cp - 1.50VRd,cp kN 34.94Vg

Sd kN 9.30bV,cp - 0.27

Page 272: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 10/10 A4 (hef=50 mm) Page 3

Shear load, Concrete edge failure:Unit Sd

V0Rk,c kN 99.69

Ac,V cm2 2810.00A0

c,V cm2 5202.00Ac,V / A

0c,V - 0.54

ys,V - 1.00yh,V - 1.43ya,V - 1.05yec,V - 1.00y re,V - 1.00VRk,c kN 80.98gM,c - 1.50VRd,c kN 53.99Vg

Sd kN 8.00bV,c - 0.15

Tension load Used capacity Shear load Used capacityCombined tensile and shear load

Used capacity

Steel failure: 50.6 % Steel failure: 14.3 % 90.7 %Concrete cone failure: 84.0 % Concrete edge failure: 14.8 %

Concrete failure on the opposing side of the load:

26.6 %

Result: Proof of anchor was successful

Page 273: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 10/10 A4 (hef=50 mm) Page 4

Installation details

Max fixing thickness tfix [mm] 10Thread diameter M [mm] 10Setting torque MD [Nm] 20Spanner A/F [mm] 17Hole diameter in the attachment df [mm] 12Anchorage depth hef [mm] 50Drill diameter d0 [mm] 10Minimum drill hole depth (through fixing) td [mm] 78

Page 274: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 10/10 A4 (hef=50 mm) Page 5

Page 275: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

STRUCTURAL CALCULATION FOR PE - 07

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 276: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

DESIGN OF ALUMINIUM TRANSOM

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 277: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

BENDING DUE TO WIND LOAD :

Wind Pressure Calculation

Location Kolkata

Design Wind Pressure Pd 2520.00 N/m2 ( GIVEN )

2.52 KPA

Deflection Calculation of Transom

MI due to Trapezoidal load on Transom due to top panel:

Span L 0.75 m

Load width B = B1/2 0.38 m

Factor a = B 0.38 m

load Rate w = B x Pd 945.00 N/m

Deflection allowed fadm L/125 or 19 mm (Whichever is minimum for SGU)

i.e 6.00 or 19 mm (Whichever is minimum for SGU)

Elasticity modulus E 65500 N/mm2

MI on Transom, I -1

Transom

mm4

1.35 m

cm4

MI due to Triangular load on Transom due to bottompanel:

Span L 0.75 m 0.925 m

Load width B = B1/2 0.38 m

Factor a = B 0.38 m 1.325 m

load Rate w = B x Pd 945.00 N/m

Deflection allowed fadm L/125 or 19 mm (Whichever is minimum for SGU)

i.e. 6.00 or 19 mm (Whichever is minimum for SGU)

Elasticity modulus E 65500 N/mm2

MI on Transom, I -1

mm4

cm4

Total MI on Transom I = I-1 + I-2 cm4

Provide Profile DOMAL 19744 as Transom M.o.I. = 5.6 cm4

Actual deflection δactual = 1.36 mm

< 6.00 mm

Hence ok

BENDING STRESS CHECK :IXX = 5.6 cm

4

Maximum Bending Moment Mmax = 88.59 N-m ZXX = 2.30 cm3

IYY = 3.6 cm4

Section Modulas ZXX = 2.30 cm3

ZYY = 1.33 cm3

STRUCTURAL CALCULATION FOR FIXED WINDOW (PE-07)

(Refer IS : 8147 - 1976, Table-1, Page 13, for Alloy 63400-WP)

W x L3

60 x E x fadm

1.325 m

1.49502E+11

23580000

6340.201574

0.63

1.27

23580000

6340.201574

0.63

Wx L3

60 x E x fadm

1.49502E+11

Page 278: Design Report for Acropolis Tower

Actual Bending Stress fbt = 38.48 N/mm3

Depth of Section a = 38.80 mm

Width of Section b = 16.28 mm

Depth to Width Ratio a / b = 2.38 -

Factor Klat = 3.00 -

Factor K1 = 1.00 -

Factor K2 = 0.60 -

Effective Unrestrained Length of Beam lf = 0.45 m

Slenderness Ratio λ = 15.77 -

Permissible Bending Stress pbt = 91.00 N/mm3

> 38.48 N/mm3

Hence ok

BENDING DUE TO DEAD LOAD :

Total Dead Load DL = 211.22 N

Point Load P = 105.61 N

Span L = 0.75 m

Allowable Deflection δallow = 2.50 mm or 3 mm (whichever is minimum)

Actual Deflection δactual = 0.57 mm

< 3.00 mm

Hence ok

Maximum Bending Moment Mmax = 21.12 N-m

Section Modulas Zyy = 1.33 cm3

Actual Bending Stress fbt = 15.84 N/mm2

Depth of Section a = 38.80 mm

Width of Section b = 16.28 mm

Depth to Width Ratio a / b = 2.38 -

Factor Klat = 3.00 -

Factor K1 = 1.00 -

Factor K2 = 0.60 -

Effective Unrestrained Length of Beam lf = 0.45 m

Slenderness Ratio λ = 15.77 -

Permissible Bending Stress pbt = 91.00 N/mm2

> 15.84 N/mm2

Hence ok

Combined Stress Check :

Utilisation Ratio U.R. = 0.60 -

< 1.0 -

Hence ok

(Setting Block is at 200 mm from centre of screw in both ends of

Transom)

Page 279: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

CHECK FOR SCREW

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 280: Design Report for Acropolis Tower

Check for Fischer Screw

Shear Check on Screws

Provide Fischer 4 Nos. N 8 x 60 Z A2 @ 300 mm c/c

i)Shear Stress Check for Screw

Longer dimension of glass panel a = 1.35 m

Shorter dimension of glass panel b = 0.750 m

Area of the panel A = 1.0125 m2

Wind pressure Pw = 2.52 Kpa (As given in Tender Specification)

DL of 8 mm thk glass Pd = 0.2 Kpa

Total shear load due to WL & DL V = 2559.52 N

Shear load per screw V/n = 639.88 N

Number of Screw n = 4.00 -

Required c/c distance along 1350 length(spacing) of screws S = 337.50 mm

Diameter of Screw d = 5.00 mm

Unthreaded Shank Area of Screw As = 14.20 mm2

Refer IS:4218 (Part III) 1996, Fig. 11.1, Table- 11.1)

Ultimate Tensile Strength of Screw Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Screw Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Screw psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Screw Psb = 8230.32 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 639.88 N

Provide Fischer 4 Nos. N 8 x 60 Z A2 @ 300 mm c/c Hence ok

Minimum of these two for Usb ≤ 800 N/mm2 as per

P291, Clause 5.2.2.a, Pg. 53

( Refer Fischer India Range Catalogue, Technical Data,

Page-144)

Page 281: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

STRUCTURAL CALCULATION FOR PE - 08

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 282: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

STAAD REPORT FOR PE - 08

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 283: Design Report for Acropolis Tower

23/05/2013

STAAD.Pro Report

To: ACROPOLIS

TOWER,

KOLKATA

From: NITSON AND AMITSU PRIVATE LIMITED

Copy to: Date: 13/05/20123

11:53:00

Ref: DRG NO. :

NAP/BS/ACROPOLIS-T /

020

Job Information

Engineer Checked Approved

Name:

Date: 10-May-13

Structure Type SPACE FRAME

Number of Nodes 230 Highest Node 260

Number of Elements 382 Highest Beam 428

Number of Basic Load Cases 2

Number of Combination Load Cases 1

Included in this printout are data for:

All The Whole Structure

Included in this printout are results for load cases:

Type L/C Name

Primary 1 DL

Primary 2 WL

Combination 3 COMBINATION LOAD CASE 3

Page 284: Design Report for Acropolis Tower

23/05/2013

Whole Structure

3D Rendered View

LOADS CONSIDERED :

1) DEAD LOAD :

a. Self Weight of Structure b. Dead load of Glass (30 Kg/m2)

2) WIND LOAD :

a. Design Wind Pressure as per Tender Specification is 2520 N/m2

Section Properties Prop Section Area

(cm2)

Iyy (cm

4)

Izz (cm

4)

J (cm

4)

Material

1 TUBE 23.350 262.581 649.203 571.211 STEEL

2 TUBE 0.360 0.049 0.049 0.073 STEEL

Materials

Page 285: Design Report for Acropolis Tower

23/05/2013

Mat Name E

(kN/mm2)

Density (kg/m

3)

(/°C)

1 STEEL 205.000 0.300 7.83E 3 12E -6

Supports Node X

(kN/mm) Y

(kN/mm) Z

(kN/mm) rX

(kN-m/deg)

rY (kN

-m/deg)

rZ (kN

-m/deg)

26 Fixed Fixed Fixed - - -

44 Fixed Fixed Fixed - - -

62 Fixed Fixed Fixed - - -

80 Fixed Fixed Fixed - - -

98 Fixed Fixed Fixed - - -

116 Fixed Fixed Fixed - - -

134 Fixed Fixed Fixed - - -

152 Fixed Fixed Fixed - - -

170 Fixed Fixed Fixed - - -

188 Fixed Fixed Fixed - - -

211 Fixed Fixed Fixed - - -

212 Fixed Fixed Fixed - - -

213 Fixed Fixed Fixed - - -

214 Fixed Fixed Fixed - - -

215 Fixed Fixed Fixed - - -

216 Fixed Fixed Fixed - - -

217 Fixed Fixed Fixed - - -

218 Fixed Fixed Fixed - - -

219 Fixed Fixed Fixed - - -

220 Fixed Fixed Fixed - - -

221 Fixed Fixed Fixed - - -

222 Fixed Fixed Fixed - - -

223 Fixed Fixed Fixed - - -

224 Fixed Fixed Fixed - - -

225 Fixed Fixed Fixed - - -

226 Fixed Fixed Fixed - - -

227 Fixed Fixed Fixed - - -

228 Fixed Fixed Fixed - - -

229 Fixed Fixed Fixed - - -

230 Fixed Fixed Fixed - - -

231 Fixed Fixed Fixed - - -

232 Fixed Fixed Fixed - - -

233 Fixed Fixed Fixed - - -

234 Fixed Fixed Fixed - - -

235 Fixed Fixed Fixed - - -

236 Fixed Fixed Fixed - - -

237 Fixed Fixed Fixed - - -

238 Fixed Fixed Fixed - - -

239 Fixed Fixed Fixed - - -

240 Fixed Fixed Fixed - - -

241 Fixed Fixed Fixed - - -

242 Fixed Fixed Fixed - - -

243 Fixed Fixed Fixed - - -

244 Fixed Fixed Fixed - - -

245 Fixed Fixed Fixed - - -

246 Fixed Fixed Fixed - - -

247 Fixed Fixed Fixed - - -

248 Fixed Fixed Fixed - - -

249 Fixed Fixed Fixed - - -

250 Fixed Fixed Fixed - - -

251 Fixed Fixed Fixed - - -

252 Fixed Fixed Fixed - - -

253 Fixed Fixed Fixed - - -

254 Fixed Fixed Fixed - - -

255 Fixed Fixed Fixed - - -

256 Fixed Fixed Fixed - - -

257 Fixed Fixed Fixed - - -

258 Fixed Fixed Fixed - - -

259 Fixed Fixed Fixed - - -

260 Fixed Fixed Fixed - - -

Page 286: Design Report for Acropolis Tower

23/05/2013

Releases Beam ends not shown in this table are fixed in all directions.

