Design of RCC building

  • Upload
    rashed

  • View
    244

  • Download
    1

Embed Size (px)

Citation preview

  • 8/18/2019 Design of RCC building

    1/94

     ANALYSIS AND DESIGN OF MULTI-STORIED

    SHOPPING MALL CUM MULTIPLEX CINEMA HALL

    Bachelor of Technology Project (8th Semester) 

    Submitted in the partial fulfillment of the requirements for the award of the

    Degree of Bachelor of Technology in Civil Engineering 

    Submitted by

    Prachuryya Kaushik  (11-1-1-019)

    Rishiraj Bharadwaj (11-1-1-057)

    Sugata Siddhartha Goswami (11-1-1-58)

    Soumyadeep Deb (11-1-1-018)

    Under the supervision ofDr M.L.V. Prasad, Assistant Professor 

    DEPARTMENT OF CIVIL ENGINEERING

    NATIONAL INSTITUTE OF TECHNOLOGY

    May 2015

  • 8/18/2019 Design of RCC building

    2/94

     ANALYSIS AND DESIGN OF MULTI-STORIED

    SHOPPING MALL CUM MULTIPLEX CINEMA HALL

    Bachelor of Technology Project (8th Semester)

    Submitted by

    Prachuryya Kaushik  (11-1-1-019)

    Rishiraj Bharadwaj (11-1-1-057)

    Sugata Siddhartha Goswami (11-1-1-058)

    Soumyadeep Deb (11-1-1-018)

    DEPARTMENT OF CIVIL ENGINEERING

    NATIONAL INSTITUTE OF TECHNOLOGY

    May 2015

  • 8/18/2019 Design of RCC building

    3/94

  • 8/18/2019 Design of RCC building

    4/94

     ACKNOWLEDGEMENT

    We deem it to be solemn duty on our parts to express our deep sense of gratitude to

    the faculty members of the Civil Engineering Department for providing us to look into

    every nook and cranny of Building Design.

    We owe our special debt of gratitude to our guide Dr. MLV Prasad for his guidance

    and sustained inspiration in completing the project. We are grateful to Mr. Ruhul Amin

    Mazumder  for his valuable guidance. We are greatly indebted to Prof. A. I. Laskar,  the

    Head of the Department of Civil Engineering Department, who encouraged us in pursuing

    the study in all phases.

    We sincerely acknowledge the help extended by the faculty members and friends for

    extending support and encouragement to take up and timely completion of the project.

    (Prachuryya Kaushik)

    (Rishiraj Bharadwaj)

    (Sugata Siddhartha Goswami)

    (Soumyadeep Deb)

  • 8/18/2019 Design of RCC building

    5/94

    CONTENTS

    EXECUTIVE SUMMARY

    INTRODUCTION

    BUILDING PLAN

    BEAM COLUMN LAYOUT

    3 DIMENSIONAL VIEW

    PRELIMINARY DESIGN DATA

    SLAB DESIGN

    LOAD DISTRIBUTION

    MOMENT DISTRIBUTION

    CALCULATION OF SAGGING MOMENTS

    SEISMIC ANALYSIS

    LOAD COMBINATIONS

    BEAM DESIGN

    COLUMN DESIGN

    FOOTING DESIGN

    STAIRCASE DESIGN

    STAAD PRO DESIGN

    CONCLUSION

    REFERENCE

    1

    2

    7

    10

    11

    12

    13

    21

    25

    31

    34

    42

    44

    53

    59

    62

    66

    82

    83

  • 8/18/2019 Design of RCC building

    6/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    1 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Executive Summary

    The objective of this project is to plan, analyze and design a five-storied Shopping

    Mall cum Multiplex Cinema Hall. All the necessary assumptions are made, and then the load

    calculation is done to find out the load on beams, columns and footings. The frame is

    analyzed using Moment Distribution method. For Earthquake analysis, the method adopted

    here is the approximate method (Portal Method). By combination of moments, the final

    moments that are acting on the beams and columns are found out. The design of various

    components such as slabs, beams, columns, staircases etc. is done by Limit state Method of

    Design. The detailing finally shows the schematic diagrams for the placement of

    reinforcement in the various components.

    IS Codes and Aids are used as per requirement. IS 456:2000 for Reinforced Concrete

    Design, IS 1893:2002 for Earthquake Load Analysis, IS 875:1987 for Load details, SP

    16:1980 for Steel requirements and IS 13920:1993 for Ductile detailing is used.

    Finally the manual analysis and design is compared with the result obtained from

    STAAD Pro. The detailing of the structural elements are done using AutoCAD.

    Keywords: Structural Design, Earthquake Resistant Structure, Moment Distribution Method,

    Limit State Method of Design, STAAD Pro

  • 8/18/2019 Design of RCC building

    7/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    2 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    INTRODUCTION

    The population explosion and advent of industrial revolution led to the exodus of

     people from villages to urban areas. This urbanisation led to a new problem– less space for

    housing, work and more people. Because of the demand for land, the land costs got

    skyrocketed. So under the changed circumstances, the vertical growth of buildings i.e.

    constructions of multi-storeyed buildings has become inevitable both for residential and as

    well as office  purposes. With the rise in the standard of living, the demand for multi-

    storeyed shopping malls has increased as all the facilities under a single roof are desired by

    all. Moreover cinema halls are also provided in malls for entertainment purposes.  

    For multi-storeyed buildings, the conventional load bearing structures  become

    uneconomical as they require larger sections to resist huge moments and loads. But in a

    framed structure, the building frame consists of a network of beams and columns which are

     built monolithically and rigidly with each other at their joints. Because of this rigidity at the

     joints, there will be reduction in moments and also the structure tends to distribute the loads

    more uniformly and eliminate the excessive effects of localised loads. Therefore in non-load

     bearing framed structures, the moments and forces become less which in turn reduces the

    sections of the members. As the walls don’t take any load, they are also of thinner

    dimensions. So, the lighter structural components and walls reduce the self weight of the

    whole structure which necessitates a cheaper foundation. Also, the lighter walls which can

     be easily shifted provide flexibility in space utilisation. In addition to the above mentioned

    advantages the framed structure is more effective in resisting wind loads and earthquake

    loads. 

    Work done in this pro ject: 

    A plot of 900 m2 has been selected for the construction of a multi-storeyed shopping

    mall cum multiplex cinema hall  building. In the building the functions will be different

    and it plays a major role  because of different loads acts on different slabs. Therefore

    according to IS 875, the loads are calculated. The frame analysis and design is done as per

    guidelines of code IS 456 : 2000, SP 16:1980, IS 13920:1993 and IS 1893:2002.

  • 8/18/2019 Design of RCC building

    8/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    3 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Design concept: 

    There are three design philosophies to design are in reinforced concrete structures. These

    are: 

    1. Working stress method  2. Ultimate load method

    3. Limit state method. 

    In the ‘working stress’ method it is seen that the permissible stresses for concrete and

    steel are not exceeded anywhere in the structure when it is subjected to the worst

    combination of working loads. A linear variation of stress form zero at the neutral axis to the

    maximum stress at the extreme fibre is assumed. 