Beam Node x y z rx ry rz

61 28 Fixed Fixed Fixed Pin Pin Pin

61 46 Fixed Fixed Fixed Pin Pin Pin

62 29 Fixed Fixed Fixed Pin Pin Pin

62 47 Fixed Fixed Fixed Pin Pin Pin

63 30 Fixed Fixed Fixed Pin Pin Pin

63 48 Fixed Fixed Fixed Pin Pin Pin

64 31 Fixed Fixed Fixed Pin Pin Pin

64 49 Fixed Fixed Fixed Pin Pin Pin

65 32 Fixed Fixed Fixed Pin Pin Pin

65 50 Fixed Fixed Fixed Pin Pin Pin

66 33 Fixed Fixed Fixed Pin Pin Pin

66 51 Fixed Fixed Fixed Pin Pin Pin

67 34 Fixed Fixed Fixed Pin Pin Pin

67 52 Fixed Fixed Fixed Pin Pin Pin

68 35 Fixed Fixed Fixed Pin Pin Pin

68 53 Fixed Fixed Fixed Pin Pin Pin

69 36 Fixed Fixed Fixed Pin Pin Pin

69 54 Fixed Fixed Fixed Pin Pin Pin

70 37 Fixed Fixed Fixed Pin Pin Pin

70 55 Fixed Fixed Fixed Pin Pin Pin

71 38 Fixed Fixed Fixed Pin Pin Pin

71 56 Fixed Fixed Fixed Pin Pin Pin

72 39 Fixed Fixed Fixed Pin Pin Pin

72 57 Fixed Fixed Fixed Pin Pin Pin

73 40 Fixed Fixed Fixed Pin Pin Pin

73 58 Fixed Fixed Fixed Pin Pin Pin

74 41 Fixed Fixed Fixed Pin Pin Pin

74 59 Fixed Fixed Fixed Pin Pin Pin

75 42 Fixed Fixed Fixed Pin Pin Pin

75 60 Fixed Fixed Fixed Pin Pin Pin

76 43 Fixed Fixed Fixed Pin Pin Pin

76 61 Fixed Fixed Fixed Pin Pin Pin

96 46 Fixed Fixed Fixed Pin Pin Pin

96 64 Fixed Fixed Fixed Pin Pin Pin

97 47 Fixed Fixed Fixed Pin Pin Pin

97 65 Fixed Fixed Fixed Pin Pin Pin

98 48 Fixed Fixed Fixed Pin Pin Pin

98 66 Fixed Fixed Fixed Pin Pin Pin

99 49 Fixed Fixed Fixed Pin Pin Pin

99 67 Fixed Fixed Fixed Pin Pin Pin

100 50 Fixed Fixed Fixed Pin Pin Pin

100 68 Fixed Fixed Fixed Pin Pin Pin

101 51 Fixed Fixed Fixed Pin Pin Pin

101 69 Fixed Fixed Fixed Pin Pin Pin

102 52 Fixed Fixed Fixed Pin Pin Pin

102 70 Fixed Fixed Fixed Pin Pin Pin

103 53 Fixed Fixed Fixed Pin Pin Pin

103 71 Fixed Fixed Fixed Pin Pin Pin

104 54 Fixed Fixed Fixed Pin Pin Pin

104 72 Fixed Fixed Fixed Pin Pin Pin

105 55 Fixed Fixed Fixed Pin Pin Pin

105 73 Fixed Fixed Fixed Pin Pin Pin

106 56 Fixed Fixed Fixed Pin Pin Pin

106 74 Fixed Fixed Fixed Pin Pin Pin

107 57 Fixed Fixed Fixed Pin Pin Pin

107 75 Fixed Fixed Fixed Pin Pin Pin

108 58 Fixed Fixed Fixed Pin Pin Pin

108 76 Fixed Fixed Fixed Pin Pin Pin

109 59 Fixed Fixed Fixed Pin Pin Pin

109 77 Fixed Fixed Fixed Pin Pin Pin

110 60 Fixed Fixed Fixed Pin Pin Pin

110 78 Fixed Fixed Fixed Pin Pin Pin

111 61 Fixed Fixed Fixed Pin Pin Pin

111 79 Fixed Fixed Fixed Pin Pin Pin

131 64 Fixed Fixed Fixed Pin Pin Pin

131 82 Fixed Fixed Fixed Pin Pin Pin

132 65 Fixed Fixed Fixed Pin Pin Pin

Page 287: Design Report for Acropolis Tower

23/05/2013

132 83 Fixed Fixed Fixed Pin Pin Pin

133 66 Fixed Fixed Fixed Pin Pin Pin

133 84 Fixed Fixed Fixed Pin Pin Pin

134 67 Fixed Fixed Fixed Pin Pin Pin

134 85 Fixed Fixed Fixed Pin Pin Pin

135 68 Fixed Fixed Fixed Pin Pin Pin

135 86 Fixed Fixed Fixed Pin Pin Pin

136 69 Fixed Fixed Fixed Pin Pin Pin

136 87 Fixed Fixed Fixed Pin Pin Pin

137 70 Fixed Fixed Fixed Pin Pin Pin

137 88 Fixed Fixed Fixed Pin Pin Pin

138 71 Fixed Fixed Fixed Pin Pin Pin

138 89 Fixed Fixed Fixed Pin Pin Pin

139 72 Fixed Fixed Fixed Pin Pin Pin

139 90 Fixed Fixed Fixed Pin Pin Pin

140 73 Fixed Fixed Fixed Pin Pin Pin

140 91 Fixed Fixed Fixed Pin Pin Pin

141 74 Fixed Fixed Fixed Pin Pin Pin

141 92 Fixed Fixed Fixed Pin Pin Pin

142 75 Fixed Fixed Fixed Pin Pin Pin

142 93 Fixed Fixed Fixed Pin Pin Pin

143 76 Fixed Fixed Fixed Pin Pin Pin

143 94 Fixed Fixed Fixed Pin Pin Pin

144 77 Fixed Fixed Fixed Pin Pin Pin

144 95 Fixed Fixed Fixed Pin Pin Pin

145 78 Fixed Fixed Fixed Pin Pin Pin

145 96 Fixed Fixed Fixed Pin Pin Pin

146 79 Fixed Fixed Fixed Pin Pin Pin

146 97 Fixed Fixed Fixed Pin Pin Pin

166 82 Fixed Fixed Fixed Pin Pin Pin

166 100 Fixed Fixed Fixed Pin Pin Pin

167 83 Fixed Fixed Fixed Pin Pin Pin

167 101 Fixed Fixed Fixed Pin Pin Pin

168 84 Fixed Fixed Fixed Pin Pin Pin

168 102 Fixed Fixed Fixed Pin Pin Pin

169 85 Fixed Fixed Fixed Pin Pin Pin

169 103 Fixed Fixed Fixed Pin Pin Pin

170 86 Fixed Fixed Fixed Pin Pin Pin

170 104 Fixed Fixed Fixed Pin Pin Pin

171 87 Fixed Fixed Fixed Pin Pin Pin

171 105 Fixed Fixed Fixed Pin Pin Pin

172 88 Fixed Fixed Fixed Pin Pin Pin

172 106 Fixed Fixed Fixed Pin Pin Pin

173 89 Fixed Fixed Fixed Pin Pin Pin

173 107 Fixed Fixed Fixed Pin Pin Pin

174 90 Fixed Fixed Fixed Pin Pin Pin

174 108 Fixed Fixed Fixed Pin Pin Pin

175 91 Fixed Fixed Fixed Pin Pin Pin

175 109 Fixed Fixed Fixed Pin Pin Pin

176 92 Fixed Fixed Fixed Pin Pin Pin

176 110 Fixed Fixed Fixed Pin Pin Pin

177 93 Fixed Fixed Fixed Pin Pin Pin

177 111 Fixed Fixed Fixed Pin Pin Pin

178 94 Fixed Fixed Fixed Pin Pin Pin

178 112 Fixed Fixed Fixed Pin Pin Pin

179 95 Fixed Fixed Fixed Pin Pin Pin

179 113 Fixed Fixed Fixed Pin Pin Pin

180 96 Fixed Fixed Fixed Pin Pin Pin

180 114 Fixed Fixed Fixed Pin Pin Pin

181 97 Fixed Fixed Fixed Pin Pin Pin

181 115 Fixed Fixed Fixed Pin Pin Pin

201 100 Fixed Fixed Fixed Pin Pin Pin

201 118 Fixed Fixed Fixed Pin Pin Pin

202 101 Fixed Fixed Fixed Pin Pin Pin

202 119 Fixed Fixed Fixed Pin Pin Pin

203 102 Fixed Fixed Fixed Pin Pin Pin

203 120 Fixed Fixed Fixed Pin Pin Pin

204 103 Fixed Fixed Fixed Pin Pin Pin

204 121 Fixed Fixed Fixed Pin Pin Pin

205 104 Fixed Fixed Fixed Pin Pin Pin

205 122 Fixed Fixed Fixed Pin Pin Pin

206 105 Fixed Fixed Fixed Pin Pin Pin

206 123 Fixed Fixed Fixed Pin Pin Pin

207 106 Fixed Fixed Fixed Pin Pin Pin

207 124 Fixed Fixed Fixed Pin Pin Pin

Page 288: Design Report for Acropolis Tower

23/05/2013

208 107 Fixed Fixed Fixed Pin Pin Pin

208 125 Fixed Fixed Fixed Pin Pin Pin

209 108 Fixed Fixed Fixed Pin Pin Pin

209 126 Fixed Fixed Fixed Pin Pin Pin

210 109 Fixed Fixed Fixed Pin Pin Pin

210 127 Fixed Fixed Fixed Pin Pin Pin

211 110 Fixed Fixed Fixed Pin Pin Pin

211 128 Fixed Fixed Fixed Pin Pin Pin

212 111 Fixed Fixed Fixed Pin Pin Pin

212 129 Fixed Fixed Fixed Pin Pin Pin

213 112 Fixed Fixed Fixed Pin Pin Pin

213 130 Fixed Fixed Fixed Pin Pin Pin

214 113 Fixed Fixed Fixed Pin Pin Pin

214 131 Fixed Fixed Fixed Pin Pin Pin

215 114 Fixed Fixed Fixed Pin Pin Pin

215 132 Fixed Fixed Fixed Pin Pin Pin

216 115 Fixed Fixed Fixed Pin Pin Pin

216 133 Fixed Fixed Fixed Pin Pin Pin

236 118 Fixed Fixed Fixed Pin Pin Pin

236 136 Fixed Fixed Fixed Pin Pin Pin

237 119 Fixed Fixed Fixed Pin Pin Pin

237 137 Fixed Fixed Fixed Pin Pin Pin

238 120 Fixed Fixed Fixed Pin Pin Pin

238 138 Fixed Fixed Fixed Pin Pin Pin

239 121 Fixed Fixed Fixed Pin Pin Pin

239 139 Fixed Fixed Fixed Pin Pin Pin

240 122 Fixed Fixed Fixed Pin Pin Pin

240 140 Fixed Fixed Fixed Pin Pin Pin

241 123 Fixed Fixed Fixed Pin Pin Pin

241 141 Fixed Fixed Fixed Pin Pin Pin

242 124 Fixed Fixed Fixed Pin Pin Pin

242 142 Fixed Fixed Fixed Pin Pin Pin

243 125 Fixed Fixed Fixed Pin Pin Pin

243 143 Fixed Fixed Fixed Pin Pin Pin

244 126 Fixed Fixed Fixed Pin Pin Pin

244 144 Fixed Fixed Fixed Pin Pin Pin

245 127 Fixed Fixed Fixed Pin Pin Pin

245 145 Fixed Fixed Fixed Pin Pin Pin

246 128 Fixed Fixed Fixed Pin Pin Pin

246 146 Fixed Fixed Fixed Pin Pin Pin

247 129 Fixed Fixed Fixed Pin Pin Pin

247 147 Fixed Fixed Fixed Pin Pin Pin

248 130 Fixed Fixed Fixed Pin Pin Pin

248 148 Fixed Fixed Fixed Pin Pin Pin

249 131 Fixed Fixed Fixed Pin Pin Pin

249 149 Fixed Fixed Fixed Pin Pin Pin

250 132 Fixed Fixed Fixed Pin Pin Pin

250 150 Fixed Fixed Fixed Pin Pin Pin

251 133 Fixed Fixed Fixed Pin Pin Pin

251 151 Fixed Fixed Fixed Pin Pin Pin

271 136 Fixed Fixed Fixed Pin Pin Pin

271 154 Fixed Fixed Fixed Pin Pin Pin

272 137 Fixed Fixed Fixed Pin Pin Pin

272 155 Fixed Fixed Fixed Pin Pin Pin

273 138 Fixed Fixed Fixed Pin Pin Pin

273 156 Fixed Fixed Fixed Pin Pin Pin

274 139 Fixed Fixed Fixed Pin Pin Pin

274 157 Fixed Fixed Fixed Pin Pin Pin

275 140 Fixed Fixed Fixed Pin Pin Pin

275 158 Fixed Fixed Fixed Pin Pin Pin

276 141 Fixed Fixed Fixed Pin Pin Pin

276 159 Fixed Fixed Fixed Pin Pin Pin

277 142 Fixed Fixed Fixed Pin Pin Pin

277 160 Fixed Fixed Fixed Pin Pin Pin

278 143 Fixed Fixed Fixed Pin Pin Pin

278 161 Fixed Fixed Fixed Pin Pin Pin

279 144 Fixed Fixed Fixed Pin Pin Pin

279 162 Fixed Fixed Fixed Pin Pin Pin

280 145 Fixed Fixed Fixed Pin Pin Pin

280 163 Fixed Fixed Fixed Pin Pin Pin

281 146 Fixed Fixed Fixed Pin Pin Pin

281 164 Fixed Fixed Fixed Pin Pin Pin

282 147 Fixed Fixed Fixed Pin Pin Pin

282 165 Fixed Fixed Fixed Pin Pin Pin

283 148 Fixed Fixed Fixed Pin Pin Pin

Page 289: Design Report for Acropolis Tower

23/05/2013

283 166 Fixed Fixed Fixed Pin Pin Pin

284 149 Fixed Fixed Fixed Pin Pin Pin

284 167 Fixed Fixed Fixed Pin Pin Pin

285 150 Fixed Fixed Fixed Pin Pin Pin

285 168 Fixed Fixed Fixed Pin Pin Pin

286 151 Fixed Fixed Fixed Pin Pin Pin

286 169 Fixed Fixed Fixed Pin Pin Pin

306 154 Fixed Fixed Fixed Pin Pin Pin

306 172 Fixed Fixed Fixed Pin Pin Pin

307 155 Fixed Fixed Fixed Pin Pin Pin

307 173 Fixed Fixed Fixed Pin Pin Pin

308 156 Fixed Fixed Fixed Pin Pin Pin

308 174 Fixed Fixed Fixed Pin Pin Pin

309 157 Fixed Fixed Fixed Pin Pin Pin

309 175 Fixed Fixed Fixed Pin Pin Pin

310 158 Fixed Fixed Fixed Pin Pin Pin

310 176 Fixed Fixed Fixed Pin Pin Pin

311 159 Fixed Fixed Fixed Pin Pin Pin

311 177 Fixed Fixed Fixed Pin Pin Pin

312 160 Fixed Fixed Fixed Pin Pin Pin

312 178 Fixed Fixed Fixed Pin Pin Pin

313 161 Fixed Fixed Fixed Pin Pin Pin

313 179 Fixed Fixed Fixed Pin Pin Pin

314 162 Fixed Fixed Fixed Pin Pin Pin

314 180 Fixed Fixed Fixed Pin Pin Pin

315 163 Fixed Fixed Fixed Pin Pin Pin

315 181 Fixed Fixed Fixed Pin Pin Pin

316 164 Fixed Fixed Fixed Pin Pin Pin

316 182 Fixed Fixed Fixed Pin Pin Pin

317 165 Fixed Fixed Fixed Pin Pin Pin

317 183 Fixed Fixed Fixed Pin Pin Pin

318 166 Fixed Fixed Fixed Pin Pin Pin

318 184 Fixed Fixed Fixed Pin Pin Pin

319 167 Fixed Fixed Fixed Pin Pin Pin

319 185 Fixed Fixed Fixed Pin Pin Pin

320 168 Fixed Fixed Fixed Pin Pin Pin

320 186 Fixed Fixed Fixed Pin Pin Pin

321 169 Fixed Fixed Fixed Pin Pin Pin

321 187 Fixed Fixed Fixed Pin Pin Pin

341 172 Fixed Fixed Fixed Pin Pin Pin

341 190 Fixed Fixed Fixed Pin Pin Pin

342 173 Fixed Fixed Fixed Pin Pin Pin

342 191 Fixed Fixed Fixed Pin Pin Pin

343 174 Fixed Fixed Fixed Pin Pin Pin

343 192 Fixed Fixed Fixed Pin Pin Pin

344 175 Fixed Fixed Fixed Pin Pin Pin

344 193 Fixed Fixed Fixed Pin Pin Pin

345 176 Fixed Fixed Fixed Pin Pin Pin

345 194 Fixed Fixed Fixed Pin Pin Pin

346 177 Fixed Fixed Fixed Pin Pin Pin

346 195 Fixed Fixed Fixed Pin Pin Pin

347 178 Fixed Fixed Fixed Pin Pin Pin

347 196 Fixed Fixed Fixed Pin Pin Pin

348 179 Fixed Fixed Fixed Pin Pin Pin

348 197 Fixed Fixed Fixed Pin Pin Pin

349 180 Fixed Fixed Fixed Pin Pin Pin

349 198 Fixed Fixed Fixed Pin Pin Pin

350 181 Fixed Fixed Fixed Pin Pin Pin

350 199 Fixed Fixed Fixed Pin Pin Pin

351 182 Fixed Fixed Fixed Pin Pin Pin

351 200 Fixed Fixed Fixed Pin Pin Pin

352 183 Fixed Fixed Fixed Pin Pin Pin

352 201 Fixed Fixed Fixed Pin Pin Pin

353 184 Fixed Fixed Fixed Pin Pin Pin

353 202 Fixed Fixed Fixed Pin Pin Pin

354 185 Fixed Fixed Fixed Pin Pin Pin

354 203 Fixed Fixed Fixed Pin Pin Pin

355 186 Fixed Fixed Fixed Pin Pin Pin

355 204 Fixed Fixed Fixed Pin Pin Pin

356 187 Fixed Fixed Fixed Pin Pin Pin

356 205 Fixed Fixed Fixed Pin Pin Pin

Basic Load Cases

Page 290: Design Report for Acropolis Tower

23/05/2013

Number Name

1 DL

2 WL

Combination Load Cases

Comb. Combination L/C Name Primary Primary L/C Name Factor

3 COMBINATION LOAD CASE 3 1 DL 1.50

2 WL 1.50

Statics Check Results

L/C FX (N)

FY (N)

FZ (N)

MX (kNm)

MY (kNm)

MZ (kNm)

1:DL Loads 0.000 -113E 3 0.000 1.730 0.000 847.085

1:DL Reactions 0.000 113E 3 -0.000 -1.730 0.000 -847.085

Difference 0.000 0.000 -0.000 -0.000 0.000 0.000

2:WL Loads 0.000 0.000 841E 3 11.7E 3 6.31E 3 0.000

2:WL Reactions 0.000 0.000 -841E 3 -11.7E 3 -6.31E 3 0.000

Difference 0.000 0.000 0.000 -0.001 -0.000 0.000

Node Displacement Summary

Node L/C X (mm)

Y (mm)

Z (mm)

Resultant (mm)

rX (rad)

rY (rad)

rZ (rad)

Max X 189 3:COMBINATION LOAD CASE 3

0.017 -0.001 -0.238 0.239 0.000 -1.012 -0.000

Min X 27 3:COMBINATION LOAD CASE 3

-0.017 -0.001 -0.238 0.239 0.000 1.012 0.000

Max Y 26 1:DL 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Min Y 182 3:COMBINATION LOAD CASE 3

0.000 -0.006 16.820 16.820 0.003 -0.192 -0.000

Max Z 182 3:COMBINATION LOAD CASE 3

0.000 -0.006 16.820 16.820 0.003 -0.192 -0.000

Min Z 27 2:WL 0.000 0.000 -0.271 0.271 0.000 0.675 0.000

Max rX 181 3:COMBINATION LOAD CASE 3

0.000 -0.004 5.752 5.752 0.008 -0.192 -0.000

Min rX 183 3:COMBINATION LOAD CASE 3

0.000 -0.005 13.346 13.346 -0.007 -0.192 -0.000

Max rY 27 3:COMBINATION LOAD CASE 3

-0.017 -0.001 -0.238 0.239 0.000 1.012 0.000

Min rY 189 3:COMBINATION LOAD CASE 3

0.017 -0.001 -0.238 0.239 0.000 -1.012 -0.000

Max rZ 27 3:COMBINATION LOAD CASE 3

-0.017 -0.001 -0.238 0.239 0.000 1.012 0.000

Min rZ 189 3:COMBINATION LOAD CASE 3

0.017 -0.001 -0.238 0.239 0.000 -1.012 -0.000

Max Rst 182 3:COMBINATION LOAD CASE 3

0.000 -0.006 16.820 16.820 0.003 -0.192 -0.000

Beam Displacement Detail Summary Displacements shown in italic indicate the presence of an offset

Beam L/C d (m)

X (mm)

Y (mm)

Z (mm)

Resultant (mm)

Max X 340 3:COMBINATION LOAD CASE 3

1.200 0.017 0.000 -0.238 0.239

Min X 60 3:COMBINATION LOAD CASE 3

0.000 -0.017 0.000 -0.238 0.239

Max Y 58 1:DL 0.019 0.000 0.001 -0.002 0.002

Min Y 103 3:COMBINATION LOAD CASE 3

0.750 -0.000 -266.423 4.03E 3 4.04E 3

Max Z 316 3:COMBINATION LOAD CASE 3

0.750 -0.000 -266.416 4.04E 3 4.05E 3

Min Z 199 3:COMBINATION LOAD CASE 3

0.960 0.000 -4.743 -64.024 64.199

Max Rst 316 3:COMBINATION LOAD CASE 3

0.750 -0.000 -266.416 4.04E 3 4.05E 3

A maximum deflection of 16.820 mm is observed at Node No. 182 for Combination Load Case 3. Therefore, ∂max = 16.820 mm Allowable Deflection is,

Page 291: Design Report for Acropolis Tower

23/05/2013

∂allow = 6150/300 = 20.5 mm > 16.820 mm The ∂max is less than the allowable, Hence ok.

Reaction Summary

Horizontal Vertical Horizontal Moment

Node L/C FX (N)

FY (N)

FZ (N)

MX (kNm)

MY (kNm)

MZ (kNm)

Max FX 225 3:COMBINATION LOAD CASE 3

21.939 2.6E 3 -18.9E 3 0.000 0.000 0.000

Min FX 250 3:COMBINATION LOAD CASE 3

-21.939 2.6E 3 -18.9E 3 0.000 0.000 0.000

Max FY 253 3:COMBINATION LOAD CASE 3

0.004 3.91E 3 -32.5E 3 0.000 0.000 0.000

Min FY 26 2:WL 0.000 0.000 -2.46E 3 0.000 0.000 0.000

Max FZ 249 1:DL 0.075 2.36E 3 30.250 0.000 0.000 0.000

Min FZ 253 3:COMBINATION LOAD CASE 3

0.004 3.91E 3 -32.5E 3 0.000 0.000 0.000

Max MX 26 1:DL -11.052 699.148 12.168 0.000 0.000 0.000

Min MX 26 1:DL -11.052 699.148 12.168 0.000 0.000 0.000

Max MY 26 1:DL -11.052 699.148 12.168 0.000 0.000 0.000

Min MY 26 1:DL -11.052 699.148 12.168 0.000 0.000 0.000

Max MZ 26 1:DL -11.052 699.148 12.168 0.000 0.000 0.000

Min MZ 26 1:DL -11.052 699.148 12.168 0.000 0.000 0.000

Utilization Ratio Beam Analysis

Property Design Property

Actual Ratio

Allowable Ratio

Ratio (Act./Allo

w.)

Clause L/C

Ax (cm

2)

Iz (cm

4)

Iy (cm

4)

Ix (cm

4)