    Practically, the stress strain curve for concrete is not linear as it was assumed in

    working stress method. So, in ‘ultimate load’ design an idealised form of actual stress strain

    diagram is used and the working loads are increased by multiplying them with the load

    factors. 

    The basis for ‘limit state’ method is a structure with appropriate degrees of reliability

    should be able to withstand safely all loads that are liable to act on it throughout its life and it

    should also satisfy the serviceability requirements such as limitations on deflection and

    cracking.

    Limit state method is the most rational method of the three methods. It considers the

    actual behaviour of the materials at failure and also it takes serviceability also into

    consideration. Therefore, limit state method has been employed in this work.

    Methods used for Analysis of the structure:

    1. 

    Portal Frame Method

    2. 

    Moment Distribution Method

    Portal Frame Method:

    Assumptions:

    1. 

    Moment Resistant joints.2.

     

    Lateral Load

  • 8/18/2019 Design of RCC building

    9/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    4 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    3. 

     No gravity load

    4. 

    Lateral forces resisted by frame action.

    5.  Inflection points at mid height of columns

    6.  Inflection points at mid span of beams.

    7. 

    Overturn is resisted by external columns.

    Moment Distribution Method:

    The method only accounts for flexural effects and ignores axial and shear effects. In order to

    apply the moment distribution method to analyse a structure, the following things must be considered.

    Fixed end moment 

    Fixed end moments are the moments produced at member ends by external loads when the

     joints are fixed.

    Flexural stiffness

    The flexural stiffness (EI/L) of a member is represented as the product of the  modulus of

    elasticity (E) and the second moment of area (I) divided by the length (L) of the member. What is

    needed in the moment distribution method is not the exact value but the  ratio of flexural stiffness of

    all members.

    Distribution factors

    When a joint is released and begins to rotate under the unbalanced moment, resisting forces

    develop at each member framed together at the joint. Although the total resistance is equal to the

    unbalanced moment, the magnitudes of resisting forces developed at each member differ by the

    members' flexural stiffness. Distribution factors can be defined as the proportions of the unbalanced

    moments carried by each of the members. In mathematical terms, distribution factor of member

    framed at joint is given as:

    where n is the number of members framed at the joint.

    http://en.wikipedia.org/wiki/Fixed_end_momentshttp://en.wikipedia.org/wiki/Fixed_end_momentshttp://en.wikipedia.org/w/index.php?title=Flexural_stiffness&action=edit&redlink=1http://en.wikipedia.org/wiki/Modulus_of_elasticityhttp://en.wikipedia.org/wiki/Modulus_of_elasticityhttp://en.wikipedia.org/wiki/Second_moment_of_areahttp://en.wikipedia.org/wiki/Ratiohttp://en.wikipedia.org/wiki/Ratiohttp://en.wikipedia.org/wiki/Second_moment_of_areahttp://en.wikipedia.org/wiki/Modulus_of_elasticityhttp://en.wikipedia.org/wiki/Modulus_of_elasticityhttp://en.wikipedia.org/wiki/Modulus_of_elasticityhttp://en.wikipedia.org/w/index.php?title=Flexural_stiffness&action=edit&redlink=1http://en.wikipedia.org/wiki/Fixed_end_moments

  • 8/18/2019 Design of RCC building

    10/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    5 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Carryover factors

    When a joint is released, balancing moment occurs to counterbalance the unbalanced moment

    which is initially the same as the fixed-end moment. This balancing moment is then carried over to

    the member's other end. The ratio of the carried-over moment at the other end to the fixed-end

    moment of the initial end is the carryover factor.

    Determination of carryover factors

    Let one end (end A) of a fixed beam be released and applied a moment while the other

    end (end B) remains fixed. This will cause end A to rotate through an angle . Once the magnitude

    of developed at end B is found, the carryover factor of this member is given as the ratio of

    over :

    In case of a beam of length L with constant cross-section whose flexural rigidity is ,

    therefore the carryover factor

    Sign convention

    Once a sign convention has been chosen, it has to be maintained for the whole structure. The

    traditional engineer's sign convention is not used in the calculations of the moment distribution

    method although the results can be expressed in the conventional way. In the BMD case, the left side

    moment is clockwise direction and other is anticlockwise direction so the bending is positive and is

    called sagging.

    Brief Description of IS Codes used:

    IS 1893:2002 : This standard deals with assessment of seismic loads on various structures

    and earthquake resistant design of buildings. Its basic provisions are applicable to buildings;

    elevated structures; industrial and stack like structures; bridges; concrete masonry and earth

    dams; embankments and retaining walls and other structures.

  • 8/18/2019 Design of RCC building

    11/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    6 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    IS 456:2000 :  This standard deals with the general structural use of plain and reinforced

    concrete. For the purpose of this standard, plain concrete structures are those where

    reinforcement, if provided is ignored for determination of strength of the structure.

    Special requirements of structures, such as shells, folded plates, arches, bridges,

    chimneys, blast resistant structures and earthquake resistant structures, covered in respective

    standards have not been covered in this standard; these standards shall be used in conjunction

    with this standard.

    IS 875:1987 : This Indian Standard was adopted by the bureau of Indian Standards on 30 Oct

    1987,after the draft finalized by the Structural Safety Sectional Committee had been

    approved by the Civil engineering Division Council. This Indian Standard Code of Practice

    was first published in 1957 for the guidance of civil engineers, designers and architects

    associated with planning and design of buildings.

    SP-16:1980  : It has three sets of design charts for rectangular and circular types of cross-

    sections of columns. The three sets are as follows: (i) The first set of twelve charts for

    rectangular columns having symmetrical longitudinal steel bars in two rows for three grades

    of steel (ii) The second set of twelve charts for rectangular columns having symmetrical

    longitudinal steel bars (twenty numbers) distributed equally on four sides (in six rows,Fig.10.25.2) for three grades of steel (Fe 250, Fe 415 and Fe 500) and each of them has four

    values of d’/D ratios (0.05, 0.10, 0.15 and 0.20) (iii) The third set of twelve charts are for

    circular columns having eight longitudinal steel bars of equal diameter and uniformly spaced

    circumferentially for three grades of steel and each of them has four values of d’/D ratios

    (0.05, 0.10, 0.15 and 0.20). All the thirty-six charts are prepared for M 20 grade of concrete

    only. This is a justified approximation as it is not worthwhile to have separate design charts.

    IS 13920:1993  : This standard covers the requirements for designing and detailing of

    monolithic reinforced concrete buildings so as to give them adequate toughness and ductility

    to resist severe earthquake shocks without collapse. The provisions for reinforced concrete

    construction given here apply specifically to monolithic reinforced concrete construction.

    Precast and/or prestressed concrete members may be used only if they can provide the

    same level of ductility as that of a monolithic reinforced concrete construction during or after

    an earthquake.