42 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

43 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

44 TUBE TUBE 0.187 1.000 0.187 Major Axis B 3 23.350 649.203 262.581 571.211

45 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

46 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

47 TUBE TUBE 0.223 1.000 0.223 Major Axis B 3 23.350 649.203 262.581 571.211

48 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

49 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

50 TUBE TUBE 0.133 1.000 0.133 Major Axis B 3 23.350 649.203 262.581 571.211

51 TUBE TUBE 0.308 1.000 0.308 Major Axis B 3 23.350 649.203 262.581 571.211

52 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

53 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

54 TUBE TUBE 0.182 1.000 0.182 Major Axis B 3 23.350 649.203 262.581 571.211

55 TUBE TUBE 0.238 1.000 0.238 Major Axis B 3 23.350 649.203 262.581 571.211

56 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

57 TUBE TUBE 0.122 1.000 0.122 Slenderness 1 23.350 649.203 262.581 571.211

58 TUBE TUBE 0.088 1.000 0.088 Major Axis B 3 23.350 649.203 262.581 571.211

59 TUBE N/A 0.360 0.049 0.049 0.073

60 TUBE N/A 0.360 0.049 0.049 0.073

61 TUBE N/A 0.360 0.049 0.049 0.073

62 TUBE N/A 0.360 0.049 0.049 0.073

63 TUBE N/A 0.360 0.049 0.049 0.073

64 TUBE N/A 0.360 0.049 0.049 0.073

65 TUBE N/A 0.360 0.049 0.049 0.073

66 TUBE N/A 0.360 0.049 0.049 0.073

67 TUBE N/A 0.360 0.049 0.049 0.073

68 TUBE N/A 0.360 0.049 0.049 0.073

69 TUBE N/A 0.360 0.049 0.049 0.073

70 TUBE N/A 0.360 0.049 0.049 0.073

71 TUBE N/A 0.360 0.049 0.049 0.073

72 TUBE N/A 0.360 0.049 0.049 0.073

73 TUBE N/A 0.360 0.049 0.049 0.073

74 TUBE N/A 0.360 0.049 0.049 0.073

75 TUBE N/A 0.360 0.049 0.049 0.073

76 TUBE N/A 0.360 0.049 0.049 0.073

77 TUBE TUBE 0.347 1.000 0.347 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

78 TUBE TUBE 0.346 1.000 0.346 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

79 TUBE TUBE 0.422 1.000 0.422 Major Axis B 3 23.350 649.203 262.581 571.211

80 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

81 TUBE TUBE 0.172 1.000 0.172 Major Axis B 3 23.350 649.203 262.581 571.211

Page 292: Design Report for Acropolis Tower

23/05/2013

82 TUBE TUBE 0.500 1.000 0.500 Major Axis B 3 23.350 649.203 262.581 571.211

83 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

84 TUBE TUBE 0.331 1.000 0.331 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

85 TUBE TUBE 0.305 1.000 0.305 Major Axis B 3 23.350 649.203 262.581 571.211

86 TUBE TUBE 0.700 1.000 0.700 Major Axis B 3 23.350 649.203 262.581 571.211

87 TUBE TUBE 0.378 1.000 0.378 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

88 TUBE TUBE 0.376 1.000 0.376 Major Axis B 3 23.350 649.203 262.581 571.211

89 TUBE TUBE 0.384 1.000 0.384 Major Axis B 3 23.350 649.203 262.581 571.211

90 TUBE TUBE 0.510 1.000 0.510 Major Axis B 3 23.350 649.203 262.581 571.211

91 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

92 TUBE TUBE 0.268 1.000 0.268 Major Axis B 3 23.350 649.203 262.581 571.211

93 TUBE TUBE 0.305 1.000 0.305 Major Axis B 3 23.350 649.203 262.581 571.211

94 TUBE N/A 0.360 0.049 0.049 0.073

95 TUBE N/A 0.360 0.049 0.049 0.073

96 TUBE N/A 0.360 0.049 0.049 0.073

97 TUBE N/A 0.360 0.049 0.049 0.073

98 TUBE N/A 0.360 0.049 0.049 0.073

99 TUBE N/A 0.360 0.049 0.049 0.073

100 TUBE N/A 0.360 0.049 0.049 0.073

101 TUBE N/A 0.360 0.049 0.049 0.073

102 TUBE N/A 0.360 0.049 0.049 0.073

103 TUBE N/A 0.360 0.049 0.049 0.073

104 TUBE N/A 0.360 0.049 0.049 0.073

105 TUBE N/A 0.360 0.049 0.049 0.073

106 TUBE N/A 0.360 0.049 0.049 0.073

107 TUBE N/A 0.360 0.049 0.049 0.073

108 TUBE N/A 0.360 0.049 0.049 0.073

109 TUBE N/A 0.360 0.049 0.049 0.073

110 TUBE N/A 0.360 0.049 0.049 0.073

111 TUBE N/A 0.360 0.049 0.049 0.073

112 TUBE TUBE 0.347 1.000 0.347 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

113 TUBE TUBE 0.346 1.000 0.346 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

114 TUBE TUBE 0.421 1.000 0.421 Major Axis B 3 23.350 649.203 262.581 571.211

115 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

116 TUBE TUBE 0.172 1.000 0.172 Major Axis B 3 23.350 649.203 262.581 571.211

117 TUBE TUBE 0.501 1.000 0.501 Major Axis B 3 23.350 649.203 262.581 571.211

118 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

119 TUBE TUBE 0.332 1.000 0.332 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

120 TUBE TUBE 0.303 1.000 0.303 Major Axis B 3 23.350 649.203 262.581 571.211

121 TUBE TUBE 0.697 1.000 0.697 Major Axis B 3 23.350 649.203 262.581 571.211

122 TUBE TUBE 0.374 1.000 0.374 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

123 TUBE TUBE 0.373 1.000 0.373 Major Axis B 3 23.350 649.203 262.581 571.211

124 TUBE TUBE 0.394 1.000 0.394 Major Axis B 3 23.350 649.203 262.581 571.211

125 TUBE TUBE 0.521 1.000 0.521 Major Axis B 3 23.350 649.203 262.581 571.211

126 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

127 TUBE TUBE 0.222 1.000 0.222 Major Axis B 3 23.350 649.203 262.581 571.211

128 TUBE TUBE 0.259 1.000 0.259 Major Axis B 3 23.350 649.203 262.581 571.211

129 TUBE N/A 0.360 0.049 0.049 0.073

130 TUBE N/A 0.360 0.049 0.049 0.073

131 TUBE N/A 0.360 0.049 0.049 0.073

132 TUBE N/A 0.360 0.049 0.049 0.073

133 TUBE N/A 0.360 0.049 0.049 0.073

134 TUBE N/A 0.360 0.049 0.049 0.073

135 TUBE N/A 0.360 0.049 0.049 0.073

136 TUBE N/A 0.360 0.049 0.049 0.073

137 TUBE N/A 0.360 0.049 0.049 0.073

138 TUBE N/A 0.360 0.049 0.049 0.073

139 TUBE N/A 0.360 0.049 0.049 0.073

140 TUBE N/A 0.360 0.049 0.049 0.073

141 TUBE N/A 0.360 0.049 0.049 0.073

142 TUBE N/A 0.360 0.049 0.049 0.073

143 TUBE N/A 0.360 0.049 0.049 0.073

144 TUBE N/A 0.360 0.049 0.049 0.073

145 TUBE N/A 0.360 0.049 0.049 0.073

146 TUBE N/A 0.360 0.049 0.049 0.073

147 TUBE TUBE 0.347 1.000 0.347 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

148 TUBE TUBE 0.346 1.000 0.346 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

149 TUBE TUBE 0.421 1.000 0.421 Major Axis B 3 23.350 649.203 262.581 571.211

150 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

151 TUBE TUBE 0.172 1.000 0.172 Major Axis B 3 23.350 649.203 262.581 571.211

152 TUBE TUBE 0.500 1.000 0.500 Major Axis B 3 23.350 649.203 262.581 571.211

153 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

154 TUBE TUBE 0.332 1.000 0.332 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

155 TUBE TUBE 0.303 1.000 0.303 Major Axis B 3 23.350 649.203 262.581 571.211

156 TUBE TUBE 0.698 1.000 0.698 Major Axis B 3 23.350 649.203 262.581 571.211

Page 293: Design Report for Acropolis Tower

23/05/2013

157 TUBE TUBE 0.375 1.000 0.375 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

158 TUBE TUBE 0.374 1.000 0.374 Major Axis B 3 23.350 649.203 262.581 571.211

159 TUBE TUBE 0.392 1.000 0.392 Major Axis B 3 23.350 649.203 262.581 571.211

160 TUBE TUBE 0.518 1.000 0.518 Major Axis B 3 23.350 649.203 262.581 571.211

161 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

162 TUBE TUBE 0.233 1.000 0.233 Major Axis B 3 23.350 649.203 262.581 571.211

163 TUBE TUBE 0.270 1.000 0.270 Major Axis B 3 23.350 649.203 262.581 571.211

164 TUBE N/A 0.360 0.049 0.049 0.073

165 TUBE N/A 0.360 0.049 0.049 0.073

166 TUBE N/A 0.360 0.049 0.049 0.073

167 TUBE N/A 0.360 0.049 0.049 0.073

168 TUBE N/A 0.360 0.049 0.049 0.073

169 TUBE N/A 0.360 0.049 0.049 0.073

170 TUBE N/A 0.360 0.049 0.049 0.073

171 TUBE N/A 0.360 0.049 0.049 0.073

172 TUBE N/A 0.360 0.049 0.049 0.073

173 TUBE N/A 0.360 0.049 0.049 0.073

174 TUBE N/A 0.360 0.049 0.049 0.073

175 TUBE N/A 0.360 0.049 0.049 0.073

176 TUBE N/A 0.360 0.049 0.049 0.073

177 TUBE N/A 0.360 0.049 0.049 0.073

178 TUBE N/A 0.360 0.049 0.049 0.073

179 TUBE N/A 0.360 0.049 0.049 0.073

180 TUBE N/A 0.360 0.049 0.049 0.073

181 TUBE N/A 0.360 0.049 0.049 0.073

182 TUBE TUBE 0.347 1.000 0.347 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

183 TUBE TUBE 0.346 1.000 0.346 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

184 TUBE TUBE 0.421 1.000 0.421 Major Axis B 3 23.350 649.203 262.581 571.211

185 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

186 TUBE TUBE 0.172 1.000 0.172 Major Axis B 3 23.350 649.203 262.581 571.211

187 TUBE TUBE 0.501 1.000 0.501 Major Axis B 3 23.350 649.203 262.581 571.211

188 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

189 TUBE TUBE 0.332 1.000 0.332 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

190 TUBE TUBE 0.303 1.000 0.303 Major Axis B 3 23.350 649.203 262.581 571.211

191 TUBE TUBE 0.698 1.000 0.698 Major Axis B 3 23.350 649.203 262.581 571.211

192 TUBE TUBE 0.375 1.000 0.375 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

193 TUBE TUBE 0.374 1.000 0.374 Major Axis B 3 23.350 649.203 262.581 571.211

194 TUBE TUBE 0.392 1.000 0.392 Major Axis B 3 23.350 649.203 262.581 571.211

195 TUBE TUBE 0.519 1.000 0.519 Major Axis B 3 23.350 649.203 262.581 571.211

196 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

197 TUBE TUBE 0.230 1.000 0.230 Major Axis B 3 23.350 649.203 262.581 571.211

198 TUBE TUBE 0.267 1.000 0.267 Major Axis B 3 23.350 649.203 262.581 571.211

199 TUBE N/A 0.360 0.049 0.049 0.073

200 TUBE N/A 0.360 0.049 0.049 0.073

201 TUBE N/A 0.360 0.049 0.049 0.073

202 TUBE N/A 0.360 0.049 0.049 0.073

203 TUBE N/A 0.360 0.049 0.049 0.073

204 TUBE N/A 0.360 0.049 0.049 0.073

205 TUBE N/A 0.360 0.049 0.049 0.073

206 TUBE N/A 0.360 0.049 0.049 0.073

207 TUBE N/A 0.360 0.049 0.049 0.073

208 TUBE N/A 0.360 0.049 0.049 0.073

209 TUBE N/A 0.360 0.049 0.049 0.073

210 TUBE N/A 0.360 0.049 0.049 0.073

211 TUBE N/A 0.360 0.049 0.049 0.073

212 TUBE N/A 0.360 0.049 0.049 0.073

213 TUBE N/A 0.360 0.049 0.049 0.073

214 TUBE N/A 0.360 0.049 0.049 0.073

215 TUBE N/A 0.360 0.049 0.049 0.073

216 TUBE N/A 0.360 0.049 0.049 0.073

217 TUBE TUBE 0.347 1.000 0.347 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

218 TUBE TUBE 0.346 1.000 0.346 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

219 TUBE TUBE 0.421 1.000 0.421 Major Axis B 3 23.350 649.203 262.581 571.211

220 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

221 TUBE TUBE 0.172 1.000 0.172 Major Axis B 3 23.350 649.203 262.581 571.211

222 TUBE TUBE 0.501 1.000 0.501 Major Axis B 3 23.350 649.203 262.581 571.211

223 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

224 TUBE TUBE 0.332 1.000 0.332 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

225 TUBE TUBE 0.303 1.000 0.303 Major Axis B 3 23.350 649.203 262.581 571.211

226 TUBE TUBE 0.698 1.000 0.698 Major Axis B 3 23.350 649.203 262.581 571.211

227 TUBE TUBE 0.375 1.000 0.375 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

228 TUBE TUBE 0.374 1.000 0.374 Major Axis B 3 23.350 649.203 262.581 571.211

229 TUBE TUBE 0.392 1.000 0.392 Major Axis B 3 23.350 649.203 262.581 571.211

230 TUBE TUBE 0.519 1.000 0.519 Major Axis B 3 23.350 649.203 262.581 571.211

231 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

Page 294: Design Report for Acropolis Tower

23/05/2013

232 TUBE TUBE 0.230 1.000 0.230 Major Axis B 3 23.350 649.203 262.581 571.211

233 TUBE TUBE 0.267 1.000 0.267 Major Axis B 3 23.350 649.203 262.581 571.211

234 TUBE N/A 0.360 0.049 0.049 0.073

235 TUBE N/A 0.360 0.049 0.049 0.073

236 TUBE N/A 0.360 0.049 0.049 0.073

237 TUBE N/A 0.360 0.049 0.049 0.073

238 TUBE N/A 0.360 0.049 0.049 0.073

239 TUBE N/A 0.360 0.049 0.049 0.073

240 TUBE N/A 0.360 0.049 0.049 0.073

241 TUBE N/A 0.360 0.049 0.049 0.073

242 TUBE N/A 0.360 0.049 0.049 0.073

243 TUBE N/A 0.360 0.049 0.049 0.073

244 TUBE N/A 0.360 0.049 0.049 0.073

245 TUBE N/A 0.360 0.049 0.049 0.073

246 TUBE N/A 0.360 0.049 0.049 0.073

247 TUBE N/A 0.360 0.049 0.049 0.073

248 TUBE N/A 0.360 0.049 0.049 0.073

249 TUBE N/A 0.360 0.049 0.049 0.073

250 TUBE N/A 0.360 0.049 0.049 0.073

251 TUBE N/A 0.360 0.049 0.049 0.073

252 TUBE TUBE 0.347 1.000 0.347 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

253 TUBE TUBE 0.346 1.000 0.346 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

254 TUBE TUBE 0.421 1.000 0.421 Major Axis B 3 23.350 649.203 262.581 571.211

255 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

256 TUBE TUBE 0.172 1.000 0.172 Major Axis B 3 23.350 649.203 262.581 571.211

257 TUBE TUBE 0.500 1.000 0.500 Major Axis B 3 23.350 649.203 262.581 571.211

258 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

259 TUBE TUBE 0.332 1.000 0.332 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

260 TUBE TUBE 0.303 1.000 0.303 Major Axis B 3 23.350 649.203 262.581 571.211

261 TUBE TUBE 0.698 1.000 0.698 Major Axis B 3 23.350 649.203 262.581 571.211

262 TUBE TUBE 0.375 1.000 0.375 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

263 TUBE TUBE 0.374 1.000 0.374 Major Axis B 3 23.350 649.203 262.581 571.211

264 TUBE TUBE 0.392 1.000 0.392 Major Axis B 3 23.350 649.203 262.581 571.211

265 TUBE TUBE 0.518 1.000 0.518 Major Axis B 3 23.350 649.203 262.581 571.211

266 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

267 TUBE TUBE 0.233 1.000 0.233 Major Axis B 3 23.350 649.203 262.581 571.211

268 TUBE TUBE 0.270 1.000 0.270 Major Axis B 3 23.350 649.203 262.581 571.211

269 TUBE N/A 0.360 0.049 0.049 0.073

270 TUBE N/A 0.360 0.049 0.049 0.073

271 TUBE N/A 0.360 0.049 0.049 0.073

272 TUBE N/A 0.360 0.049 0.049 0.073

273 TUBE N/A 0.360 0.049 0.049 0.073

274 TUBE N/A 0.360 0.049 0.049 0.073

275 TUBE N/A 0.360 0.049 0.049 0.073

276 TUBE N/A 0.360 0.049 0.049 0.073

277 TUBE N/A 0.360 0.049 0.049 0.073

278 TUBE N/A 0.360 0.049 0.049 0.073

279 TUBE N/A 0.360 0.049 0.049 0.073

280 TUBE N/A 0.360 0.049 0.049 0.073

281 TUBE N/A 0.360 0.049 0.049 0.073

282 TUBE N/A 0.360 0.049 0.049 0.073

283 TUBE N/A 0.360 0.049 0.049 0.073

284 TUBE N/A 0.360 0.049 0.049 0.073

285 TUBE N/A 0.360 0.049 0.049 0.073

286 TUBE N/A 0.360 0.049 0.049 0.073

287 TUBE TUBE 0.347 1.000 0.347 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

288 TUBE TUBE 0.346 1.000 0.346 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

289 TUBE TUBE 0.421 1.000 0.421 Major Axis B 3 23.350 649.203 262.581 571.211

290 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

291 TUBE TUBE 0.172 1.000 0.172 Major Axis B 3 23.350 649.203 262.581 571.211

292 TUBE TUBE 0.501 1.000 0.501 Major Axis B 3 23.350 649.203 262.581 571.211

293 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

294 TUBE TUBE 0.332 1.000 0.332 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

295 TUBE TUBE 0.303 1.000 0.303 Major Axis B 3 23.350 649.203 262.581 571.211

296 TUBE TUBE 0.697 1.000 0.697 Major Axis B 3 23.350 649.203 262.581 571.211

297 TUBE TUBE 0.374 1.000 0.374 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

298 TUBE TUBE 0.373 1.000 0.373 Major Axis B 3 23.350 649.203 262.581 571.211

299 TUBE TUBE 0.394 1.000 0.394 Major Axis B 3 23.350 649.203 262.581 571.211

300 TUBE TUBE 0.521 1.000 0.521 Major Axis B 3 23.350 649.203 262.581 571.211

301 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

302 TUBE TUBE 0.222 1.000 0.222 Major Axis B 3 23.350 649.203 262.581 571.211

303 TUBE TUBE 0.259 1.000 0.259 Major Axis B 3 23.350 649.203 262.581 571.211

304 TUBE N/A 0.360 0.049 0.049 0.073

305 TUBE N/A 0.360 0.049 0.049 0.073

306 TUBE N/A 0.360 0.049 0.049 0.073

Page 295: Design Report for Acropolis Tower

23/05/2013

307 TUBE N/A 0.360 0.049 0.049 0.073

308 TUBE N/A 0.360 0.049 0.049 0.073

309 TUBE N/A 0.360 0.049 0.049 0.073

310 TUBE N/A 0.360 0.049 0.049 0.073

311 TUBE N/A 0.360 0.049 0.049 0.073

312 TUBE N/A 0.360 0.049 0.049 0.073

313 TUBE N/A 0.360 0.049 0.049 0.073

314 TUBE N/A 0.360 0.049 0.049 0.073

315 TUBE N/A 0.360 0.049 0.049 0.073

316 TUBE N/A 0.360 0.049 0.049 0.073

317 TUBE N/A 0.360 0.049 0.049 0.073

318 TUBE N/A 0.360 0.049 0.049 0.073

319 TUBE N/A 0.360 0.049 0.049 0.073

320 TUBE N/A 0.360 0.049 0.049 0.073

321 TUBE N/A 0.360 0.049 0.049 0.073

322 TUBE TUBE 0.347 1.000 0.347 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

323 TUBE TUBE 0.346 1.000 0.346 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

324 TUBE TUBE 0.422 1.000 0.422 Major Axis B 3 23.350 649.203 262.581 571.211

325 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

326 TUBE TUBE 0.172 1.000 0.172 Major Axis B 3 23.350 649.203 262.581 571.211

327 TUBE TUBE 0.500 1.000 0.500 Major Axis B 3 23.350 649.203 262.581 571.211

328 TUBE TUBE 0.333 1.000 0.333 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

329 TUBE TUBE 0.331 1.000 0.331 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

330 TUBE TUBE 0.305 1.000 0.305 Major Axis B 3 23.350 649.203 262.581 571.211

331 TUBE TUBE 0.700 1.000 0.700 Major Axis B 3 23.350 649.203 262.581 571.211

332 TUBE TUBE 0.378 1.000 0.378 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

333 TUBE TUBE 0.376 1.000 0.376 Major Axis B 3 23.350 649.203 262.581 571.211

334 TUBE TUBE 0.384 1.000 0.384 Major Axis B 3 23.350 649.203 262.581 571.211

335 TUBE TUBE 0.510 1.000 0.510 Major Axis B 3 23.350 649.203 262.581 571.211

336 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

337 TUBE TUBE 0.268 1.000 0.268 Major Axis B 3 23.350 649.203 262.581 571.211

338 TUBE TUBE 0.305 1.000 0.305 Major Axis B 3 23.350 649.203 262.581 571.211

339 TUBE N/A 0.360 0.049 0.049 0.073

340 TUBE N/A 0.360 0.049 0.049 0.073

341 TUBE N/A 0.360 0.049 0.049 0.073

342 TUBE N/A 0.360 0.049 0.049 0.073

343 TUBE N/A 0.360 0.049 0.049 0.073

344 TUBE N/A 0.360 0.049 0.049 0.073