  • 8/18/2019 Design of RCC building

    12/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    7 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    BUILDING PLAN

    (Ground Floor)

  • 8/18/2019 Design of RCC building

    13/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    8 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    BUILDING PLAN

    (Top floor)

  • 8/18/2019 Design of RCC building

    14/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    9 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    BEAM COLUMN LAYOUT

    (At Bottom Floor)

  • 8/18/2019 Design of RCC building

    15/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    10 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    BEAM COLUMN LAYOUT

    (Individual Block)

  • 8/18/2019 Design of RCC building

    16/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    11 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    3 Dimensional Views

  • 8/18/2019 Design of RCC building

    17/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    12 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    PRELIMINARY DESIGN DATA

    The preliminary design data that we have used in designing the structure has been

    summarized below:

    Type of structure: 5 storied RCC rigid jointed frame (G+4)

    Dimension of walls: 250 mm thick external walls including plaster 125 mm thick internal

    walls including plaster

    Earthquake analysis: Equivalent static method as per IS 1893-2002

    Ductile detailing: As per IS 13920

     No. of floors: G+4

    Type of soil: Medium soft clay Unit

    Weight of soil: 18 kN/m3 

    Seismic zone: 5

    Material Properties

    Grade of concrete: M25 (for slabs, beams and columns)& M30 (foundation)

    Type of steel: HYSD of Grade Fe415 confirming to IS 1786

    Geometric Properties

    Dimensions of wall: 250mm thick outer wall and 125 mm thick inner wall including plaster

    Height of each floor: 3.6 m

    Depth of slab: 150mm (for floor) & 150 mm (for roof) [As per calculations]

    Column size: 450mm x 450mm

    Beam size: 300mm x 500mm

  • 8/18/2019 Design of RCC building

    18/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    13 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    SLAB DESIGN

    For the design of slabs, similar slabs are grouped based on dimension and end

    conditions.

    SLAB A

    Ly = 5000 mm, Lx= 5000 mm;

    Ly/Lx= 1, Therefore Two way slab

    Leff  = 5000 mm

    Leff  / Deff = 40 ……… [ IS 456-2000 Cl. 24.1 ]Deff = d = 5000/40 = 125 mm

    D = 125+5+20(cover) = 150 mm

    Loads:

    Dead Load : [ IS875 ]

    Self weight of slab = .150 × 25 = 3.75 kN/m2 

    Live load

    For commercial building = 4 kN/m2 

    Floor finish = 2 kN/m2 

    Factored load = 1.5×(3.75+4+2)=14.625≈15 kN/m2 

    Now, for BM coefficients:

    Ly/Lx= 1 [ One edge discontinuous]

    αx = 0.037 [ As per Table 26, IS 456:2000]

    αy = 0.037

    Mx = αxwlx2  My = αywlx

    Mx = 0.037×15×52 = 13.875 kN-m

    My = 0.037×15×52 = 13.875 kN-m

    So Mu = 13.875 kN-m

  • 8/18/2019 Design of RCC building

    19/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    14 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

     Now, 0.138 f ck  bd 2 =13.875 × 106

    d =63.42 mm < 125 mm. Hence Ok.

    Steel Reinforcement:

    Ast= 0.5 bdf ck /f y [1 - (1 - 4.6Mu/f ck  bd 2)0.5]

    Calculating, Ast = 321.29 mm2 

     Numbers of 8 mm ᵠ bars = 321.39/((3.14/4) × 82) = 6.39 ≈ 7 

    Provide 8 mm ᵠ @ 140 c/c [No. of bars = 7 ] .... [ less than 3d=375mm or 300mm, so OK]

    Distribution steel:

    Ast=.12% of Ag= .12/100 ×150×1000=180 mm2 

    Spacing of 8 mm ᵠ bars @ 200 mm c/c [ No. of bars = 5] 

    Detailing of Slab A

  • 8/18/2019 Design of RCC building

    20/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    15 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    SLAB B

    Ly = 5000 mm, Lx= 5000 mm;

    Ly/Lx= 1, Therefore Two way slab

    Leff  = 5000 mm

    Leff  / Deff = 40 ……… [ IS 456-2000 Cl. 24.1 ]

    Deff = d = 5000/40 = 125 mm

    D = 125+5+20(cover) = 150 mm

    Loads:

    Dead Load : [ IS875 ]

    Self weight of slab = .150 × 25 = 3.75 kN/m2 

    Live load

    For commercial building = 4 kN/m2 

    Floor finish = 2 kN/m2 

    Factored load = 1.5 × (3.75+4+2) = 14.625

    ≈ 15 kN/m2 

    Now, for BM coefficients:

    Ly/Lx= 1 [ Internal Panel]

    αx = 0.032 [ As per Table 26, IS 456:2000]

    αy = 0.032

    Mx = αxwlx2 

    My = αywlx2 

    Mx = 0.032×15×52 = 12 kN-m

    My = 0.032×15×52 = 12 kN-m

    So Mu = 12 kN-m

     Now, 0.138 f ck  bd 2 =12 × 106

    d =58.98 mm < 125 mm. Hence Ok.

  • 8/18/2019 Design of RCC building

    21/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    16 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Steel Reinforcement:

    Ast= 0.5 bdf ck /f y [1 - (1 - 4.6Mu/f ck  bd 2)0.5]

    Calculating, Ast = 276.15 mm2 

     Numbers of 8 mm ᵠ bars = 276.15/((3.14/4) × 82) = 5.43 ≈ 6 

    Provide 8 mm ᵠ @ 160 c/c [No. of bars = 6 ] .... [ less than 3d=375mm or 300mm, so OK]

    Distribution steel:

    Ast=.12% of Ag= .12/100 ×150×1000=180 mm2 

    Spacing of 8 mm ᵠ bars @ 200 mm c/c [ No. of bars = 5] 

    Detailing of Slab B

  • 8/18/2019 Design of RCC building

    22/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    17 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    SLAB C

    Ly = 5000 mm, Lx= 3000 mm;

    Ly/Lx= 1.67, Therefore Two way slab

    Leff  = 3000 mm

    Leff  / Deff = 40 ……… [ IS 456-2000 Cl. 24.1 ]

    Deff = d = 3000/40 = 75 mm ≈ 125 mm (let) 

    D = 125+5+20(cover) = 150 mm

    Loads:

    Dead Load : [ IS875 ]

    Self weight of slab = .150 × 25 = 3.75 kN/m2 

    Live load

    For commercial building = 4 kN/m2 

    Floor finish = 2 kN/m2 

    Factored load = 1.5×(3.75+4+2) = 14.62

    ≈ 15 kN/m2 

    Now, for BM coefficients:

    Ly/Lx= 1.67 [ Two adjacent edges discontinuous]

    αx = 0.079 αy = 0.047 [ As per Table 26, IS 456:2000]

    Mx = αxwlx2 

    My = αywlx2 

    Mx = 0.079×15×32 = 10.67 kN-m

    My = 0.047×15×32 = 6.345 kN-m

    So Mu = 10.67 kN-m

     Now, 0.138 f ck  bd 2 =10.67 × 106

    d =55.61 mm < 125 mm. Hence Ok.

  • 8/18/2019 Design of RCC building

    23/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    18 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Steel Reinforcement:

    Ast= 0.5 bdf ck /f y [1 - (1 - 4.6Mu/f ck  bd 2)0.5]

    Calculating, Ast = 244.47 mm2 

     Numbers of 8 mm ᵠ bars = 244.47/((3.14/4) × 82) = 4.86 ≈ 5 

    Provide 8 mm ᵠ @ 200 c/c [No. of bars = 5] .... [ less than 3d=375mm or 300mm, so OK]

    Distribution steel:

    Ast=.12% of Ag= .12/100 ×150×1000=180 mm2 

    Spacing of 8 mm ᵠ bars @ 200 mm c/c [ No. of bars = 5] 

    Detailing of Slab C

  • 8/18/2019 Design of RCC building

    24/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    19 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    SLAB D

    Ly = 5000 mm, Lx= 1800 mm;

    Ly/Lx= 2.78, Therefore One way slab

    Leff  = 1800 mm

    Deff = 125 mm (let)

    D = 125+5+20(cover) = 150 mm

    Loads:

    Dead Load : [ IS875 ]Self weight of slab = .150 × 25 = 3.75 kN/m2 

    Live load

    For commercial building = 4 kN/m2 

    Floor finish = 2 kN/m2 

    Factored load = 1.5×(3.75+4+2) = 14.62 ≈ 15 kN/m2 

    Moment and Shear:

    Considering designing for per metre span, W=15 kN/m

    So Mu = WL2/2 = 24.3 kN-m

     Now, 0.138 f ck  bd 2 =24.3 × 106  N-mm

    d =83.925 mm < 125 mm. Hence Ok.

    Steel Reinforcement:

    Ast= 0.5 bdf ck /f y [1 - (1 - 4.6Mu/f ck  bd 2)0.5]

    Calculating, Ast = 583.99 mm2 

    Alternately Provide 8 mm ᵠ @ 200 c/c [No. of bars = 5 ]

  • 8/18/2019 Design of RCC building

    25/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    20 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    And Provide 10 mm ᵠ @ 200 c/c [No. of bars = 5 ] .... [ less than 3d=375mm or 300mm, so

    OK]

    Distribution steel:

    Ast=.12% of Ag= .12/100 ×150×1000=180 mm2 

    Spacing of 8 mm ᵠ bars @ 200 mm c/c [ No. of bars = 5] 

    Detailing of Slab D

  • 8/18/2019 Design of RCC building

    26/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    21 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    LOAD DISTRIBUTION

    Beam no. Area Beam no. Area

    A1B1 1.62 B1B2 12.01

    B1C1 6.25 B2B3 12.01

    C1D1 6.25 B3B4 3.24

    D1E1 6.25

    D1E2 6.25 C1C2 12.5

    D1E3 2.25 C2C3 12.5

    C3C4 3.24

    A2B2 3.24

    B2C2 12.5 D1D2 12.5

    C2D2 12.5 D2D3 12.5D2E2 12.5 D3D4 3.24

    E2F2 12.5

    F2G2 2.25 E1E2 12.5

    E2E3 12.5

    A3B3 3.24 E3E4 3.24

    B3C3 12.01

    C3D3 12.01 F1F2 11.5

    D3E3 12.01 F2F3 6.25

    E3F3 12.01 F3F4 3.195

    F3G3 2.25

    G1G2 5.25

    G3G4 1.575

    Area of slabs transferring loads to the Beams

    Area of slabs transferring loads to the Beams 

    Total Load (kN/m2)

    Self Weight Slab 3.75

    Floor Finish 2

    Live Load 4

    Total 9.75

  • 8/18/2019 Design of RCC building

    27/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    22 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    LOAD DISTRIBUTION

    Areas of slabs transferring to each beam

    Beam A1B1C1D1E1F1G1 Beam A2B2C2D2E2F2G2

    Beam A3B3C3D3E3F3G3Beam B1B2B3B4

  • 8/18/2019 Design of RCC building

    28/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    23 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    LOAD DISTRIBUTION

    Areas of slabs transferring to each beam

    Beam E1E2E3E4

    Beam C1C2C3C4 Beam D1D2D3D4

    Beam F1F2F3F4

  • 8/18/2019 Design of RCC building

    29/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    24 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    LOAD DISTRIBUTION

    Uniformly distributed loads on each beam

    DEAD Load on beams (kN/m)

    Beam no. Load Beam no. Load

    A1B1 5.175 B1B2 13.8115

    B1C1 7.1875 B2B3 13.8115

    C1D1 7.1875 B3B4 10.35

    D1E1 7.1875

    E1F1 7.1875 C1C2 14.375

    F1G1 4.3125 C2C3 14.375

    C3C4 10.35

    A2B2 10.35

    B2C2 14.375 D1D2 14.375

    C2D2 14.375 D2D3 14.375

    D2E2 14.375 D3D4 10.35

    E2F2 14.375

    F2G2 4.3125 E1E2 14.375

    E2E3 14.375

    A3B3 10.35 E3E4 10.35

    B3C3 13.8115

    C3D3 13.8115 F1F2 13.225

    D3E3 13.8115 F2F3 7.1875

    E3F3 13.8115 F3F4 10.20625

    F3G3 4.3125

    G1G2 6.0375

    G3G4 5.03125

    LIVE Load on beams (kN/m)

    Beam no. Load Beam no. Load

    A1B1 3.6 B1B2 23.4195

    B1C1 5 B2B3 23.4195

    C1D1 5 B3B4 7.2

    D1E1 5

    E1F1 5 C1C2 10

    F1G1 3 C2C3 10

    C3C4 7.2

    A2B2 7.2

    B2C2 10 D1D2 10

    C2D2 10 D2D3 10

    D2E2 10 D3D4 7.2

    E2F2 10

    F2G2 3 E1E2 10

    E2E3 10

    A3B3 7.2 E3E4 7.2

    B3C3 23.4195

    C3D3 23.4195 F1F2 9.2

    D3E3 23.4195 F2F3 5

    E3F3 23.4195 F3F4 7.1

    F3G3 3

    G1G2 4.2

    G3G4 3.5

  • 8/18/2019 Design of RCC building

    30/94

  • 8/18/2019 Design of RCC building

    31/94

  • 8/18/2019 Design of RCC building

    32/94

  • 8/18/2019 Design of RCC building

    33/94

    Joint

    Member B1UP B1DN B1B2 B2B1 B2UP B2DN B2B3 B3B2 B3UP B3D

    I(x10^‐3) 3.125 3.125 3.125 3.125 3.125 3.125 3.125 3.125 3.125

    L 3.6 3.6 5 5 3.6 3.6 5 5 3.6

    K(x4E) 0.868056 0.868056 0.625 0.625 0.868056 0.868056 0.625 0.625 0.868056 0.8

    D.F. 0.367647 0.367647 0.264706 0.209302 0.290698 0.290698 0.209302 0.264706 0.367647 0.3UDL 0 0 13.8115 13.8115 0 0 13.8115 13.8115 0

    FEM 0 0 28.77396   ‐28.774 0 0 28.77396   ‐28.774 0

    Release   ‐10.5787   ‐10.5787   ‐7.61664 0 0 0 0 6.876915 9.551271 9.5

    Carry Over 0 0 0   ‐3.80832 0 0 3.438458 1.39725 0

    Release 0 0 0 0.077413 0.107518 0.107518 0.077413   ‐0.36986   ‐0.51369   ‐0.