345 TUBE N/A 0.360 0.049 0.049 0.073

346 TUBE N/A 0.360 0.049 0.049 0.073

347 TUBE N/A 0.360 0.049 0.049 0.073

348 TUBE N/A 0.360 0.049 0.049 0.073

349 TUBE N/A 0.360 0.049 0.049 0.073

350 TUBE N/A 0.360 0.049 0.049 0.073

351 TUBE N/A 0.360 0.049 0.049 0.073

352 TUBE N/A 0.360 0.049 0.049 0.073

353 TUBE N/A 0.360 0.049 0.049 0.073

354 TUBE N/A 0.360 0.049 0.049 0.073

355 TUBE N/A 0.360 0.049 0.049 0.073

356 TUBE N/A 0.360 0.049 0.049 0.073

357 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

358 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

359 TUBE TUBE 0.187 1.000 0.187 Major Axis B 3 23.350 649.203 262.581 571.211

360 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

361 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

362 TUBE TUBE 0.223 1.000 0.223 Major Axis B 3 23.350 649.203 262.581 571.211

363 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

364 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

365 TUBE TUBE 0.133 1.000 0.133 Major Axis B 3 23.350 649.203 262.581 571.211

366 TUBE TUBE 0.308 1.000 0.308 Major Axis B 3 23.350 649.203 262.581 571.211

367 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

368 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

369 TUBE TUBE 0.182 1.000 0.182 Major Axis B 3 23.350 649.203 262.581 571.211

370 TUBE TUBE 0.238 1.000 0.238 Major Axis B 3 23.350 649.203 262.581 571.211

371 TUBE TUBE 0.271 1.000 0.271 Slenderness 1 23.350 649.203 262.581 571.211

372 TUBE TUBE 0.122 1.000 0.122 Slenderness 1 23.350 649.203 262.581 571.211

373 TUBE TUBE 0.088 1.000 0.088 Major Axis B 3 23.350 649.203 262.581 571.211

379 TUBE TUBE 0.190 1.000 0.190 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

380 TUBE TUBE 0.226 1.000 0.226 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

381 TUBE TUBE 0.311 1.000 0.311 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

382 TUBE TUBE 0.243 1.000 0.243 Slenderness 1 23.350 649.203 262.581 571.211

383 TUBE TUBE 0.261 1.000 0.261 Slenderness 1 23.350 649.203 262.581 571.211

384 TUBE TUBE 0.425 1.000 0.425 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

385 TUBE TUBE 0.504 1.000 0.504 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

386 TUBE TUBE 0.704 1.000 0.704 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

Page 296: Design Report for Acropolis Tower

23/05/2013

387 TUBE TUBE 0.513 1.000 0.513 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

388 TUBE TUBE 0.307 1.000 0.307 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

389 TUBE TUBE 0.425 1.000 0.425 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

390 TUBE TUBE 0.505 1.000 0.505 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

391 TUBE TUBE 0.701 1.000 0.701 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

392 TUBE TUBE 0.524 1.000 0.524 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

393 TUBE TUBE 0.261 1.000 0.261 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

394 TUBE TUBE 0.425 1.000 0.425 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

395 TUBE TUBE 0.505 1.000 0.505 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

396 TUBE TUBE 0.702 1.000 0.702 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

397 TUBE TUBE 0.521 1.000 0.521 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

398 TUBE TUBE 0.272 1.000 0.272 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

399 TUBE TUBE 0.425 1.000 0.425 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

400 TUBE TUBE 0.505 1.000 0.505 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

401 TUBE TUBE 0.702 1.000 0.702 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

402 TUBE TUBE 0.522 1.000 0.522 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

403 TUBE TUBE 0.269 1.000 0.269 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

404 TUBE TUBE 0.425 1.000 0.425 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

405 TUBE TUBE 0.505 1.000 0.505 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

406 TUBE TUBE 0.702 1.000 0.702 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

407 TUBE TUBE 0.522 1.000 0.522 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

408 TUBE TUBE 0.269 1.000 0.269 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

409 TUBE TUBE 0.425 1.000 0.425 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

410 TUBE TUBE 0.505 1.000 0.505 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

411 TUBE TUBE 0.702 1.000 0.702 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

412 TUBE TUBE 0.521 1.000 0.521 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

413 TUBE TUBE 0.272 1.000 0.272 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

414 TUBE TUBE 0.425 1.000 0.425 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

415 TUBE TUBE 0.505 1.000 0.505 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

416 TUBE TUBE 0.701 1.000 0.701 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

417 TUBE TUBE 0.524 1.000 0.524 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

418 TUBE TUBE 0.261 1.000 0.261 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

419 TUBE TUBE 0.425 1.000 0.425 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

420 TUBE TUBE 0.504 1.000 0.504 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

421 TUBE TUBE 0.704 1.000 0.704 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

422 TUBE TUBE 0.513 1.000 0.513 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

423 TUBE TUBE 0.307 1.000 0.307 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

424 TUBE TUBE 0.190 1.000 0.190 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

425 TUBE TUBE 0.226 1.000 0.226 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

426 TUBE TUBE 0.311 1.000 0.311 Sec. 9.3.2.2 3 23.350 649.203 262.581 571.211

427 TUBE TUBE 0.243 1.000 0.243 Slenderness 1 23.350 649.203 262.581 571.211

428 TUBE TUBE 0.261 1.000 0.261 Slenderness 1 23.350 649.203 262.581 571.211

Utilisation Ratio for all beams are less than 1.00 hence the structure is safe.

Page 297: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

DESIGN OF ALUMINIUM MULLION

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 298: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

Wind Pressure Calculation

Location Kolkata

Design Wind Pressure Pd 2520.00 N/m2

2.52 KPA

Deflection Calculation of Mullion

MI due to Trapezoidal load on Mullion due to left panel:

Span L 1.60 m

Load width B = B1/2 0.75 m

Factor a = B 0.75 m

load Rate w = B x Pd 1890.00 N/m

Deflection allowed fadm L/125 or 19 mm (Whichever is minimum for SGU)

i.e. 12.80 or 19 mm (Whichever is minimum for SGU)

Elasticity modulus E 65500 N/mm2

MI on Mullion, I -1

Mullion

mm4

cm4

1.600 m

MI due to Trapezoidal load on Mullion due to right panel:

Span L 1.60 m

Load width B = B1/2 0.60 m

Factor a = B 0.60 m 1.200 m

load Rate w = B x Pd 1512.00 N/m

Deflection allowed fadm L/125 or 19 mm (Whichever is minimum for SGU)

i.e. 12.80 or 19 mm (Whichever is minimum for SGU)

Elasticity modulus E 65500 N/mm2

MI on Mullion, I -1

mm4

cm4

Total MI on Mullion I = I-1 + I-2 cm4

Provide Profile NA / 75 / MU / 01 (60 x 100) as Mullion M.o.I. = 91.84 cm4

Actual deflection δactual = 3.51 mm

> 19.00 mm

25.19

1.500 m

2.10362E+14

1609728000

130681.5344

13.07

1609728000

121214.8855

12.12

STRUCTURAL CALCULATION FOR ST. GLAZING (PE-08)

(Refer IS : 8147 - 1976, Table-1, Page 13, for Alloy 63400-WP)

w x L4

[25 - 40(a/L)2+16(a/L)

4]

1920 x E x fadm

w x L4

[25 - 40(a/L)2+16(a/L)

4]

1920 x E x fadm

1.95123E+14

Page 299: Design Report for Acropolis Tower

Bending Stress Check :

Maximum Bending Moment Mmax = 820.73 N-m

Section Modulas Z = 18.17 cm3

Actual Bending Stress fbt = 45.17 N/mm3

Front Wall Thickness t1 = 2.00 mm

Back Wall Thickness t2 = 2.00 mm

Ratio of Wall Thickness t1 / t2 = 1.00 -

Depth of Section a = 58.00 mm

Width of Section b = 56.00 mm

Depth to Width Ratio a / b = 1.04 -

Factor Klat = 2.00 -

Factor K1 = 1.00 -

Factor K2 = 0.60 -

Effective Unrestrained Length of Beam lf = 0.96 m

Slenderness Ratio λ = 8.28 -

Permissible Bending Stress pbt = 95.00 N/mm3

> 45.17 N/mm3

Hence ok

Axial Compressive Stress Check

Axial Compression F = 426.59 N

c/s Area A = 865.3 mm2

Minimum radius of gyration r = 1.89 cm

Slenderness ratio λ = 84.76 -

Axial Compressive Stress ft = 0.49 N/mm2

Permissible Compressive Stress pt = 51 N/mm2

> 0.49 N/mm2

Hence ok

Combined Bending and Axial Compressive Check

Unity Ratio U.R. = 0.49 -

< 1 -

Hence ok

Shear Stress Check

Total Shear S = 2721.60 N

c/s Area A = 400 mm2

Actual Shear Stress ζcal = 6.80 N/mm2

Permissible Shear Stress ζallow = 51 N/mm2

(Refer: IS : 8147 - 1976, Table 4, Pg. 25)

> 6.80 N/mm2

Hence ok

> 45.17 N/mm2

Page 300: Design Report for Acropolis Tower
Page 301: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

DESIGN OF ALUMINIUM TRANSOM

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 302: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

BENDING DUE TO WIND LOAD :

Wind Pressure Calculation

Location Kolkata

Design Wind Pressure Pd 2520.00 N/m2 ( GIVEN )

2.52 KPA

Deflection Calculation of Transom

MI due to Trapezoidal load on Transom due to top panel:

Span L 1.50 m

Load width B = B1/2 0.45 m

Factor a = B 0.45 m

load Rate w = B x Pd 1134.00 N/m

Deflection allowed fadm L/125 or 19 mm (Whichever is minimum for SGU)

i.e 12.00 or 19 mm (Whichever is minimum for SGU)

Elasticity modulus E 65500 N/mm2

MI on Transom, I -1

Transom

mm4

0.900 m

cm4

MI due to Triangular load on Transom due to bottompanel:

Span L 1.50 m 2.000 m

Load width B = B1/2 0.75 m

Factor a = B 0.75 m 1.200 m

load Rate w = B x Pd 1890.00 N/m

Deflection allowed fadm L/125 or 19 mm (Whichever is minimum for SGU)

i.e. 12.00 or 19 mm (Whichever is minimum for SGU)

Elasticity modulus E 65500 N/mm2

MI on Transom, I -1

mm4

cm4

Total MI on Transom I = I-1 + I-2 cm4

Provide Profile NA / 75 / TR / 02 (60 x 80) as Transom M.o.I. = 41.62 cm4

Actual deflection δactual = 5.29 mm

< 12.00 mm

Hence ok

BENDING STRESS CHECK :

Maximum Bending Moment Mmax = 635.04 N-m

Section Modulas Z = 9.79 cm3

Actual Bending Stress fbt = 64.89 N/mm3

Front Wall Thickness t1 = 2.00 mm

Back Wall Thickness t2 = 2.00 mm

Ratio of Wall Thickness t1 / t2 = 1.00 -

Depth of Section a = 58.00 mm

Width of Section b = 43.00 mm

Depth to Width Ratio a / b = 1.35 -

Factor Klat = 2.00 -

Factor K1 = 1.00 -

Factor K2 = 0.60 -

Effective Unrestrained Length of Beam lf = 0.90 m

Slenderness Ratio λ = 9.15 -

Permissible Bending Stress pbt = 95.00 N/mm3

> 64.89 N/mm3

Hence ok

18.33

47160000

101443.2252

10.14

w x L4

[25 - 40(a/L)2+16(a/L)

4]

1920 x E x fadm

4.78406E+12

STRUCTURAL CALCULATION FOR ST. GLAZING (PE-08)

(Refer IS : 8147 - 1976, Table-1, Page 13, for Alloy 63400-WP)

w x L4

60 x E x fadm

1.500 m

1.23599E+14

1509120000

81901.20229

8.19

Page 303: Design Report for Acropolis Tower

BENDING DUE TO DEAD LOAD :

Total Dead Load DL = 1075.80 N

Point Load P = 537.90 N

Span L = 1.50 m

Allowable Deflection δallow = 5.00 mm or 3 mm (whichever is minimum)

Actual Deflection δactual = 1.39 mm

< 3.00 mm

Hence ok

Maximum Bending Moment Mmax = 107.58 N-m

Section Modulas Zyy = 8.22 cm3

Actual Bending Stress fbt = 13.08 N/mm2

Front Wall Thickness t1 = 2.00 mm

Back Wall Thickness t2 = 2.00 mm

Ratio of Wall Thickness t1 / t2 = 1.00 -

Depth of Section a = 58.00 mm

Width of Section b = 43.00 mm

Depth to Width Ratio a / b = 1.35 -

Factor Klat = 2.00 -

Factor K1 = 1.00 -

Factor K2 = 0.60 -

Effective Unrestrained Length of Beam lf = 0.90 m

Slenderness Ratio λ = 9.15 -

Permissible Bending Stress pbt = 95.00 N/mm2

> 13.08 N/mm2

Hence ok

Combined Stress Check :

Utilisation Ratio U.R. = 0.82 -

< 1.0 -

Hence ok

(Setting Block is at 150 mm from centre of screw in both ends of

Transom)

Page 304: Design Report for Acropolis Tower

PROJECT:

CLIENT: ARCHITECT: DRAWING NO: DRN. BY CHKD. BY APPD. BY SCALE SHEET NO. DATE

TITLE:

REV. NO DATE DESCRIPTION-------------

DIE DRAWING - NITSON AMITSU

NITSON AMITSU FITI/NA/MASSPRO/02/R01

NA/75/02/A (MASS PRO)

SAKTHI DEEPAK VSR 1:1 01 26.07.08

Page 305: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

BRACKET & THROUGH BOLT CHECK FOR ALUMINIUM MULLION

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 306: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME EMAMI, KOLKATA

ITEM

Bi-Axial Bending Check for Bracket (Horizontal Part)

Horizontal Point Load per Bracket due to WL Along X-X PHX = 0.00 N

Horizontal Point Load per Bracket due to WL Along Z-Z PHZ = 8352.08 N

Vertical Point Load per Bracket due to DL Along Y-Y PVY = 553.37 N

Eccentricity e = 40 mm

Maximum Bending Moment per Plate due to DL Mmax = 11.07 N-m

Depth of bracket d = 5 mm

Width of bracket b = 50 mm

Section Modulas of Bracket Z = 208.33 mm3

Partial Factor of Safety γm0 = 1.10 - 50 mm

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 47.35 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 11.07 N-m

Hence ok

Maximum Bending Moment per Plate due to WL Along X-X Mmax = 0.00 N-m

Depth of bracket d = 50 mm

Width of bracket b = 5 mm

Section Modulas of Bracket Z = 2083.33 mm3

Partial Factor of Safety γm0 = 1.10 -

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 473.48 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 0.00 N-m

Hence ok

Tension Check for Bracket

Yield Stress fy = 250.00 N/mm2

Partial Factor of Safety γm0 = 1.10 - (Refer IS:800- 2007, Table-5, Pg. 30)

Thickness of bracket t = 5 mm

Depth of bracket d = 50 mm

Diameter of Bolt D = 8.00 mm

Number of Bolts per Bracket n = 1.00 Nos.

Gross c/s Area Ag = 185 mm2

Actual Tension per Bracket T = 4176.04 N

Design Strength in Tension Td = 42045.45 N (Refer IS:800- 2007, Cl. 6.2, Pg. 32)

> 4176.04 N

Hence ok

Combined Bending & Tension Check

Unity Ratio U.R. = 0.33 -

> 1.00 - (Refer IS:800- 2007, Cl. 9.3.1.1, Pg. 70)

Hence ok

20 mm

40 mm

(Refer IS:800- 2007, Table-5, Pg. 30)

BRACKET CALCULATION

(Refer IS:800- 2007, Table-5, Pg. 30)

Page 307: Design Report for Acropolis Tower

Check for Bearing in Horizontal Member (Aluminium)

Shear Force due to WL Along Z-Z (Double Shear) 2 Nos. S1 = 4176.04 N

Shear Force due to WL Along Y-Y (Double Shear) 2 Nos. S2 = 276.69 N

Combined Shear Force (Double Shear) 2 Nos. S = 4185.20 N

Diameter of Bolt D = 12.00 mm

Thickness of Wall t = 2.00 mm

Bearing Area A = 24.00 mm

Load Factor LF = 1.50 -

Actual Bearing Stress ζcal = 116.26 N/mm2

Permissible Bearing Stress ζallow = 139.00 N/mm2

> 116.26 N/mm2

Hence ok

Check for Through Bolt

Shear Check on Bolt

Provide SS304 (A2), 12 dia, 120 long SS Hexagonal Head Bolt

i)Shear Stress Check for Through Bolt

Shear on each bolt due to WL & DL S = 4185.20 N

Diameter of Bolt d = 12.00 mm

Unthreaded Shank Area of Bolt As = 84.00 mm2(Refer IS: 4218(Part III, Reaffirme 1996), Table-11.1, Fig.-11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Bolt psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Bolt Psb = 12171.60 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 4185.20 N

Provide SS304 (A2), 12 dia, 120 long SS Hexagonal Head Bolt Hence ok

ii)Bearing Stress Check for Through Bolt

Combined Shear Force (Double Shear) S = 4185.20 N

Diameter of Bolt d = 12.00 mm

Thickness of Mullion Wall tp = 2.00 mm

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 450.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Bearing Strength of the Bolt pbb = 684.00 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

Bearing Capacity of the Bolt Pbb = 16416.00 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

> 4185.20 N/mm2

Provide SS304 (A2), 12 dia, 120 long SS Hexagonal Head Bolt Hence ok

Slenderness Check of Base Plate

Plate Thickness t = 5.00 mm

Plate Width b = 50.00 mm

Moment of Inertia MoI = 520.83 N/mm2

c/s Area A = 250.00 mm2

Minimum Radius of Gyration rmin = 1.44 mm

Plate Span L = 110.00 mm

Slenderness Ratio λ = 76.21 -

< 250 - (Refer IS:800- 1984, Table 3.1, Pg. 30)

Hence ok

P P

BENDING STRESS CHECK

Point Load on Bolt P = 4185.20 N

a = 5.00 mm a = 5.00 mm

Point Load Distance from End Support a = 5.00 mm

Maximum Bending Moment M = 20.93 N-m

Diameter of Bolt d = 12.00 mm

Design value of 0.2 % Proof Stress Py = 190.91 N/mm2(Refer P291, Clause 2.2.2.(ii), Pg. 12)

Section Modulas of Bolt Z = 169.71 mm3

Moment Capacity of the c/s of the Bolt Mc = 32.4 N-m

> 20.93 N-m

Provide SS304 (A2), 12 dia, 120 long SS Hexagonal Head Bolt Hence ok

68 mm

(Refer P291, Clause 4.4.2. Equation (4.20), Pg. 39) as Applied Shear is

less than 0.6 times of Shear Capacity of the Bolt

Minimum of these two for Usb ≤ 800 N/mm2 as per

P291, Clause 5.2.2.a, Pg. 53

(Refer IS:8147- 1976, Table-4, Pg. 25)

Page 308: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR ENDS

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 309: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/11/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M10 hnom2Effective embedment depth: hef = 50 mm, hnom = 60 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 12 mmAnchor plate: lx x ly x t = 100 x 180 x 12 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 100 mm x 96 mm x 5 mmBase material: uncracked concrete , C20/25, fc = 20.00 N/mm²; h = 400 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 310: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/11/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 7.624 0.649 0.649 0.000