    Carry Over 0 0 0.038706 0 0 0   ‐0.18493 0.038706 0

    Release   ‐0.01423   ‐0.01423   ‐0.01025 0.038706 0.053759 0.053759 0.038706   ‐0.01025   ‐0.01423   ‐0.

    Carry Over 0 0 0.019353   ‐0.00512 0 0   ‐0.00512 0.019353 0

    Release   ‐0.00712   ‐0.00712   ‐0.00512 0.002144 0.002978 0.002978 0.002144   ‐0.00512   ‐0.00712   ‐0.

    Carry 

    Over 0 0 0.001072  ‐

    0.00256 0 0  ‐

    0.00256 0.001072 0 Release   ‐0.00039   ‐0.00039   ‐0.00028 0.001072 0.001489 0.001489 0.001072   ‐0.00028   ‐0.00039   ‐0.

    Carry Over 0 0 0.000536   ‐0.00014 0 0   ‐0.00014 0.000536 0

    Release   ‐0.0002   ‐0.0002   ‐0.00014 5.94E‐05 8.25E‐05 8.25E‐05 5.94E‐05   ‐0.00014   ‐0.0002   ‐0

    Carry Over 0 0 2.97E‐05   ‐7.1E‐05 0 0   ‐7.1E‐05 2.97E‐05 0

    TOTAL   ‐10.6006   ‐21.2012 21.20123   ‐32.4708 0.165826 0.165826 32.13898   ‐20.8258 9.01564 9.

    B1 B2 B3

    Beam B1B2B3B4 Moments by Moment Distribution (due to DEAD Load)

  • 8/18/2019 Design of RCC building

    34/94

    Joint

    Member B1UP B1DN B1B2 B2B1 B2UP B2DN B2B3 B3B2 B3UP B3D

    I(x10^‐3) 3.125 3.125 3.125 3.125 3.125 3.125 3.125 3.125 3.125

    L 3.6 3.6 5 5 3.6 3.6 5 5 3.6

    K(x4E) 0.868056 0.868056 0.625 0.625 0.868056 0.868056 0.625 0.625 0.868056 0.8

    D.F. 0.367647 0.367647 0.264706 0.209302 0.290698 0.290698 0.209302 0.264706 0.367647 0.3UDL 0 0 10 10 0 0 10 10 0

    FEM 0 0 20.83333   ‐20.8333 0 0 20.83333   ‐20.8333 0

    Release   ‐7.65931   ‐7.65931   ‐5.51471 0 0 0 0 5.000118 6.944608 6.9

    Carry Over 0 0 0   ‐2.75735 0 0 2.500059 0.972 0

    Release 0 0 0 0.053852 0.074795 0.074795 0.053852   ‐0.25729   ‐0.35735   ‐0.

    Carry Over 0 0 0.026926 0 0 0   ‐0.12865 0.026926 0

    Release   ‐0.0099   ‐0.0099   ‐0.00713 0.026926 0.037397 0.037397 0.026926   ‐0.00713   ‐0.0099   ‐0

    Carry Over 0 0 0.013463   ‐0.00356 0 0   ‐0.00356 0.013463 0

    Release   ‐0.00495   ‐0.00495   ‐0.00356 0.001492 0.002072 0.002072 0.001492   ‐0.00356   ‐0.00495   ‐0.

    Carry 

    Over 0 0 0.000746  ‐

    0.00178 0 0  ‐

    0.00178 0.000746 0 Release   ‐0.00027   ‐0.00027   ‐0.0002 0.000746 0.001036 0.001036 0.000746   ‐0.0002   ‐0.00027   ‐0.

    Carry Over 0 0 0.000373   ‐9.9E‐05 0 0   ‐9.9E‐05 0.000373 0

    Release   ‐0.00014   ‐0.00014   ‐9.9E‐05 4.13E‐05 5.74E‐05 5.74E‐05 4.13E‐05   ‐9.9E‐05   ‐0.00014   ‐0.

    Carry Over 0 0 2.07E‐05   ‐4.9E‐05 0 0   ‐4.9E‐05 2.07E‐05 0

    TOTAL   ‐7.67457   ‐15.3491 15.34917   ‐23.5131 0.115358 0.115358 23.28231   ‐15.088 6.571995 6.5

    B1 B2 B3

    Beam B1B2B3B4 Moments by Moment Distribution (due to LIVE Load)

  • 8/18/2019 Design of RCC building

    35/94

    Joint

    Member B1UP B1DN B1B2 B2B1 B2UP B2DN B2B3 B3B2 B3UP B3D

    I(x10^‐3) 3.125 3.125 3.125 3.125 3.125 3.125 3.125 3.125 3.125

    L 3.6 3.6 5 5 3.6 3.6 5 5 3.6

    K(x4E) 0.868056 0.868056 0.625 0.625 0.868056 0.868056 0.625 0.625 0.868056 0.8

    D.F. 0.367647 0.367647 0.264706 0.209302 0.290698 0.290698 0.209302 0.264706 0.367647 0.3UDL 0 0 24.375 24.375 0 0 24.375 24.375 0

    FEM 0 0 50.78125   ‐50.7813 0 0 50.78125   ‐50.7813 0

    Release   ‐18.6696   ‐18.6696   ‐13.4421 0 0 0 0 12.18779 16.92748 16.

    Carry Over 0 0 0   ‐6.72105 0 0 6.093893 2.36925 0

    Release 0 0 0 0.131265 0.182312 0.182312 0.131265   ‐0.62715   ‐0.87105   ‐0.

    Carry Over 0 0 0.065632 0 0 0   ‐0.31358 0.065632 0

    Release   ‐0.02413   ‐0.02413   ‐0.01737 0.065632 0.091156 0.091156 0.065632   ‐0.01737   ‐0.02413   ‐0.

    Carry Over 0 0 0.032816   ‐0.00869 0 0   ‐0.00869 0.032816 0

    Release   ‐0.01206   ‐0.01206   ‐0.00869 0.003636 0.00505 0.00505 0.003636   ‐0.00869   ‐0.01206   ‐0.

    Carry 

    Over 0 0 0.001818  ‐

    0.00434 0 0  ‐

    0.00434 0.001818 0 Release   ‐0.00067   ‐0.00067   ‐0.00048 0.001818 0.002525 0.002525 0.001818   ‐0.00048   ‐0.00067   ‐0.

    Carry Over 0 0 0.000909   ‐0.00024 0 0   ‐0.00024 0.000909 0

    Release   ‐0.00033   ‐0.00033   ‐0.00024 0.000101 0.00014 0.00014 0.000101   ‐0.00024   ‐0.00033   ‐0.

    Carry Over 0 0 5.04E‐05   ‐0.00012 0 0   ‐0.00012 5.04E‐05 0

    TOTAL   ‐18.7068   ‐37.4135 37.4136   ‐57.3132 0.281184 0.281184 56.75063   ‐36.7769 16.01924 16.

    B1 B2 B3

    Beam B1B2B3B4 Moments by Moment Distribution (due to TOTAL Load)

  • 8/18/2019 Design of RCC building

    36/94

    Beam no.   Load   Length BM Dead SF Dead   Beam no. Load   Length BM DEAD SF DEAD

    B1B2 13.8115 5 14.38698 34.52875

    B1C1 7.1875 5 7.486979 17.96875 B2B3 13.8115 5 14.38698 34.52875

    C1D1 7.1875 5 7.486979 17.96875

    D1E1 7.1875 5 7.486979 17.96875

    E1F1 7.1875 5 7.486979 17.96875 C1C2 14.375 5 14.97396 35.9375

    F1G1 4.3125 3 1.617188 6.46875 C2C3 14.375 5 14.97396 35.9375

    B2C2 14.375 5 14.97396 35.9375 D1D2 14.375 5 14.97396 35.9375

    C2D2 14.375 5 14.97396 35.9375 D2D3 14.375 5 14.97396 35.9375

    D2E2 14.375 5 14.97396 35.9375E2F2 14.375 5 14.97396 35.9375

    F2G2 4.3125 3 1.617188 6.46875 E1E2 14.375 5 14.97396 35.9375

    E2E3 14.375 5 14.97396 35.9375

    B3C3 13.812 5 14.38698 34.52875

    C3D3 13.812 5 14.38698 34.52875 F1F2 13.225 5 13.77604 33.0625

    D3E3 13.812 5 14.38698 34.52875 F2F3 7.1875 5 7.486979 17.96875

    E3F3 13.812 5 14.38698 34.52875

    F3G3 4.3125 3 1.617188 6.46875

    G1G2 6.0375 5 6.289063 15.09375

    TOTAL 

    Load 

    per 

    metre 

    DEAD

  • 8/18/2019 Design of RCC building

    37/94

    Beam no. Load   Length BM Live SF DEAD   Beam no. Load   Length BM Live SF Live

    B1B2 23.4195 5 24.39531 58.5488

    B1C1 5 5 5.208333 12.5 B2B3 23.4195 5 24.39531 58.5488

    C1D1 5 5 5.208333 12.5

    D1E1 5 5 5.208333 12.5

    E1F1 5 5 5.208333 12.5 C1C2 10 5 10.41667 25

    F1G1 3 3 1.125 4.5 C2C3 10 5 10.41667 25

    B2C2 10 5 10.41667 25 D1D2 10 5 10.41667 25

    C2D2 10 5 10.41667 25 D2D3 10 5 10.41667 25

    D2E2 10 5 10.41667 25E2F2 10 5 10.41667 25

    F2G2 3 3 1.125 4.5 E1E2 10 5 10.41667 25

    E2E3 10 5 10.41667 25

    B3C3 23.42 5 24.39531 58.54875

    C3D3 23.42 5 24.39531 58.54875 F1F2 9.2 5 9.583333 23

    D3E3 23.42 5 24.39531 58.54875 F2F3 5 5 5.208333 12.5

    E3F3 23.42 5 24.39531 58.54875

    F3G3 3 3 1.125 4.5

    G1G2 4.2 5 4.375 10.5

    TOTAL 

    Load 

    per 

    metre 

    LIVE

  • 8/18/2019 Design of RCC building

    38/94

    Beam 

    no. BM1.5(DL+LL) SF1.5(DL+LL) Beam 

    no. BM1.5(DL+LL) SF1.5(DL+LL)

    B1B2 58.1734375 139.61625

    B1C1 19.04296875 45.703125 B2B3 58.1734375 139.61625

    C1D1 19.04296875 45.703125 0 0

    D1E1 19.04296875 45.703125 0 0

    E1F1 19.04296875 45.703125 C1C2 38.0859375 91.40625

    F1G1 4.11328125 16.453125 C2C3 38.0859375 91.40625

    0 0 0 0

    0 0 0 0

    B2C2 38.0859375 91.40625 D1D2 38.0859375 91.40625

    C2D2 38.0859375 91.40625 D2D3 38.0859375 91.40625D2E2 38.0859375 91.40625 0 0

    E2F2 38.0859375 91.40625 0 0

    F2G2 4.11328125 16.453125 E1E2 38.0859375 91.40625

    0 0 E2E3 38.0859375 91.40625

    0 0 0 0

    B3C3 58.1734375 139.61625 0 0

    C3D3 58.1734375 139.61625 F1F2 35.0390625 84.09375

    D3E3 58.1734375 139.61625 F2F3 19.04296875 45.703125

    E3F3 58.1734375 139.61625 0 0

    F3G3 4.11328125 16.453125 0 0

    G1G2 15.99609375 38.390625

    Load 

    Combination Load 

    Combination

  • 8/18/2019 Design of RCC building

    39/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    34 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    SEISMIC ANALYSIS 

    Earthquake load analysis :

    For w1 :

    a) Wt. of slab= 24.8×11.8×0.15×25=1077.4 kN

     b) Wt of beam = [ 24.8×3+11.8×6] ×0.3×0.35×25=381.15 kN

    c) Wt of wall : (28×.25 + 8×0.125)×0.8×20×3.1=396.8 kN

    e) Live Load = 0.5 ×4×24.8×11.8=585.28 kN

    f) Column = (1.8+1.8-0.5)×25×18×0.45×0.45=282.4875

    Total w1 =2346.3175

    For w2 : 

    a) Wt. of slab= 24.8×11.8×0.15×25=1077.4 kN

     b) Wt of beam = [ 24.8×3+11.8×6] ×0.3×0.35×25=381.15 kN

    c) Wt of wall : (28×.25 + 8×0.125)×0.8×20×3.1=396.8 kN

    e) Live Load = 0.5 ×4×24.8×11.8=585.28 kNf) Column = (1.8+1.8-0.5)×25×18×0.45×0.45=282.4875