2 2.324 0.649 0.649 0.000

3 7.624 0.649 0.649 0.000

4 2.324 0.649 0.649 0.000

max. concrete compressive strain [‰]: 0.00max. concrete compressive stress [N/mm²]: 0.00resulting tension force in (x/y)=(-16/0) [kN]: 19.890resulting compression force in (x/y)=(0/0) [kN]: 0.000

1 2

3 4

Tension

Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 7.624 25.000 30 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 19.894 25.513 78 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

35.000

gM,s

1.400

NRd,s [kN]

25.000

NSd [kN]

7.624

Concrete Breakout StrengthAc,N [mm2]

60060

Ac,N

0 [mm2]

22500

yA,N

2.669

ccr,N [mm]

75

scr,N [mm]

150

ec1,N [mm]

16

yec1,N

0.824

ec2,N [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

17.393

gM,c

1.500

NRd,c [kN]

25.513

NSd [kN]

19.894

2

Page 311: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/11/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 0.649 18.080 4 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 2.596 74.282 3 OK

Concrete edge failure in direction

x+**

1.298 34.379 4 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

22.600

gM,s

1.250

VRd,s [kN]

18.080

VSd [kN]

0.649

Pryout StrengthAc,N [mm2]

60060

Ac,N

0 [mm2]

22500

yA,N

2.669

ccr,N [mm]

75

scr,N [mm]

150

k4

2.400

ec1,V [mm]

0

yec1,N

1.000

ec2,V [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

17.393

gM,c,p

1.500

VRd,c1 [kN]

74.282

VSd [kN]

2.596

Concrete edge failure in direction x+lf [mm]

50

dnom [mm]

10

kv

2.400

a

0.035

b

0.048

c1 [mm]

405

Ac,V [mm2]

540400

Ac,V

0 [mm2]

738113

yA,V

0.732

ys,V

1.000

yh,V

1.232

ya,V

1.000

ec,V [mm]

0

yec,V

1.000

yre,V

1.000

y90°,V

-

VRk,c

0 [kN]

114.310

n

2

gM,c

1.500

VRd,c [kN]

34.379

VSd [kN]

1.298

Note: Resistance limit acc. to fib (07/2011) Eq. (10.2-7) is governing5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

bN bV a Utilization bN,V [%] Status

steel 0.305 0.036 2.0 9 OK

concrete 0.780 0.038 1.5 70 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 5.650 [kN]

VSk = 0.480 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 312: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/11/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 313: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/11/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 100 mm x 96 mm x 5 mmHole diameter in the fixture: df = 12 mmPlate thickness (input): 12 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M10 hnom2Installation torque: 0.025 kNmHole diameter in the base material: 10 mmHole depth in the base material: 65 mmMinimum thickness of the base material: 120 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 -30 -68 345 405 - -2 30 -68 405 345 - -3 -30 68 345 405 - -4 30 68 405 345 - -

1 2

3 4

50.0 50.0

20.0 20.0

90.0

90.0

22.0

22.01 2

3 4

x

y

5

Page 314: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/11/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 315: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

Bending Check for Bracket

Horizontal Point Load per Bracket due to WL Along X-X PHX = 0.00 N

Horizontal Point Load per Bracket due to WL Along Z-Z PHZ = 19893.30 N

Vertical Point Load per Bracket due to DL Along Y-Y PVY = 2595.44 N

Eccentricity e = 110 mm

Maximum Bending Moment per Plate Mmax = 142.75 N-m

Depth of bracket d = 100 mm

Width of bracket b = 5 mm

Section Modulas of Bracket Z = 8333.33 mm3

Partial Factor of Safety γm0 = 1.10 - 100 mm

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 1893.94 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 142.75 N-m

Hence ok

Tension Check for Bracket

Yield Stress fy = 250.00 N/mm2

Partial Factor of Safety γm0 = 1.10 - (Refer IS:800- 2007, Table-5, Pg. 30)

Thickness of bracket t = 5 mm

Depth of bracket d = 100 mm

Diameter of Bolt D = 12.00 mm

Number of Bolts per Bracket n = 1.00 Nos.

Gross c/s Area Ag = 415 mm2

Actual Tension per Bracket T = 9946.65 N

Design Strength in Tension Td = 94318.18 N (Refer IS:800- 2007, Cl. 6.2, Pg. 32)

> 9946.65 N

Hence ok

Combined Bending & Tension Check

Unity Ratio U.R. = 0.18 -

> 1.00 - (Refer IS:800- 2007, Cl. 9.3.1.1, Pg. 70)

Hence ok

Check for Bearing in Vertical Member

Shear Force due to WL (Double Shear) 2 Nos. S1 = 9946.65 N

Shear Force due to WL & DL (Double Shear) 2 Nos. S2 = 1297.72 N

Combined Shear Force (Double Shear) 2 Nos. S = 10030.95 N

Diameter of Bolt D = 12.00 mm

Thickness of Vertical Wall t = 5.40 mm

End Distance of Bolt e = 25.00 mm

Factor kb = 0.69 -

Ultimate Tensile Strength of Plate fu= 410.00 N/mm2

Partial Factor of Safety of Bolt γmb = 1.25 -

Permissible Bearing Vdpb= 36900.00 N

> 10030.95 N

Hence ok

(Refer IS:800- 2007, Table-5, Pg. 30)

(Refer IS:800- 2007, Cl. 10.3.4, Pg. 75)

122.5 mm

25 mm

(Refer IS:800- 2007, Table-5, Pg. 30)

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

BRACKET CALCULATION

Page 316: Design Report for Acropolis Tower

Check for Through Bolt

Shear Check on Bolt

Provide SS304 (A2), 12 dia, 140 long SS Hexagonal Head Bolt

i)Shear Stress Check for Through Bolt

Shear on each bolt due to WL & DL S = 10030.95 N

Diameter of Bolt d = 12.00 mm

Unthreaded Shank Area of Bolt As = 84.00 mm2(Refer IS: 4218(Part III, Reaffirme 1996), Table-11.1, Fig.-11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Bolt psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Bolt Psb = 12171.60 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 10030.95 N

Provide SS304 (A2), 12 dia, 140 long SS Hexagonal Head Bolt Hence ok

ii)Bearing Stress Check for Through Bolt

Combined Shear Force (Double Shear) S = 10030.95 N

Diameter of Bolt d = 12.00 mm

Thickness of Mullion Wall tp = 5.40 mm

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 450.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Bearing Strength of the Bolt pbb = 684.00 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

Bearing Capacity of the Bolt Pbb = 44323.20 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

> 10030.95 N/mm2

Provide SS304 (A2), 12 dia, 140 long SS Hexagonal Head Bolt Hence ok

Slenderness Check of Base Plate

Plate Thickness t = 5.00 mm

Plate Width b = 180.00 mm

Moment of Inertia MoI = 1875.00 N/mm2

c/s Area A = 900.00 mm2

Minimum Radius of Gyration rmin = 1.44 mm

Plate Span L = 120.00 mm

Slenderness Ratio λ = 83.14 -

< 250 - (Refer IS:800- 1984, Table 3.1, Pg. 30)

Hence ok

Thickness Check of Base Plate

Tension force form bolt (report) P = 7624.00 N

Eccentricity e = 20 mm

Maximum Bending Moment Mmax = 152.48 N-m

Depth of Base Plate d = 12 mm

Width of Base Plate b = 40.03 mm

Section Modulas of Bracket Z = 960.61 mm3

Partial Factor of Safety γm0 = 1.10 - (Refer IS:800- 2007, Table-5, Pg. 30)

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 218.32 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 152.48 N-m

Hence ok

Minimum of these two for Usb ≤ 800 N/mm2 as per

P291, Clause 5.2.2.a, Pg. 53

Page 317: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR INTERMEDIATES

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 318: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/10/2013

Specifier's comments:

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1. Input dataAnchor type and diameter: HSA-R, M12 hnom2Effective embedment depth: hef = 65 mm, hnom = 79 mmMaterial: A4Evaluation Service Report:: ETA 11/0374Issued I Valid: 7/19/2012 | 7/19/2017Proof: SOFA design method + fib (07/2011) - after ETAG testingStand-off installation: eb = 0 mm (no stand-off); t = 16 mmAnchor plate: lx x ly x t = 150 x 180 x 16 mm (Recommended plate thickness: not calculated)Profile Double flat bar; (L x W x T) = 150 mm x 96 mm x 5 mmBase material: uncracked concrete , C20/25, fc = 20.00 N/mm²; h = 400 mmReinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcementReinforcement to control splitting according to fib (07/2011), 10.1.5.2 present

Geometry [mm] & Loading [kN, kNm]

1

Page 319: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/10/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

2. Load case/Resulting anchor forces

Load case (Design loads):

Anchor reactions [kN]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 10.510 0.977 0.977 0.000

2 5.719 0.977 0.977 0.000

3 10.510 0.977 0.977 0.000

4 5.719 0.977 0.977 0.000

max. concrete compressive strain [‰]: 0.00max. concrete compressive stress [N/mm²]: 0.00resulting tension force in (x/y)=(-15/0) [kN]: 32.460resulting compression force in (x/y)=(0/0) [kN]: 0.000

1 2

3 4

Tension

Compression

x

y

3. Tension load SOFA (fib (07/2011), section 10.1)Proof Load [kN] Capacity [kN] Utilization bN [%] Status

Steel Strength* 10.509 31.857 33 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 32.457 38.331 85 OK

Splitting failure** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Steel StrengthNRk,s [kN]

44.600

gM,s

1.400

NRd,s [kN]

31.857

NSd [kN]

10.509

Concrete Breakout StrengthAc,N [mm2]

97645

Ac,N

0 [mm2]

38025

yA,N

2.568

ccr,N [mm]

98

scr,N [mm]

195

ec1,N [mm]

15

yec1,N

0.869

ec2,N [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

k1

11.000

NRk,c

0 [kN]

25.780

gM,c

1.500

NRd,c [kN]

38.331

NSd [kN]

32.457

2

Page 320: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/10/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

4. Shear load SOFA (fib (07/2011), section 10.2)Proof Load [kN] Capacity [kN] Utilization bV [%] Status

Steel Strength (without lever arm)* 0.977 23.440 4 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 3.906 88.267 4 OK

Concrete edge failure in direction

x+**

1.953 37.156 5 OK

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength (without lever arm)VRk,s [kN]

29.300

gM,s

1.250

VRd,s [kN]

23.440

VSd [kN]

0.977

Pryout StrengthAc,N [mm2]

97645

Ac,N

0 [mm2]

38025

yA,N

2.568

ccr,N [mm]

98

scr,N [mm]

195

k4

2.000

ec1,V [mm]

0

yec1,N

1.000

ec2,V [mm]

0

yec2,N

1.000

ys,N

1.000

yre,N

1.000

NRk,c

0 [kN]

25.780

gM,c,p

1.500

VRd,c1 [kN]

88.267

VSd [kN]

3.906

Concrete edge failure in direction x+lf [mm]

65

dnom [mm]

12

kv

2.400

a

0.039

b

0.049

c1 [mm]

425

Ac,V [mm2]

564400

Ac,V

0 [mm2]

812813

yA,V

0.694

ys,V

1.000

yh,V

1.262

ya,V

1.000

ec,V [mm]

0

yec,V

1.000

yre,V

1.000

y90°,V

-

VRk,c

0 [kN]

127.157

n

2

gM,c

1.500

VRd,c [kN]

37.156

VSd [kN]

1.953

Note: Resistance limit acc. to fib (07/2011) Eq. (10.2-7) is governing5. Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

bN bV a Utilization bN,V [%] Status

steel 0.330 0.042 2.0 11 OK

concrete 0.847 0.053 1.5 79 OK

bNa + bV

a <= 1

6. DisplacementsThe displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to holetolerances can be neglected, because this method assumes that no hole clearance between anchors and fixture is present. The characteristicloads of the highest loaded anchor are

NSk = 7.780 [kN]

VSk = 0.720 [kN]

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

3

Page 321: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/10/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

7. Warnings• The design method fib (07/2011) assumes that no hole clearance between the anchors and the fixture is present. This can be achieved by

filling the gap with mortar of sufficient sompressive strength (e.g. by using the Hilti Dynamic Set) or by other suitable means.• The compliance with current standards (e.g. EC3) is the responsibility of the user• Checking the transfer of loads into the base material is required in accordance with fib (07/2011)!• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to

elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformedwhen subjected to the loading!

• The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to befollowed to ensure a proper installation.

Fastening meets the design criteria!

4

Page 322: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/10/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

8. Installation data

Anchor plate, steel: -Profile: Double flat bar, 150 mm x 96 mm x 5 mmHole diameter in the fixture: df = 14 mmPlate thickness (input): 16 mmRecommended plate thickness: not calculatedCleaning: Manual cleaning of the drilled hole according to instructions for use is required.Annular gap must be removed by e.g. filling the holes with mortar of sufficient compressive strength.

Anchor type and diameter: HSA-R, M12 hnom2Installation torque: 0.050 kNmHole diameter in the base material: 12 mmHole depth in the base material: 87 mmMinimum thickness of the base material: 140 mm

8.1. Required accessories

Drilling Cleaning Setting • Suitable Rotary Hammer• Properly sized drill bit

• Manual blow-out pump • Dynamic set• Installation torque control bar with suitable

screw driver or torque wrench• Hammer

Coordinates Anchor [mm]Anchor x y c-x c+x c-y c+y

1 -50 -68 325 425 - -2 50 -68 425 325 - -3 -50 68 325 425 - -4 50 68 425 325 - -

1 2

3 4

75.0 75.0

25.0 25.0

90.0

90.0

22.0

22.01 2

3 4

x

y

5

Page 323: Design Report for Acropolis Tower

PROFIS Anchor 2.3.5 www.hilti.inCompany: NITSON AND AMITSU PRIVATE LIMITEDSpecifier: Address: Phone I Fax: - | -E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 5/10/2013

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

9. Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas

and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must bestrictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted priorto using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data youput in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in byyou. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regardto compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpretnorms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for aspecific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for theregular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do notuse the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software ineach case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost ordamaged data or programs, arising from a culpable breach of duty by you.

6

Page 324: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

Bending Check for Bracket

Horizontal Point Load per Bracket due to WL Along X-X PHX = 0.00 N

Horizontal Point Load per Bracket due to WL Along Z-Z PHZ = 32456.96 N

Vertical Point Load per Bracket due to DL Along Y-Y PVY = 3905.79 N

Eccentricity e = 110 mm

Maximum Bending Moment per Plate Mmax = 214.82 N-m

Depth of bracket d = 150 mm

Width of bracket b = 5 mm

Section Modulas of Bracket Z = 18750.00 mm3

Partial Factor of Safety γm0 = 1.10 - 100 mm 25 mm

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 4261.36 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 214.82 N-m

Hence ok

Tension Check for Bracket

Yield Stress fy = 250.00 N/mm2

Partial Factor of Safety γm0 = 1.10 - (Refer IS:800- 2007, Table-5, Pg. 30)

Thickness of bracket t = 5 mm

Depth of bracket d = 150 mm

Diameter of Bolt D = 12.00 mm

Number of Bolts per Bracket n = 2.00 Nos.

Gross c/s Area Ag = 580 mm2

Actual Tension per Bracket T = 16228.48 N

Design Strength in Tension Td = 131818.18 N (Refer IS:800- 2007, Cl. 6.2, Pg. 32)

> 16228.48 N

Hence ok

Combined Bending & Tension Check

Unity Ratio U.R. = 0.17 -

> 1.00 - (Refer IS:800- 2007, Cl. 9.3.1.1, Pg. 70)

Hence ok

Check for Bearing in Vertical Member

Shear Force due to WL (Double Shear) 2 Nos. S1 = 8114.24 N

Shear Force due to WL & DL (Double Shear) 2 Nos. S2 = 976.45 N

Combined Shear Force (Double Shear) 2 Nos. S = 8172.78 N

Diameter of Bolt D = 12.00 mm

Thickness of Vertical Wall t = 5.40 mm

End Distance of Bolt e = 25.00 mm

Factor kb = 0.69 -

Ultimate Tensile Strength of Plate fu= 410.00 N/mm2

Partial Factor of Safety of Bolt γmb = 1.25 -

Permissible Bearing Vdpb= 36900.00 N

> 8172.78 N

Hence ok

25 mm

(Refer IS:800- 2007, Cl. 10.3.4, Pg. 75)

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

(Refer IS:800- 2007, Table-5, Pg. 30)

(Refer IS:800- 2007, Table-5, Pg. 30)

25 mm

BRACKET CALCULATION

122.5 mm

Page 325: Design Report for Acropolis Tower

Check for Through Bolt

Shear Check on Bolt

Provide SS304 (A2), 12 dia, 140 long SS Hexagonal Head Bolt

i)Shear Stress Check for Through Bolt

Shear on each bolt due to WL & DL S = 8172.78 N

Diameter of Bolt d = 12.00 mm

Unthreaded Shank Area of Bolt As = 84.00 mm2(Refer IS: 4218(Part III, Reaffirme 1996), Table-11.1, Fig.-11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Bolt psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Bolt Psb = 12171.60 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 8172.78 N

Provide SS304 (A2), 12 dia, 140 long SS Hexagonal Head Bolt Hence ok

ii)Bearing Stress Check for Through Bolt

Combined Shear Force (Double Shear) S = 8172.78 N

Diameter of Bolt d = 12.00 mm

Thickness of Mullion Wall tp = 5.40 mm

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 450.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Bearing Strength of the Bolt pbb = 684.00 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

Bearing Capacity of the Bolt Pbb = 44323.20 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

> 8172.78 N/mm2

Provide SS304 (A2), 12 dia, 140 long SS Hexagonal Head Bolt Hence ok

Slenderness Check of Base Plate

Plate Thickness t = 5.00 mm

Plate Width b = 180.00 mm

Moment of Inertia MoI = 1875.00 N/mm2

c/s Area A = 900.00 mm2

Minimum Radius of Gyration rmin = 1.44 mm

Plate Span L = 120.00 mm

Slenderness Ratio λ = 83.14 -

< 250 - (Refer IS:800- 1984, Table 3.1, Pg. 30)

Hence ok

Thickness Check of Base Plate

Tension force form bolt (report) P = 10510.00 N

Eccentricity e = 20 mm

Maximum Bending Moment Mmax = 210.20 N-m

Depth of Base Plate d = 16 mm

Width of Base Plate b = 40.03 mm

Section Modulas of Bracket Z = 1707.75 mm3

Partial Factor of Safety γm0 = 1.10 - (Refer IS:800- 2007, Table-5, Pg. 30)

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 388.12 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 210.20 N-m

Hence ok

Minimum of these two for Usb ≤ 800 N/mm2 as per

P291, Clause 5.2.2.a, Pg. 53

Page 326: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

STRUCTURAL CALCULATION FOR PE - 10

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 327: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

STAAD REPORT FOR PE - 10

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 328: Design Report for Acropolis Tower

23/05/2013

STAAD.Pro Report

To: ACROPOLIS

TOWER,

KOLKATA

From: NITSON AND AMITSU PRIVATE LIMITED

Copy to: Date: 08/05/20123

12:36:00

Ref: DRG NO. :

NAP/BS/ACROPOLIS-T /

025

Job Information

Engineer Checked Approved

Name:

Date: 23-Apr-13

Structure Type SPACE FRAME

Number of Nodes 160 Highest Node 166

Number of Elements 248 Highest Beam 295

Number of Basic Load Cases 2

Number of Combination Load Cases 1

Included in this printout are data for:

All The Whole Structure

Included in this printout are results for load cases:

Type L/C Name

Primary 1 DL

Primary 2 WL

Combination 3 COMBINATION LOAD CASE 3

Page 329: Design Report for Acropolis Tower

23/05/2013

Whole Structure

Whole Structure

LOADS CONSIDERED :

1) DEAD LOAD :

a. Self Weight of Structure b. Dead load of Glass (30 Kg/m2)

2) WIND LOAD :

a. Design Wind Pressure as per Tender Specification is 2520 N/m2

Page 330: Design Report for Acropolis Tower

23/05/2013

Section Properties Prop Section Area

(cm2)

Iyy (cm

4)

Izz (cm

4)

J (cm

4)

Material

1 TUBE 0.360 0.049 0.049 0.073 STEEL

2 TUBE 30.000 102.500 470.000 258.133 STEEL

Materials

Mat Name E (kN/mm

2)

Density (kg/m

3)

(/°C)

1 STEEL 205.000 0.300 7.83E 3 12E -6

Supports Node X

(kN/mm) Y

(kN/mm) Z

(kN/mm) rX

(kN-m/deg)

rY (kN

-m/deg)

rZ (kN

-m/deg)

3 Fixed Fixed Fixed - - -

12 Fixed Fixed Fixed - - -

16 Fixed Fixed Fixed - - -

21 Fixed Fixed Fixed - - -

25 Fixed Fixed Fixed - - -

30 Fixed Fixed Fixed - - -

34 Fixed Fixed Fixed - - -

37 Fixed Fixed Fixed - - -

41 Fixed Fixed Fixed - - -

46 Fixed Fixed Fixed - - -

50 Fixed Fixed Fixed - - -

53 Fixed Fixed Fixed - - -

57 Fixed Fixed Fixed - - -

62 Fixed Fixed Fixed - - -

66 Fixed Fixed Fixed - - -

69 Fixed Fixed Fixed - - -

73 Fixed Fixed Fixed - - -

78 Fixed Fixed Fixed - - -

82 Fixed Fixed Fixed - - -

85 Fixed Fixed Fixed - - -

89 Fixed Fixed Fixed - - -

94 Fixed Fixed Fixed - - -

98 Fixed Fixed Fixed - - -

101 Fixed Fixed Fixed - - -

105 Fixed Fixed Fixed - - -

110 Fixed Fixed Fixed - - -

114 Fixed Fixed Fixed - - -

117 Fixed Fixed Fixed - - -

121 Fixed Fixed Fixed - - -

126 Fixed Fixed Fixed - - -

130 Fixed Fixed Fixed - - -

133 Fixed Fixed Fixed - - -

137 Fixed Fixed Fixed - - -

142 Fixed Fixed Fixed - - -

146 Fixed Fixed Fixed - - -

149 Fixed Fixed Fixed - - -

153 Fixed Fixed Fixed - - -

158 Fixed Fixed Fixed - - -

162 Fixed Fixed Fixed - - -

165 Fixed Fixed Fixed - - -

Page 331: Design Report for Acropolis Tower

23/05/2013

Basic Load Cases

Number Name

1 DL

2 WL

Combination Load Cases

Comb. Combination L/C Name Primary Primary L/C Name Factor

3 COMBINATION LOAD CASE 3 1 DL 1.50

2 WL 1.50

Statics Check Results

L/C FX (N)

FY (N)

FZ (N)

MX (kNm)

MY (kNm)

MZ (kNm)

1:DL Loads 0.000 -61.3E 3 0.000 0.000 0.000 -413.943

1:DL Reactions -0.000 61.3E 3 0.000 0.000 0.000 413.943

Difference -0.000 -0.000 0.000 0.000 0.000 -0.000

2:WL Loads 0.000 0.000 326E 3 1.8E 3 -2.2E 3 0.000

2:WL Reactions 0.000 0.000 -326E 3 -1.8E 3 2.2E 3 0.000

Difference 0.000 0.000 -0.000 -0.000 -0.000 0.000

Node Displacement Summary

Node L/C X (mm)

Y (mm)

Z (mm)

Resultant (mm)

rX (rad)

rY (rad)

rZ (rad)

Max X 20 3:COMBINATION LOAD CASE 3

0.055 -0.001 -4.616 4.616 -0.003 -2.014 -0.000

Min X 164 3:COMBINATION LOAD CASE 3

-0.055 -0.001 -4.616 4.616 -0.003 2.014 0.000

Max Y 3 1:DL 0.000 0.000 0.000 0.000 0.000 0.000 -0.000

Min Y 143 3:COMBINATION LOAD CASE 3

-0.013 -0.004 12.941 12.941 0.005 -0.539 -0.000

Max Z 47 3:COMBINATION LOAD CASE 3

0.009 -0.004 13.186 13.186 0.005 -0.145 0.000

Min Z 123 3:COMBINATION LOAD CASE 3

0.027 -0.001 -9.381 9.381 0.009 0.145 0.000

Max rX 45 3:COMBINATION LOAD CASE 3

0.007 -0.002 5.860 5.860 0.010 -0.145 -0.000

Min rX 49 3:COMBINATION LOAD CASE 3

-0.004 -0.001 2.946 2.946 -0.009 -0.145 -0.000

Max rY 159 3:COMBINATION LOAD CASE 3

-0.020 -0.002 6.727 6.727 0.003 2.016 0.000

Min rY 13 3:COMBINATION LOAD CASE 3

0.020 -0.002 6.727 6.727 0.003 -2.016 -0.000

Max rZ 155 3:COMBINATION LOAD CASE 3

0.052 -0.001 -5.128 5.128 0.005 2.014 0.000

Min rZ 7 3:COMBINATION LOAD CASE 3

-0.052 -0.001 -5.128 5.128 0.005 -2.014 -0.000

Max Rst 47 3:COMBINATION LOAD CASE 3

0.009 -0.004 13.186 13.186 0.005 -0.145 0.000

Beam Displacement Detail Summary Displacements shown in italic indicate the presence of an offset

Beam L/C d (m)

X (mm)

Y (mm)

Z (mm)

Resultant (mm)

Max X 22 3:COMBINATION LOAD CASE 3

0.965 0.055 -0.002 -4.616 4.616

Min X 279 3:COMBINATION LOAD CASE 3

1.500 -0.054 -0.002 -4.616 4.616

Max Y 21 2:WL 0.285 0.000 0.000 -0.705 0.705

Min Y 34 3:COMBINATION LOAD CASE 3

0.750 0.017 -54.788 944.678 946.266

Max Z 274 3:COMBINATION LOAD CASE 3

0.750 -0.017 -54.787 944.680 946.268

Min Z 240 3:COMBINATION LOAD CASE 3

1.350 0.038 -2.503 -54.335 54.393

Max Rst 274 3:COMBINATION LOAD CASE 3

0.750 -0.017 -54.787 944.680 946.268

Page 332: Design Report for Acropolis Tower

23/05/2013

A maximum deflection of 13.186 mm is observed at Node No. 47 for Combination Load Case 3. Therefore, ∂max = 13.186 mm Allowable Deflection is, ∂allow = 4350/300 = 14.50 mm > 13.186 mm The ∂max is less than the allowable, Hence ok.

Reaction Summary

Horizontal Vertical Horizontal Moment

Node L/C FX (N)

FY (N)

FZ (N)

MX (kNm)

MY (kNm)

MZ (kNm)

Max FX 25 3:COMBINATION LOAD CASE 3

106.680 1.16E 3 1.68E 3 0.000 0.000 0.000

Min FX 137 3:COMBINATION LOAD CASE 3

-106.681 1.16E 3 1.68E 3 0.000 0.000 0.000

Max FY 146 3:COMBINATION LOAD CASE 3

-4.995 3.81E 3 -24E 3 0.000 0.000 0.000

Min FY 3 2:WL 0.000 0.000 682.241 0.000 0.000 0.000

Max FZ 41 3:COMBINATION LOAD CASE 3

63.417 1.16E 3 1.86E 3 0.000 0.000 0.000

Min FZ 146 3:COMBINATION LOAD CASE 3

-4.995 3.81E 3 -24E 3 0.000 0.000 0.000

Max MX 3 1:DL 16.179 515.111 0.000 0.000 0.000 0.000

Min MX 3 1:DL 16.179 515.111 0.000 0.000 0.000 0.000

Max MY 3 1:DL 16.179 515.111 0.000 0.000 0.000 0.000

Min MY 3 1:DL 16.179 515.111 0.000 0.000 0.000 0.000

Max MZ 3 1:DL 16.179 515.111 0.000 0.000 0.000 0.000

Min MZ 3 1:DL 16.179 515.111 0.000 0.000 0.000 0.000

Utilization Ratio Beam Analysis

Property Design Property

Actual Ratio

Allowable Ratio

Ratio (Act./Allo

w.)

Clause L/C

Ax (cm

2)

Iz (cm

4)

Iy (cm

4)

Ix (cm

4)