    Total w2 =2346.3175

    For w3 :

    a) Wt. of slab= 24.8×11.8×0.15×25=1077.4 kN

     b) Wt of beam = [ 24.8×3+11.8×6] ×0.3×0.35×25=381.15 kN

    c) Wt of wall : (28×.25 + 8×0.125)×0.8×20×3.1=396.8 kN

    e) Live Load = 0.5 ×4×24.8×11.8=585.28 kN

    f) Column = (1.8+1.8-0.5)×25×18×0.45×0.45=282.4875

    Total w3 =2346.3175

    For w4 : 

    a) Wt. of slab= 24.8×11.8×0.15×25=1077.4 kN

  • 8/18/2019 Design of RCC building

    40/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    35 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

     b) Wt of beam = [ 24.8×3+11.8×6] ×0.3×0.35×25=381.15 kN

    c) Wt of wall : (28×.25 + 8×0.125)×0.8×20×3.1=396.8 kN

    e) Live Load = 0.5 ×4×24.8×11.8=585.28 kN

    f) Column = (1.8+1.8-0.5)×25×18×0.45×0.45=282.4875

    Total w4 =2346.3175

    For w5 : 

    a) Wt. of slab= 24.8×11.8×0.15×25=1077.4 kN

     b) Wt of beam = [ 24.8×3+11.8×6] ×0.3×0.35×25=381.15 kN

    c) Wt of wall : (28×.25 + 8×0.125)×0.8×20×3.1=396.8 kN

    e) Live Load = 0.5 ×4×24.8×11.8=585.28 kN

    f) Column = (1.8×18+0.85×15)×25×0.45×0.45=228.572

    Total w5 =2292.402

    For w6 : 

    a) Wt of beam = [ 24.8×3+11.8×6] ×0.3×0.35×25=381.15 kN

     b) Wt of wall : (28×.25 + 8×0.125)×0.8×20×3.1=396.8 kN

    c) Live Load = 0.5 ×4×24.8×11.8=585.28 kN

    d) Column = (2.2×1.5×25×0.45×0.45)=167.0625

    Total w6 =1133.4925 (No slab)

    For w7 : 

    a) Wt. of slab= 24.8×11.8×0.15×25=1077.4 kN

     b) Wt of beam = 381.15-20×0.3×0.35×25= 328.65

    c) Wt of wall : (28×.25 + 8×0.125)×0.8×20×3.1=396.8 kN

    e) Live Load = 0.5 ×4×24.8×11.8=585.28 kN

    f) Column = (0.85×15×25×0.45×0.45)=1600.3368 kN

    Total w7=1600.3368 kN

    w = w1 +w2 +w3+w4+w5+w6+w7 

    =14411.5013 kN

  • 8/18/2019 Design of RCC building

    41/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    36 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    h=21.6m

    Calculation of approximate natural time period:

    Ta= 0.09 h/√  = 0.09×21.6/100.5 = 0.61

    (Sa/g) =1.36/T =2.12

    Ah= (Z/2) ×(Sa/d)× (p/12) = 0.36×1.5×2.1222/2×5 =0.1145

    Calculation of base shear : V b=Ah×w=0.1145×14411.5013 kN

    =1651.54

    Seismic load at each levelFor Shorter

    Span

    For Longer

    Span

    LEVEL Wi Hi WiHi2  Qi=Vb*Wi*Hi2/∑WiHi^2  Qi/6 Qi/3

    Roof 1600.3368 21.6 746653.1374 515.57742 85.93 171.86

    4th 1133.4925 18.9 404894.85 279.587 46.6 93.2

    4th 2292.402 16.2 601617.98 415.428 69.21 138.42

    3rd 2346.3175 12.6 372501.36 257.22 42.37 86.74

    2nd 2346.3175 9 190051.7175 131.234 21.872 43.744

    1st 2346.3175 5.4 68418.61 47.244 7.874 15.748

    Ground 2346.3175 1.8 7602.0687 5.249 0.874 1.748

    ∑WiHi2  2005711.2

  • 8/18/2019 Design of RCC building

    42/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    37 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Earthquake Lateral Forces

  • 8/18/2019 Design of RCC building

    43/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    38 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Earthquake Lateral Forces per frame

  • 8/18/2019 Design of RCC building

    44/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    39 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Earthquake Moments at Beams

  • 8/18/2019 Design of RCC building

    45/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    40 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Earthquake Shear Forces at Beams

  • 8/18/2019 Design of RCC building

    46/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    41 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Earthquake Moments in Columns

  • 8/18/2019 Design of RCC building

    47/94

    MAX

    DL LL  EL 1 2 3 4 5 6 7

    AB1AB2 21.20123 15.349 29 54.82535 62.58111   ‐24.4189 75.30185   ‐11.6982 78.66028 9.060276 78.66028

    ‐32.47   ‐23.51   ‐29   ‐83.97   ‐72.723 14.277   ‐92.205   ‐5.205   ‐101.976   ‐32.376 14.277

    AB2AB3 32.1389 23.38 29 83.27835 72.42501   ‐14.575 91.70835 4.70835 101.4227 31.82268 101.4227

    ‐20.8258   ‐15.09   ‐29   ‐53.8737   ‐62.2432 24.75678   ‐74.7387 12.2613   ‐77.899   ‐8.29896 24.75678

    BB1BB2 21.20123 15.349 73.72 54.82535 129.6611   ‐91.4989 142.3818   ‐78.7782 132.3243   ‐44.6037 142.3818

    ‐32.47   ‐23.51   ‐73.72   ‐83.97   ‐139.803 81.357   ‐159.285 61.875   ‐155.64 21.288 81.357

    BB2BB3 32.1389 23.38 73.72 83.27835 139.505   ‐81.655 158.7884   ‐62.3717 155.0867   ‐21.8413 158.7884

    ‐20.8258   ‐15.09   ‐73.72   ‐53.8737   ‐129.323 91.83678   ‐141.819 79.3413   ‐131.563 45.36504 91.83678

    CB1CB2 21.20123 15.349 135.5 54.82535 222.3311   ‐184.169 235.0518   ‐171.448 206.4603   ‐118.74 235.0518

    ‐32.47   ‐23.51   ‐135.5   ‐83.97   ‐232.473 174.027   ‐251.955 154.545   ‐229.776 95.424 174.027

    CB2CB3 32.1389 23.38 135.5 83.27835 232.175   ‐174.325 251.4584   ‐155.042 229.2227   ‐95.9773 251.4584

    ‐20.8258

      ‐15.09

      ‐135.5

      ‐53.8737

      ‐221.993 184.5068

      ‐234.489 172.0113

      ‐205.699 119.501 184.5068

    DB1DB2 21.20123 15.349 200.85 54.82535 320.3561   ‐282.194 333.0768   ‐269.473 284.8803   ‐197.16 333.0768

    ‐32.47   ‐23.51   ‐200.85   ‐83.97   ‐330.498 272.052   ‐349.98 252.57   ‐308.196 173.844 272.052

    DB2DB3 32.1389 23.38 200.85 83.27835 330.2   ‐272.35 349.4834   ‐253.067 307.6427   ‐174.397 349.4834

    ‐20.8258   ‐15.09   ‐200.85   ‐53.8737   ‐320.018 282.5318   ‐332.514 270.0363   ‐284.119 197.921 282.5318