1 TUBE TUBE 0.036 1.000 0.036 IS-7.1.2 3 30.000 470.000 102.500 258.133

2 TUBE TUBE 0.082 1.000 0.082 IS-7.1.2 3 30.000 470.000 102.500 258.133

6 TUBE TUBE 0.035 1.000 0.035 IS-7.1.2 3 30.000 470.000 102.500 258.133

11 TUBE TUBE 0.315 1.000 0.315 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

12 TUBE TUBE 0.120 1.000 0.120 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

13 TUBE TUBE 0.095 1.000 0.095 IS-7.1.2 3 30.000 470.000 102.500 258.133

14 TUBE TUBE 0.368 1.000 0.368 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

15 TUBE TUBE 0.164 1.000 0.164 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

16 TUBE TUBE 0.211 1.000 0.211 IS-7.1.2 3 30.000 470.000 102.500 258.133

21 TUBE TUBE 0.213 1.000 0.213 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

22 TUBE TUBE 0.082 1.000 0.082 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

23 TUBE TUBE 0.176 1.000 0.176 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

24 TUBE TUBE 0.179 1.000 0.179 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

25 TUBE TUBE 0.086 1.000 0.086 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

26 TUBE N/A 0.360 0.049 0.049 0.073

27 TUBE N/A 0.360 0.049 0.049 0.073

29 TUBE N/A 0.360 0.049 0.049 0.073

30 TUBE N/A 0.360 0.049 0.049 0.073

31 TUBE N/A 0.360 0.049 0.049 0.073

32 TUBE N/A 0.360 0.049 0.049 0.073

34 TUBE N/A 0.360 0.049 0.049 0.073

35 TUBE N/A 0.360 0.049 0.049 0.073

36 TUBE N/A 0.360 0.049 0.049 0.073

38 TUBE N/A 0.360 0.049 0.049 0.073

39 TUBE N/A 0.360 0.049 0.049 0.073

41 TUBE N/A 0.360 0.049 0.049 0.073

42 TUBE TUBE 0.128 1.000 0.128 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

43 TUBE TUBE 0.258 1.000 0.258 IS-7.1.2 3 30.000 470.000 102.500 258.133

Page 333: Design Report for Acropolis Tower

23/05/2013

44 TUBE TUBE 0.137 1.000 0.137 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

45 TUBE TUBE 0.639 1.000 0.639 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

46 TUBE TUBE 0.334 1.000 0.334 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

47 TUBE TUBE 0.327 1.000 0.327 IS-7.1.2 3 30.000 470.000 102.500 258.133

48 TUBE TUBE 0.732 1.000 0.732 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

49 TUBE TUBE 0.278 1.000 0.278 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

50 TUBE TUBE 0.631 1.000 0.631 IS-7.1.2 3 30.000 470.000 102.500 258.133

51 TUBE TUBE 0.639 1.000 0.639 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

52 TUBE TUBE 0.257 1.000 0.257 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

53 TUBE TUBE 0.500 1.000 0.500 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

54 TUBE TUBE 0.504 1.000 0.504 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

55 TUBE TUBE 0.251 1.000 0.251 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

56 TUBE N/A 0.360 0.049 0.049 0.073

57 TUBE N/A 0.360 0.049 0.049 0.073

59 TUBE N/A 0.360 0.049 0.049 0.073

60 TUBE N/A 0.360 0.049 0.049 0.073

61 TUBE N/A 0.360 0.049 0.049 0.073

62 TUBE N/A 0.360 0.049 0.049 0.073

64 TUBE N/A 0.360 0.049 0.049 0.073

65 TUBE N/A 0.360 0.049 0.049 0.073

66 TUBE N/A 0.360 0.049 0.049 0.073

68 TUBE N/A 0.360 0.049 0.049 0.073

69 TUBE N/A 0.360 0.049 0.049 0.073

71 TUBE N/A 0.360 0.049 0.049 0.073

72 TUBE TUBE 0.099 1.000 0.099 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

73 TUBE TUBE 0.208 1.000 0.208 IS-7.1.2 3 30.000 470.000 102.500 258.133

74 TUBE TUBE 0.102 1.000 0.102 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

75 TUBE TUBE 0.629 1.000 0.629 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

76 TUBE TUBE 0.264 1.000 0.264 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

77 TUBE TUBE 0.257 1.000 0.257 IS-7.1.2 3 30.000 470.000 102.500 258.133

78 TUBE TUBE 0.731 1.000 0.731 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

79 TUBE TUBE 0.298 1.000 0.298 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

80 TUBE TUBE 0.527 1.000 0.527 IS-7.1.2 3 30.000 470.000 102.500 258.133

81 TUBE TUBE 0.534 1.000 0.534 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

82 TUBE TUBE 0.207 1.000 0.207 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

83 TUBE TUBE 0.426 1.000 0.426 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

84 TUBE TUBE 0.430 1.000 0.430 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

85 TUBE TUBE 0.209 1.000 0.209 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

86 TUBE N/A 0.360 0.049 0.049 0.073

87 TUBE N/A 0.360 0.049 0.049 0.073

89 TUBE N/A 0.360 0.049 0.049 0.073

90 TUBE N/A 0.360 0.049 0.049 0.073

91 TUBE N/A 0.360 0.049 0.049 0.073

92 TUBE N/A 0.360 0.049 0.049 0.073

94 TUBE N/A 0.360 0.049 0.049 0.073

95 TUBE N/A 0.360 0.049 0.049 0.073

96 TUBE N/A 0.360 0.049 0.049 0.073

98 TUBE N/A 0.360 0.049 0.049 0.073

99 TUBE N/A 0.360 0.049 0.049 0.073

101 TUBE N/A 0.360 0.049 0.049 0.073

102 TUBE TUBE 0.106 1.000 0.106 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

103 TUBE TUBE 0.220 1.000 0.220 IS-7.1.2 3 30.000 470.000 102.500 258.133

104 TUBE TUBE 0.111 1.000 0.111 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

105 TUBE TUBE 0.631 1.000 0.631 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

106 TUBE TUBE 0.282 1.000 0.282 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

107 TUBE TUBE 0.275 1.000 0.275 IS-7.1.2 3 30.000 470.000 102.500 258.133

108 TUBE TUBE 0.731 1.000 0.731 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

109 TUBE TUBE 0.292 1.000 0.292 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

110 TUBE TUBE 0.554 1.000 0.554 IS-7.1.2 3 30.000 470.000 102.500 258.133

111 TUBE TUBE 0.562 1.000 0.562 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

112 TUBE TUBE 0.220 1.000 0.220 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

113 TUBE TUBE 0.445 1.000 0.445 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

114 TUBE TUBE 0.449 1.000 0.449 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

115 TUBE TUBE 0.220 1.000 0.220 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

116 TUBE N/A 0.360 0.049 0.049 0.073

117 TUBE N/A 0.360 0.049 0.049 0.073

119 TUBE N/A 0.360 0.049 0.049 0.073

120 TUBE N/A 0.360 0.049 0.049 0.073

121 TUBE N/A 0.360 0.049 0.049 0.073

Page 334: Design Report for Acropolis Tower

23/05/2013

122 TUBE N/A 0.360 0.049 0.049 0.073

124 TUBE N/A 0.360 0.049 0.049 0.073

125 TUBE N/A 0.360 0.049 0.049 0.073

126 TUBE N/A 0.360 0.049 0.049 0.073

128 TUBE N/A 0.360 0.049 0.049 0.073

129 TUBE N/A 0.360 0.049 0.049 0.073

131 TUBE N/A 0.360 0.049 0.049 0.073

132 TUBE TUBE 0.104 1.000 0.104 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

133 TUBE TUBE 0.216 1.000 0.216 IS-7.1.2 3 30.000 470.000 102.500 258.133

134 TUBE TUBE 0.108 1.000 0.108 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

135 TUBE TUBE 0.631 1.000 0.631 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

136 TUBE TUBE 0.277 1.000 0.277 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

137 TUBE TUBE 0.270 1.000 0.270 IS-7.1.2 3 30.000 470.000 102.500 258.133

138 TUBE TUBE 0.731 1.000 0.731 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

139 TUBE TUBE 0.294 1.000 0.294 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

140 TUBE TUBE 0.547 1.000 0.547 IS-7.1.2 3 30.000 470.000 102.500 258.133

141 TUBE TUBE 0.554 1.000 0.554 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

142 TUBE TUBE 0.216 1.000 0.216 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

143 TUBE TUBE 0.440 1.000 0.440 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

144 TUBE TUBE 0.444 1.000 0.444 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

145 TUBE TUBE 0.216 1.000 0.216 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

146 TUBE N/A 0.360 0.049 0.049 0.073

147 TUBE N/A 0.360 0.049 0.049 0.073

149 TUBE N/A 0.360 0.049 0.049 0.073

150 TUBE N/A 0.360 0.049 0.049 0.073

151 TUBE N/A 0.360 0.049 0.049 0.073

152 TUBE N/A 0.360 0.049 0.049 0.073

154 TUBE N/A 0.360 0.049 0.049 0.073

155 TUBE N/A 0.360 0.049 0.049 0.073

156 TUBE N/A 0.360 0.049 0.049 0.073

158 TUBE N/A 0.360 0.049 0.049 0.073

159 TUBE N/A 0.360 0.049 0.049 0.073

161 TUBE N/A 0.360 0.049 0.049 0.073

162 TUBE TUBE 0.104 1.000 0.104 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

163 TUBE TUBE 0.216 1.000 0.216 IS-7.1.2 3 30.000 470.000 102.500 258.133

164 TUBE TUBE 0.108 1.000 0.108 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

165 TUBE TUBE 0.631 1.000 0.631 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

166 TUBE TUBE 0.277 1.000 0.277 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

167 TUBE TUBE 0.270 1.000 0.270 IS-7.1.2 3 30.000 470.000 102.500 258.133

168 TUBE TUBE 0.731 1.000 0.731 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

169 TUBE TUBE 0.294 1.000 0.294 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

170 TUBE TUBE 0.547 1.000 0.547 IS-7.1.2 3 30.000 470.000 102.500 258.133

171 TUBE TUBE 0.554 1.000 0.554 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

172 TUBE TUBE 0.216 1.000 0.216 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

173 TUBE TUBE 0.440 1.000 0.440 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

174 TUBE TUBE 0.444 1.000 0.444 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

175 TUBE TUBE 0.216 1.000 0.216 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

176 TUBE N/A 0.360 0.049 0.049 0.073

177 TUBE N/A 0.360 0.049 0.049 0.073

179 TUBE N/A 0.360 0.049 0.049 0.073

180 TUBE N/A 0.360 0.049 0.049 0.073

181 TUBE N/A 0.360 0.049 0.049 0.073

182 TUBE N/A 0.360 0.049 0.049 0.073

184 TUBE N/A 0.360 0.049 0.049 0.073

185 TUBE N/A 0.360 0.049 0.049 0.073

186 TUBE N/A 0.360 0.049 0.049 0.073

188 TUBE N/A 0.360 0.049 0.049 0.073

189 TUBE N/A 0.360 0.049 0.049 0.073

191 TUBE N/A 0.360 0.049 0.049 0.073

192 TUBE TUBE 0.106 1.000 0.106 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

193 TUBE TUBE 0.220 1.000 0.220 IS-7.1.2 3 30.000 470.000 102.500 258.133

194 TUBE TUBE 0.111 1.000 0.111 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

195 TUBE TUBE 0.631 1.000 0.631 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

196 TUBE TUBE 0.282 1.000 0.282 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

197 TUBE TUBE 0.275 1.000 0.275 IS-7.1.2 3 30.000 470.000 102.500 258.133

198 TUBE TUBE 0.731 1.000 0.731 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

199 TUBE TUBE 0.292 1.000 0.292 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

200 TUBE TUBE 0.554 1.000 0.554 IS-7.1.2 3 30.000 470.000 102.500 258.133

201 TUBE TUBE 0.562 1.000 0.562 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

Page 335: Design Report for Acropolis Tower

23/05/2013

202 TUBE TUBE 0.220 1.000 0.220 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

203 TUBE TUBE 0.445 1.000 0.445 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

204 TUBE TUBE 0.449 1.000 0.449 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

205 TUBE TUBE 0.220 1.000 0.220 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

206 TUBE N/A 0.360 0.049 0.049 0.073

207 TUBE N/A 0.360 0.049 0.049 0.073

209 TUBE N/A 0.360 0.049 0.049 0.073

210 TUBE N/A 0.360 0.049 0.049 0.073

211 TUBE N/A 0.360 0.049 0.049 0.073

212 TUBE N/A 0.360 0.049 0.049 0.073

214 TUBE N/A 0.360 0.049 0.049 0.073

215 TUBE N/A 0.360 0.049 0.049 0.073

216 TUBE N/A 0.360 0.049 0.049 0.073

218 TUBE N/A 0.360 0.049 0.049 0.073

219 TUBE N/A 0.360 0.049 0.049 0.073

221 TUBE N/A 0.360 0.049 0.049 0.073

222 TUBE TUBE 0.099 1.000 0.099 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

223 TUBE TUBE 0.208 1.000 0.208 IS-7.1.2 3 30.000 470.000 102.500 258.133

224 TUBE TUBE 0.102 1.000 0.102 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

225 TUBE TUBE 0.629 1.000 0.629 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

226 TUBE TUBE 0.264 1.000 0.264 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

227 TUBE TUBE 0.257 1.000 0.257 IS-7.1.2 3 30.000 470.000 102.500 258.133

228 TUBE TUBE 0.731 1.000 0.731 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

229 TUBE TUBE 0.298 1.000 0.298 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

230 TUBE TUBE 0.527 1.000 0.527 IS-7.1.2 3 30.000 470.000 102.500 258.133

231 TUBE TUBE 0.534 1.000 0.534 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

232 TUBE TUBE 0.207 1.000 0.207 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

233 TUBE TUBE 0.426 1.000 0.426 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

234 TUBE TUBE 0.430 1.000 0.430 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

235 TUBE TUBE 0.209 1.000 0.209 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

236 TUBE N/A 0.360 0.049 0.049 0.073

237 TUBE N/A 0.360 0.049 0.049 0.073

239 TUBE N/A 0.360 0.049 0.049 0.073

240 TUBE N/A 0.360 0.049 0.049 0.073

241 TUBE N/A 0.360 0.049 0.049 0.073

242 TUBE N/A 0.360 0.049 0.049 0.073

244 TUBE N/A 0.360 0.049 0.049 0.073

245 TUBE N/A 0.360 0.049 0.049 0.073

246 TUBE N/A 0.360 0.049 0.049 0.073

248 TUBE N/A 0.360 0.049 0.049 0.073

249 TUBE N/A 0.360 0.049 0.049 0.073

251 TUBE N/A 0.360 0.049 0.049 0.073

252 TUBE TUBE 0.128 1.000 0.128 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

253 TUBE TUBE 0.258 1.000 0.258 IS-7.1.2 3 30.000 470.000 102.500 258.133

254 TUBE TUBE 0.137 1.000 0.137 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

255 TUBE TUBE 0.639 1.000 0.639 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

256 TUBE TUBE 0.334 1.000 0.334 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

257 TUBE TUBE 0.327 1.000 0.327 IS-7.1.2 3 30.000 470.000 102.500 258.133

258 TUBE TUBE 0.732 1.000 0.732 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

259 TUBE TUBE 0.278 1.000 0.278 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

260 TUBE TUBE 0.631 1.000 0.631 IS-7.1.2 3 30.000 470.000 102.500 258.133

261 TUBE TUBE 0.639 1.000 0.639 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

262 TUBE TUBE 0.257 1.000 0.257 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

263 TUBE TUBE 0.500 1.000 0.500 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

264 TUBE TUBE 0.504 1.000 0.504 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

265 TUBE TUBE 0.251 1.000 0.251 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

266 TUBE N/A 0.360 0.049 0.049 0.073

267 TUBE N/A 0.360 0.049 0.049 0.073

269 TUBE N/A 0.360 0.049 0.049 0.073

270 TUBE N/A 0.360 0.049 0.049 0.073

271 TUBE N/A 0.360 0.049 0.049 0.073

272 TUBE N/A 0.360 0.049 0.049 0.073

274 TUBE N/A 0.360 0.049 0.049 0.073

275 TUBE N/A 0.360 0.049 0.049 0.073

276 TUBE N/A 0.360 0.049 0.049 0.073

278 TUBE N/A 0.360 0.049 0.049 0.073

279 TUBE N/A 0.360 0.049 0.049 0.073

281 TUBE N/A 0.360 0.049 0.049 0.073

282 TUBE TUBE 0.036 1.000 0.036 IS-7.1.2 3 30.000 470.000 102.500 258.133

Page 336: Design Report for Acropolis Tower

23/05/2013

283 TUBE TUBE 0.082 1.000 0.082 IS-7.1.2 3 30.000 470.000 102.500 258.133

284 TUBE TUBE 0.035 1.000 0.035 IS-7.1.2 3 30.000 470.000 102.500 258.133

285 TUBE TUBE 0.315 1.000 0.315 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

286 TUBE TUBE 0.120 1.000 0.120 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

287 TUBE TUBE 0.095 1.000 0.095 IS-7.1.2 3 30.000 470.000 102.500 258.133

288 TUBE TUBE 0.368 1.000 0.368 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

289 TUBE TUBE 0.164 1.000 0.164 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

290 TUBE TUBE 0.211 1.000 0.211 IS-7.1.2 3 30.000 470.000 102.500 258.133

291 TUBE TUBE 0.213 1.000 0.213 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

292 TUBE TUBE 0.082 1.000 0.082 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

293 TUBE TUBE 0.176 1.000 0.176 7.1.2 BEND C 3 30.000 470.000 102.500 258.133

294 TUBE TUBE 0.179 1.000 0.179 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

295 TUBE TUBE 0.086 1.000 0.086 IS-7.1.1(A) 3 30.000 470.000 102.500 258.133

Utilisation Ratio for all beams are less than 1.00 hence the structure is safe.

Page 337: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

DESIGN OF ALUMINIUM TRANSOM

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 338: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

BENDING DUE TO WIND LOAD :

Wind Pressure Calculation

Location Kolkata

Design Wind Pressure Pd 2520.00 N/m2 ( GIVEN )

2.52 KPA

Deflection Calculation of Transom

MI due to Trapezoidal load on Transom due to top panel:

Span L 1.50 m

Load width B = B1/2 0.46 m

Factor a = B 0.46 m

load Rate w = B x Pd 1165.50 N/m

Deflection allowed fadm L/175 or 19 mm (Whichever is minimum for DGU)

i.e 8.57 or 19 mm (Whichever is minimum for DGU)

Elasticity modulus E 65500 N/mm2

MI on Transom, I -1

Transom

mm4

0.925 m

cm4

MI due to Triangular load on Transom due to bottompanel:

Span L 1.50 m 1.845 m

Load width B = B1/2 0.75 m

Factor a = B 0.75 m 1.5 m

load Rate w = B x Pd 1890.00 N/m

Deflection allowed fadm L/175 or 19 mm (Whichever is minimum for DGU)

i.e. 8.57 or 19 mm (Whichever is minimum for DGU)

Elasticity modulus E 65500 N/mm2

MI on Transom, I -1

mm4

cm4

Total MI on Transom I = I-1 + I-2 cm4

Provide Profile NA / 75 / TR / 02 (60 x 80) as Transom M.o.I. = 41.62 cm4

Actual deflection δactual = 5.33 mm

< 8.57 mm

Hence ok

BENDING STRESS CHECK :

Maximum Bending Moment Mmax = 640.62 N-m

Section Modulas Z = 11.11 cm3

Actual Bending Stress fbt = 57.69 N/mm3

Depth of Section a = 58.00 mm

Width of Section b = 44.00 mm

Depth to Width Ratio a / b = 1.32 -

Factor Klat = 3.00 -

Factor K1 = 1.00 -

Factor K2 = 0.60 -

Effective Unrestrained Length of Beam lf = 0.90 m

Slenderness Ratio λ = 13.57 -

Permissible Bending Stress pbt = 92.00 N/mm3

> 57.69 N/mm3

Hence ok

25.88

33685714.29

142020.5153

14.20

w x L4

[25 - 40(a/L)2+16(a/L)

4]

1920 x E x fadm

4.78406E+12

STRUCTURAL CALCULATION FOR ST. GLAZING

(Refer IS : 8147 - 1976, Table-1, Page 13, for Alloy 63400-WP)

w x L4

60 x E x fadm

1.5 m

1.25924E+14

1077942857

116818.9506

11.68

Page 339: Design Report for Acropolis Tower

BENDING DUE TO DEAD LOAD :

Total Dead Load DL = 856.22 N

Point Load P = 428.11 N

Span L = 1.50 m

Allowable Deflection δallow = 5.00 mm or 3 mm (whichever is minimum)

Actual Deflection δactual = 1.45 mm

< 3.00 mm

Hence ok

Maximum Bending Moment Mmax = 85.62 N-m

Section Modulas Zyy = 8.22 cm3

Actual Bending Stress fbt = 10.41 N/mm2

Depth of Section a = 58.00 mm

Width of Section b = 44.00 mm

Depth to Width Ratio a / b = 1.32 -

Factor Klat = 3.00 -

Factor K1 = 1.00 -

Factor K2 = 0.60 -

Effective Unrestrained Length of Beam lf = 0.90 m

Slenderness Ratio λ = 13.57 -

Permissible Bending Stress pbt = 92.00 N/mm2

> 10.41 N/mm2

Hence ok

Combined Stress Check :

Utilisation Ratio U.R. = 0.74 -

< 1.0 -

Hence ok

(Setting Block is at 200 mm from centre of screw in both ends of

Transom)

Page 340: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR DOUBLE THROUGH THROUGH

BOLT

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 341: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

Bending Check for Bracket

Horizontal Point Load per Bracket due to WL Along X-X PHX = 192.95 N

Horizontal Point Load per Bracket due to WL Along Z-Z PHZ = 36737.55 N

DL of Aluminium Mullion DL = 85.80 N

Vertical Point Load per Bracket due to DL Along Y-Y PVY = 3208.17 N

Eccentricity e = 110 mm

Maximum Bending Moment per Plate Mmax = 176.45 N-m

Depth of bracket d = 180 mm

Width of bracket b = 5 mm

Section Modulas of Bracket Z = 27000.00 mm3

Partial Factor of Safety γm0 = 1.10 - 120 mm 30 mm

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 6136.36 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 176.45 N-m

Hence ok

Tension Check for Bracket

Yield Stress fy = 250.00 N/mm2

Partial Factor of Safety γm0 = 1.10 - (Refer IS:800- 2007, Table-5, Pg. 30)

Thickness of bracket t = 5 mm

Depth of bracket d = 180 mm

Diameter of Bolt D = 16.00 mm

Number of Bolts per Bracket n = 2.00 Nos.

Gross c/s Area Ag = 690 mm2

Actual Tension per Bracket T = 18368.77 N

Design Strength in Tension Td = 156818.18 N (Refer IS:800- 2007, Cl. 6.2, Pg. 32)

> 18368.77 N

Hence ok

Combined Bending & Tension Check

Unity Ratio U.R. = 0.15 -

> 1.00 - (Refer IS:800- 2007, Cl. 9.3.1.1, Pg. 70)

Hence ok

Check for Bearing in Vertical Member

Shear Force due to WL (Double Shear) 2 Nos. S1 = 9184.39 N

Shear Force due to WL & DL (Double Shear) 2 Nos. S2 = 802.04 N

Combined Shear Force (Double Shear) 2 Nos. S = 9219.34 N

Diameter of Bolt D = 12.00 mm

Thickness of Vertical Wall t = 10.00 mm

End Distance of Bolt e = 20.00 mm

Factor kb = 0.56 -

Ultimate Tensile Strength of Plate fu= 410.00 N/mm

2

Partial Factor of Safety of Bolt γmb = 1.25 -

Permissible Bearing Vdpb= 54666.67 N

> 9219.34 N

Hence ok

30 mm

(Refer IS:800- 2007, Cl. 10.3.4, Pg. 75)

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

(Refer IS:800- 2007, Table-5, Pg. 30)

(Refer IS:800- 2007, Table-5, Pg. 30)

30 mm

BRACKET CALCULATION

110 mm

Page 342: Design Report for Acropolis Tower

Check for Through Bolt

Shear Check on Bolt

Provide SS304 (A2), 12 dia, 150 long SS Hexagonal Head Bolt

i)Shear Stress Check for Through Bolt

Shear on each bolt due to WL & DL S = 9219.34 N

Diameter of Bolt d = 12.00 mm

Unthreaded Shank Area of Bolt As = 84.00 mm2

(Refer IS: 4218(Part III, Reaffirme 1996), Table-11.1, Fig.-11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Bolt psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Bolt Psb = 12171.60 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 9219.34 N

Provide SS304 (A2), 12 dia, 150 long SS Hexagonal Head Bolt Hence ok

ii)Bearing Stress Check for Through Bolt

Combined Shear Force (Double Shear) S = 9219.34 N

Diameter of Bolt d = 12.00 mm

Thickness of Mullion Wall tp = 10.00 mm

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 450.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Bearing Strength of the Bolt pbb = 684.00 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

Bearing Capacity of the Bolt Pbb = 82080.00 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

> 9219.34 N/mm2

Provide SS304 (A2), 12 dia, 150 long SS Hexagonal Head Bolt Hence ok

Slenderness Check of Base Plate

Plate Thickness t = 5.00 mm

Plate Width b = 170.00 mm

Moment of Inertia MoI = 1770.83 N/mm2

c/s Area A = 850.00 mm2

Minimum Radius of Gyration rmin = 1.44 mm

Plate Span L = 220.00 mm

Slenderness Ratio λ = 152.42 -

< 250 - (Refer IS:800- 1984, Table 3.1, Pg. 30)

Hence ok

Thickness Check of Base Plate

Tension force form bolt (report) P = 10650.00 N

Eccentricity e = 25 mm

Maximum Bending Moment Mmax = 266.25 N-m

Depth of Base Plate d = 16 mm

Width of Base Plate b = 50.03 mm

Section Modulas of Bracket Z = 2134.68 mm3

Partial Factor of Safety γm0 = 1.10 - (Refer IS:800- 2007, Table-5, Pg. 30)

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 485.16 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 266.25 N-m

Hence ok

Minimum of these two for Usb ≤ 800 N/mm2 as per

P291, Clause 5.2.2.a, Pg. 53

Page 343: Design Report for Acropolis Tower

Print sender

StreetPostcode / City Phone FaxProject

COMPUFIX 8.48.4.4840.25953/35/1942

Page 1ApplicationRemarks Provide 16 mm thk plate

Date: 4/25/2013

fischer COMPUFIX: Designed in accordance with ETAG, Annex C

Type of loading: Static actionsAnchor: fischer Bolt FBN II 16/10 A4 (hef=80 mm) (Art. Nr. 507568) made from stainless steel (grade 316)Base material: Non-cracked concrete, normal reinforcement

Concrete compressive strength class: C 20/25Edge Reinforcement: No influenceAnchor bending: UnavailableAnchor plate: No design available

Dimensions/loads:

Design actions(*) Not true to scale[mm], [kN], [kNm]

Page 344: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 16/10 A4 (hef=80 mm) Page 2

Important:• As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be

sufficiently stiff. The COMPUFIX anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by COMPUFIX.

• The design utilises specific values for each anchor. When alterations will be made, even for similar products, a new design calculation is required.

• With slotted holes the design is carried out under the assumption that the anchor is located in the centre of the hole.• Please check that the fixing thickness of the fixing is adequate.• Maximum hole diameter in the attachement: 18 mm.• To ensure the structural component's capacity, the proofs in accordance with Section 7 of ETAG Annex C must be observed.• All additional conditions of the Approvals are to be observed.

Anchor-No. Unit Sd

N V1 kN 10.65 0.802 kN 10.65 0.803 kN 7.71 0.804 kN 7.71 0.80

Tension load, Steel failure:Unit Sd

NRk,s kN 78.00gMs - 1.40NRd,s kN 55.71Nh

Sd kN 10.65bN,s - 0.19

Tension load, Concrete cone failure:Unit Sd

N0Rk,c kN 36.13

A c,N cm2 1303.20A0

c,N cm2 576.00Ac,N / A0

c,N - 2.26ys,N - 1.00yec1,N - 1.00yec2,N - 0.93y re,N - 1.00NRk,c kN 75.68gM,c - 1.50NRd,c kN 50.46Ng

Sd kN 36.73bN,c - 0.73

Shear load, Steel failure:Unit Sd

VRk,s kN 51.00gMs - 1.25VRd,s kN 40.80Vh

Sd kN 0.80bV,s - 0.02

Shear load, Concrete failure on the opposing side of the load:Unit Sd

N0Rk,c kN 36.13

A c,N cm2 1303.20A0

c,N cm2 576.00Ac,N / A0

c,N - 2.26ys,N - 1.00yec1,N - 1.00yec2,N - 1.00y re,N - 1.00k - 2.00VRk,cp kN 163.51gM,cp - 1.50VRd,cp kN 109.01Vg

Sd kN 3.21bV,cp - 0.03

Page 345: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 16/10 A4 (hef=80 mm) Page 3

Shear load, Concrete edge failure:Unit Sd

V0Rk,c kN 109.16

Ac,V cm2 5139.00A0

c,V cm2 5202.00Ac,V / A

0c,V - 0.99

ys,V - 1.00yh,V - 1.06ya,V - 1.00yec,V - 1.00y re,V - 1.00VRk,c kN 114.85gM,c - 1.50VRd,c kN 76.57Vg

Sd kN 3.21bV,c - 0.04

Tension load Used capacity Shear load Used capacityCombined tensile and shear load

Used capacity

Steel failure: 19.1 % Steel failure: 2.0 % 63.0 %Concrete cone failure: 72.8 % Concrete edge failure: 4.2 %

Concrete failure on the opposing side of the load:

2.9 %

Result: Proof of anchor was successful

Page 346: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 16/10 A4 (hef=80 mm) Page 4

Installation details

Max fixing thickness tfix [mm] 10Thread diameter M [mm] 16Setting torque MD [Nm] 80Spanner A/F [mm] 24Hole diameter in the attachment df [mm] 18Anchorage depth hef [mm] 80Drill diameter d0 [mm] 16Minimum drill hole depth (through fixing) td [mm] 114

Page 347: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 16/10 A4 (hef=80 mm) Page 5

Page 348: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR SINGLE THROUGH THROUGH

BOLT

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 349: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

Bending Check for Bracket

Horizontal Point Load per Bracket due to WL Along X-X PHX = 5.00 N

Horizontal Point Load per Bracket due to WL Along Z-Z PHZ = 24023.27 N

DL of Aluminium Mullion DL = 120.41 N

Vertical Point Load per Bracket due to DL Along Y-Y PVY = 3933.10 N

Eccentricity e = 110 mm

Maximum Bending Moment per Plate Mmax = 216.32 N-m

Depth of bracket d = 120 mm

Width of bracket b = 5 mm

Section Modulas of Bracket Z = 12000.00 mm3

Partial Factor of Safety γm0 = 1.10 - 120 mm

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 2727.27 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 216.32 N-m

Hence ok

Tension Check for Bracket

Yield Stress fy = 250.00 N/mm2

Partial Factor of Safety γm0 = 1.10 - (Refer IS:800- 2007, Table-5, Pg. 30)

Thickness of bracket t = 5 mm

Depth of bracket d = 120 mm

Diameter of Bolt D = 16.00 mm

Number of Bolts per Bracket n = 1.00 Nos.

Gross c/s Area Ag = 495 mm2

Actual Tension per Bracket T = 12011.64 N

Design Strength in Tension Td = 112500.00 N (Refer IS:800- 2007, Cl. 6.2, Pg. 32)

> 12011.64 N

Hence ok

Combined Bending & Tension Check

Unity Ratio U.R. = 0.19 -

> 1.00 - (Refer IS:800- 2007, Cl. 9.3.1.1, Pg. 70)

Hence ok

Check for Bearing in Vertical Member

Shear Force due to WL (Double Shear) 2 Nos. S1 = 12011.64 N

Shear Force due to WL & DL (Double Shear) 2 Nos. S2 = 1966.55 N

Combined Shear Force (Double Shear) 2 Nos. S = 12171.55 N

Diameter of Bolt D = 16.00 mm

Thickness of Vertical Wall t = 4.80 mm

End Distance of Bolt e = 30.00 mm

Factor kb = 0.63 -

Ultimate Tensile Strength of Plate fu= 410.00 N/mm

2

Partial Factor of Safety of Bolt γmb = 1.25 -

Permissible Bearing Vdpb= 39360.00 N

> 12171.55 N

Hence ok

(Refer IS:800- 2007, Cl. 10.3.4, Pg. 75)

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

(Refer IS:800- 2007, Table-5, Pg. 30)

(Refer IS:800- 2007, Table-5, Pg. 30)

30 mm

BRACKET CALCULATION

110 mm

Page 350: Design Report for Acropolis Tower

Check for Through Bolt

Shear Check on Bolt

Provide SS304 (A2), 16 dia, 150 long SS Hexagonal Head Bolt

i)Shear Stress Check for Through Bolt

Shear on each bolt due to WL & DL S = 12171.55 N

Diameter of Bolt d = 16.00 mm

Unthreaded Shank Area of Bolt As = 157.00 mm2

(Refer IS: 4218(Part III, Reaffirme 1996), Table-11.1, Fig.-11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Bolt psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Bolt Psb = 22749.30 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 12171.55 N

Provide SS304 (A2), 16 dia, 150 long SS Hexagonal Head Bolt Hence ok

ii)Bearing Stress Check for Through Bolt

Combined Shear Force (Double Shear) S = 12171.55 N

Diameter of Bolt d = 16.00 mm

Thickness of Mullion Wall tp = 4.80 mm

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 450.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Bearing Strength of the Bolt pbb = 684.00 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

Bearing Capacity of the Bolt Pbb = 52531.20 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

> 12171.55 N/mm2

Provide SS304 (A2), 16 dia, 150 long SS Hexagonal Head Bolt Hence ok

Slenderness Check of Base Plate

Plate Thickness t = 5.00 mm

Plate Width b = 170.00 mm

Moment of Inertia MoI = 1770.83 N/mm2

c/s Area A = 850.00 mm2

Minimum Radius of Gyration rmin = 1.44 mm

Plate Span L = 120.00 mm

Slenderness Ratio λ = 83.14 -

< 250 - (Refer IS:800- 1984, Table 3.1, Pg. 30)

Hence ok

Thickness Check of Base Plate

Tension force form bolt (report) P = 9100.00 N

Eccentricity e = 20 mm

Maximum Bending Moment Mmax = 182.00 N-m

Depth of Base Plate d = 12 mm

Width of Base Plate b = 40.03 mm

Section Modulas of Bracket Z = 960.61 mm3

Partial Factor of Safety γm0 = 1.10 - (Refer IS:800- 2007, Table-5, Pg. 30)

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 218.32 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 182.00 N-m

Hence ok

Minimum of these two for Usb ≤ 800 N/mm2 as per

P291, Clause 5.2.2.a, Pg. 53

Page 351: Design Report for Acropolis Tower

Print sender

StreetPostcode / City Phone FaxProject

COMPUFIX 8.48.4.4840.25953/36/1942

Page 1ApplicationRemarks Provide 12 mm thk plate

Date: 4/25/2013

fischer COMPUFIX: Designed in accordance with ETAG, Annex C

Type of loading: Static actionsAnchor: fischer Bolt FBN II 12/10 A4 (hef=65 mm) (Art. Nr. 507563) made from stainless steel (grade 316)Base material: Non-cracked concrete, normal reinforcement

Concrete compressive strength class: C 20/25Edge Reinforcement: No influenceAnchor bending: UnavailableAnchor plate: No design available

Dimensions/loads:

Design actions(*) Not true to scale[mm], [kN], [kNm]

Page 352: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 12/10 A4 (hef=65 mm) Page 2

Important:• As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be

sufficiently stiff. The COMPUFIX anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by COMPUFIX.

• The design utilises specific values for each anchor. When alterations will be made, even for similar products, a new design calculation is required.

• With slotted holes the design is carried out under the assumption that the anchor is located in the centre of the hole.• Please check that the fixing thickness of the fixing is adequate.• Maximum hole diameter in the attachement: 14 mm.• To ensure the structural component's capacity, the proofs in accordance with Section 7 of ETAG Annex C must be observed.• All additional conditions of the Approvals are to be observed.

Anchor-No. Unit Sd

N V1 kN 9.10 0.982 kN 9.10 0.983 kN 2.91 0.984 kN 2.91 0.98

Tension load, Steel failure:Unit Sd

NRk,s kN 41.60gMs - 1.40NRd,s kN 29.71Nh

Sd kN 9.10bN,s - 0.31

Tension load, Concrete cone failure:Unit Sd

N0Rk,c kN 26.46

A c,N cm2 813.55A0

c,N cm2 380.25Ac,N / A0

c,N - 2.14ys,N - 1.00yec1,N - 1.00yec2,N - 0.84y re,N - 1.00NRk,c kN 47.78gM,c - 1.50NRd,c kN 31.85Ng

Sd kN 24.03bN,c - 0.75

Shear load, Steel failure:Unit Sd

VRk,s kN 27.40gMs - 1.25VRd,s kN 21.92Vh

Sd kN 0.98bV,s - 0.04

Shear load, Concrete failure on the opposing side of the load:Unit Sd

N0Rk,c kN 26.46

A c,N cm2 813.55A0

c,N cm2 380.25Ac,N / A0

c,N - 2.14ys,N - 1.00yec1,N - 1.00yec2,N - 1.00y re,N - 1.00k - 2.00VRk,cp kN 113.24gM,cp - 1.50VRd,cp kN 75.49Vg

Sd kN 3.93bV,cp - 0.05

Page 353: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 12/10 A4 (hef=65 mm) Page 3

Shear load, Concrete edge failure:Unit Sd

V0Rk,c kN 123.68

Ac,V cm2 5701.50A0

c,V cm2 6670.13Ac,V / A

0c,V - 0.85

ys,V - 1.00yh,V - 1.13ya,V - 1.00yec,V - 1.00y re,V - 1.00VRk,c kN 119.77gM,c - 1.50VRd,c kN 79.84Vg

Sd kN 3.93bV,c - 0.05

Tension load Used capacity Shear load Used capacityCombined tensile and shear load

Used capacity

Steel failure: 30.6 % Steel failure: 4.5 % 66.7 %Concrete cone failure: 75.4 % Concrete edge failure: 4.9 %

Concrete failure on the opposing side of the load:

5.2 %

Result: Proof of anchor was successful

Page 354: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 12/10 A4 (hef=65 mm) Page 4

Installation details

Max fixing thickness tfix [mm] 10Thread diameter M [mm] 12Setting torque MD [Nm] 35Spanner A/F [mm] 19Hole diameter in the attachment df [mm] 14Anchorage depth hef [mm] 65Drill diameter d0 [mm] 12Minimum drill hole depth (through fixing) td [mm] 95

Page 355: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor fischer Bolt FBN II 12/10 A4 (hef=65 mm) Page 5

Page 356: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITED

ANCHOR & PLATE THICKNESS FOR SINGLE THROUGH THROUGH

BOLT AT JUNCTION

PROJECT ---- ACROPOLIS TOWER,

KOLKATA

Page 357: Design Report for Acropolis Tower

NITSON AND AMITSU PRIVATE LIMITEDPROJECT NAME ACROPOLIS TOWER, KOLKATA

ITEM

Bending Check for Bracket

Horizontal Point Load per Bracket due to WL Along X-X PHX = 5.00 N

Horizontal Point Load per Bracket due to WL Along Z-Z PHZ = 24023.27 N

DL of Aluminium Mullion DL = 120.41 N

Vertical Point Load per Bracket due to DL Along Y-Y PVY = 3933.10 N

Eccentricity e = 335 mm

Maximum Bending Moment per Plate Mmax = 658.79 N-m

Depth of bracket d = 120 mm

Width of bracket b = 7 mm

Section Modulas of Bracket Z = 16800.00 mm3

Partial Factor of Safety γm0 = 1.10 - 120 mm

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 3818.18 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 658.79 N-m

Hence ok

Tension Check for Bracket

Yield Stress fy = 250.00 N/mm2

Partial Factor of Safety γm0 = 1.10 - (Refer IS:800- 2007, Table-5, Pg. 30)

Thickness of bracket t = 7 mm

Depth of bracket d = 120 mm

Diameter of Bolt D = 16.00 mm

Number of Bolts per Bracket n = 1.00 Nos.

Gross c/s Area Ag = 693 mm2

Actual Tension per Bracket T = 12011.64 N

Design Strength in Tension Td = 157500.00 N (Refer IS:800- 2007, Cl. 6.2, Pg. 32)

> 12011.64 N

Hence ok

Combined Bending & Tension Check

Unity Ratio U.R. = 0.25 -

> 1.00 - (Refer IS:800- 2007, Cl. 9.3.1.1, Pg. 70)

Hence ok

Check for Bearing in Vertical Member

Shear Force due to WL (Double Shear) 2 Nos. S1 = 12011.64 N

Shear Force due to WL & DL (Double Shear) 2 Nos. S2 = 1966.55 N

Combined Shear Force (Double Shear) 2 Nos. S = 12171.55 N

Diameter of Bolt D = 16.00 mm

Thickness of Vertical Wall t = 10.00 mm

End Distance of Bolt e = 30.00 mm

Factor kb = 0.63 -

Ultimate Tensile Strength of Plate fu= 410.00 N/mm

2

Partial Factor of Safety of Bolt γmb = 1.25 -

Permissible Bearing Vdpb= 82000.00 N

> 12171.55 N

Hence ok

30 mm

BRACKET CALCULATION

335 mm

(Refer IS:800- 2007, Cl. 10.3.4, Pg. 75)

(Refer IS2062:2006 for E250 Fe410 W (A)

Grade Steel)

(Refer IS:800- 2007, Table-5, Pg. 30)

(Refer IS:800- 2007, Table-5, Pg. 30)

Page 358: Design Report for Acropolis Tower

Check for Through Bolt

Shear Check on Bolt

Provide SS304 (A2), 16 dia, 150 long SS Hexagonal Head Bolt

i)Shear Stress Check for Through Bolt

Shear on each bolt due to WL & DL S = 12171.55 N

Diameter of Bolt d = 16.00 mm

Unthreaded Shank Area of Bolt As = 157.00 mm2

(Refer IS: 4218(Part III, Reaffirme 1996), Table-11.1, Fig.-11.1)

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 210.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Shear Strength of Bolt psb = 240.00 N/mm2

or 144.90 N/mm2

Shear Capacity of Bolt Psb = 22749.30 N (Refer P291, Clause 5.2.2.a, Pg. 53)

> 12171.55 N

Provide SS304 (A2), 16 dia, 150 long SS Hexagonal Head Bolt Hence ok

ii)Bearing Stress Check for Through Bolt

Combined Shear Force (Double Shear) S = 12171.55 N

Diameter of Bolt d = 16.00 mm

Thickness of Mullion Wall tp = 10.00 mm

Ultimate Tensile Strength of Bolt Usb = 500.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Minimum Stress at 0.2 % Permanent Strain of Bolt Y0.2b = 450.00 N/mm2 (Refer P291, Table 2.3, Pg. 11)

Bearing Strength of the Bolt pbb = 684.00 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

Bearing Capacity of the Bolt Pbb = 109440.00 N/mm2 (Refer P291, Clause 5.2.2.b, Pg. 54)

> 12171.55 N/mm2

Provide SS304 (A2), 16 dia, 150 long SS Hexagonal Head Bolt Hence ok

Slenderness Check of Base Plate

Plate Thickness t = 7.00 mm

Plate Width b = 120.00 mm

Moment of Inertia MoI = 3430.00 N/mm2

c/s Area A = 840.00 mm2

Minimum Radius of Gyration rmin = 2.02 mm

Plate Span L = 335.00 mm

Slenderness Ratio λ = 165.78 -

< 250 - (Refer IS:800- 1984, Table 3.1, Pg. 30)

Hence ok

Thickness Check of Base Plate

Tension force form bolt (report) P = 4010.00 N

Eccentricity e = 30 mm

Maximum Bending Moment Mmax = 120.30 N-m

Depth of Base Plate d = 10 mm

Width of Base Plate b = 60.04 mm

Section Modulas of Bracket Z = 1000.63 mm3

Partial Factor of Safety γm0 = 1.10 - (Refer IS:800- 2007, Table-5, Pg. 30)

Yield Stress fy = 250.00 N/mm2

Factor βb = 1.00 -

Desing Bending Strength Md = 227.42 N-m (Refer IS:800- 2007, Cl. 8.2.1.2, Pg. 53)

> 120.30 N-m

Hence ok

Minimum of these two for Usb ≤ 800 N/mm2 as per

P291, Clause 5.2.2.a, Pg. 53

Page 359: Design Report for Acropolis Tower

Print sender

StreetPostcode / City Phone FaxProject

COMPUFIX 8.48.4.4840.25953/3a/1955

Page 1ApplicationRemarks Provide 10 mm thk plate

Date: 5/8/2013

fischer COMPUFIX: Designed in accordance with ETAG, Annex C

Type of loading: Static actionsAnchor: Anchor Bolt FAZ II 20 / 30 A4 (Art. Nr. 501426) made from stainless steel (grade 316)Base material: Cracked concrete, normal reinforcement

Concrete compressive strength class: C 20/25Edge Reinforcement: Without edge / hanger reinforcementAnchor bending: UnavailableAnchor plate: No design available

Dimensions/loads:

Design actions(*) Not true to scale[mm], [kN], [kNm]

Page 360: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor Anchor Bolt FAZ II 20 / 30 A4 Page 2

Important:• As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be

sufficiently stiff. The COMPUFIX anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by COMPUFIX.

• The design utilises specific values for each anchor. When alterations will be made, even for similar products, a new design calculation is required.

• With slotted holes the design is carried out under the assumption that the anchor is located in the centre of the hole.• Please check that the fixing thickness of the fixing is adequate.• Maximum hole diameter in the attachement: 22 mm.• To ensure the structural component's capacity, the proofs in accordance with Section 7 of ETAG Annex C must be observed.• All additional conditions of the Approvals are to be observed.• Due to the following reasons splitting failure will not occur:

- Cracked concrete is assumed.- Reinforcement is present which limits the crack width to wk = 0.3 mm, taking into account the splitting forces according to ETAG 001, Annex C, chapter 7.3.

Anchor-No. Unit Sd

N V1 kN 4.01 6.012 kN 4.01 6.013 kN 1.45 6.014 kN 1.45 6.01

Tension load, Steel failure:Unit Sd

NRk,s kN 111.00gMs - 1.50NRd,s kN 74.00Nh

Sd kN 4.01bN,s - 0.05

Tension load, Concrete cone failure:Unit Sd

N0Rk,c kN 36.00

A c,N cm2 1728.00A0

c,N cm2 900.00Ac,N / A0

c,N - 1.92ys,N - 1.00yec1,N - 1.00yec2,N - 0.86y re,N - 1.00NRk,c kN 59.78gM,c - 1.50NRd,c kN 39.85Ng

Sd kN 10.91bN,c - 0.27

Shear load, Steel failure:Unit Sd

VRk,s kN 70.00gMs - 1.25VRd,s kN 56.00Vh

Sd kN 6.01bV,s - 0.11

Shear load, Concrete failure on the opposing side of the load:Unit Sd

N0Rk,c kN 36.00

A c,N cm2 1728.00A0

c,N cm2 900.00Ac,N / A0

c,N - 1.92ys,N - 1.00yec1,N - 1.00yec2,N - 1.00y re,N - 1.00k - 2.80VRk,cp kN 193.54gM,cp - 1.50VRd,cp kN 129.02Vg

Sd kN 24.03bV,cp - 0.19

Page 361: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor Anchor Bolt FAZ II 20 / 30 A4 Page 3

Shear load, Concrete edge failure:Unit Sd

V0Rk,c kN 33.26

Ac,V cm2 1724.63A0

c,V cm2 1378.13Ac,V / A

0c,V - 1.25

ys,V - 1.00yh,V - 1.00ya,V - 1.00yec,V - 1.00y re,V - 1.00VRk,c kN 41.62gM,c - 1.50VRd,c kN 27.75Vg

Sd kN 24.03bV,c - 0.87

Tension load Used capacity Shear load Used capacityCombined tensile and shear load

Used capacity

Steel failure: 5.4 % Steel failure: 10.7 % 94.9 %Concrete cone failure: 27.4 % Concrete edge failure: 86.6 %

Concrete failure on the opposing side of the load:

18.6 %

Result: Proof of anchor was successful

Page 362: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor Anchor Bolt FAZ II 20 / 30 A4 Page 4

Installation details

Max fixing thickness tfix [mm] 30Thread diameter M [mm] 20Setting torque MD [Nm] 200Spanner A/F [mm] 30Hole diameter in the attachment df [mm] 22Anchorage depth hef [mm] 100Drill diameter d0 [mm] 20Minimum drill hole depth (through fixing) td [mm] 155

Page 363: Design Report for Acropolis Tower

Print senderProjectApplicationAnchor Anchor Bolt FAZ II 20 / 30 A4 Page 5