    EB1EB2 21.20123 15.349 229.975 54.82535 364.0436   ‐325.881 376.7643   ‐313.161 319.8303   ‐232.11 376.7643

    ‐32.47   ‐23.51   ‐229.975   ‐83.97   ‐374.186 315.7395   ‐393.668 296.2575   ‐343.146 208.794 315.7395

    EB2EB3 32.1389 23.38 229.975 83.27835 373.8875   ‐316.037 393.1709   ‐296.754 342.5927   ‐209.347 393.1709

    ‐20.8258   ‐15.09   ‐229.975   ‐53.8737   ‐363.706 326.2193   ‐376.201 313.7238   ‐319.069 232.871 326.2193

    FB1FB2 21.20123 15.349 243.37 54.82535 384.1361   ‐345.974 396.8568   ‐333.253 335.9043   ‐248.184 396.8568

    ‐32.47   ‐23.51   ‐243.37   ‐83.97   ‐394.278 335.832   ‐413.76 316.35   ‐359.22 224.868 335.832

    FB2FB3 32.1389 23.38 243.37 83.27835 393.98   ‐336.13 413.2634   ‐316.847 358.6667   ‐225.421 413.2634

    ‐20.8258   ‐15.09   ‐243.37   ‐53.8737   ‐383.798 346.3118   ‐396.294 333.8163   ‐335.143 248.945 346.3118

    GB1GB2 21.20123 15.349 247.37 54.82535 390.1361   ‐351.974 402.8568   ‐339.253 340.7043   ‐252.984 402.8568

    ‐32.47   ‐23.51   ‐247.37   ‐83.97   ‐400.278 341.832   ‐419.76 322.35   ‐364.02 229.668 341.832

    GB2GB3 32.1389 23.38 247.37 83.27835 399.98  ‐

    342.13 419.2634  ‐

    322.847 363.4667  ‐

    230.221 419.2634

    ‐20.8258   ‐15.09   ‐247.37   ‐53.8737   ‐389.798 352.3118   ‐402.294 339.8163   ‐339.943 253.745 352.3118

    DL  LL EL 1 2 3 4 5 MAX

    AB1AB2 21.20123 15.349 29 36.55023   ‐7.79877 50.20123 56.68043 10.28043 56.68043

    ‐32.47   ‐23.51   ‐29   ‐55.98   ‐3.47   ‐61.47   ‐74.478   ‐28.078   ‐3.47

    AB2AB3 32.1389 23.38 29 55.5189 3.1389 61.1389 74.0429 27.6429 74.0429

    ‐20.8258   ‐15.09   ‐29   ‐35.9158 8.1742   ‐49.8258   ‐56.0978   ‐9.6978 8.1742

    BB1BB2 21.20123 15.349 73.72 36.55023   ‐52.5188 94.92123 92.45643   ‐25.4956 94.92123

    ‐32.47   ‐23.51   ‐73.72   ‐55.98 41.25   ‐106.19   ‐110.254 7.698 41.25

    BB2BB3 32.1389 23.38 73.72 55.5189   ‐41.5811 105.8589 109.8189   ‐8.1331 109.8189

    ‐20.8258   ‐15.09   ‐73.72   ‐35.9158 52.8942   ‐94.5458   ‐91.8738 26.0782 52.8942

    CB1CB2 21.20123 15.349 135.5 36.55023  ‐

    114.299 156.7012 141.8804  ‐

    74.9196 156.7012‐32.47   ‐23.51   ‐135.5   ‐55.98 103.03   ‐167.97   ‐159.678 57.122 103.03

    CB2CB3 32.1389 23.38 135.5 55.5189   ‐103.361 167.6389 159.2429   ‐57.5571 167.6389

    ‐20.8258   ‐15.09   ‐135.5   ‐35.9158 114.6742   ‐156.326   ‐141.298 75.5022 114.6742

    DB1DB2 21.20123 15.349 200.85 36.55023   ‐179.649 222.0512 194.1604   ‐127.2 222.0512

    ‐32.47   ‐23.51   ‐200.85   ‐55.98 168.38   ‐233.32   ‐211.958 109.402 168.38

    DB2DB3 32.1389 23.38 200.85 55.5189   ‐168.711 232.9889 211.5229   ‐109.837 232.9889

    ‐20.8258   ‐15.09   ‐200.85   ‐35.9158 180.0242   ‐221.676   ‐193.578 127.7822 180.0242

    EB1EB2 21.20123 15.349 229.975 36.55023   ‐208.774 251.1762 217.4604   ‐150.5 251.1762

    ‐32.47   ‐23.51   ‐229.975   ‐55.98 197.505   ‐262.445   ‐235.258 132.702 197.505

    EB2EB3 32.1389 23.38 229.975 55.5189   ‐197.836 262.1139 234.8229   ‐133.137 262.1139

    ‐20.8258   ‐15.09   ‐229.975   ‐35.9158 209.1492   ‐250.801   ‐216.878 151.0822 209.1492

    FB1FB2 21.20123 15.349 243.37 36.55023   ‐222.169 264.5712 228.1764   ‐161.216 264.5712

    ‐32.47   ‐23.51   ‐243.37   ‐55.98 210.9   ‐275.84   ‐245.974 143.418 210.9

    FB2FB3 32.1389 23.38 243.37 55.5189   ‐211.231 275.5089 245.5389   ‐143.853 275.5089

    ‐20.8258

      ‐15.09

      ‐243.37

      ‐35.9158 222.5442

      ‐264.196

      ‐227.594 161.7982 222.5442

    GB1GB2 21.20123 15.349 247.37 36.55023   ‐226.169 268.5712 231.3764   ‐164.416 268.5712

    ‐32.47   ‐23.51   ‐247.37   ‐55.98 214.9   ‐279.84   ‐249.174 146.618 214.9

    GB2GB3 32.1389 23.38 247.37 55.5189   ‐215.231 279.5089 248.7389   ‐147.053 279.5089

    ‐20.8258   ‐15.09   ‐247.37   ‐35.9158 226.5442   ‐268.196   ‐230.794 164.9982 226.5442

    (1)DL+LL

    (3) .9DL‐1.5EQ (2)DL‐EQ 

    Servicibility in Limit StatePoint of  Reference

    BEAM

    (7)1.2(DL+LL‐EQ)

    LOAD COMBINATION BEAM (KN.m)

    Point of  reference   Ultimate Limit State

    (4) 1.5(DL+EQ) (3)DL+EQ  

    (5) 1.5(DL‐EQ) (4)DL+.8LL+.8EQ  

    (6)1.2(DL+LL+EQ) (5)DL+.8LL‐.8EQ 

    ULTIMATE LIMIT STATE  SERVICEABLITY LIMIT STATE

    (1)  1.5(DL+LL)

    (2) .9DL+1.5EQ 

  • 8/18/2019 Design of RCC building

    48/94

    DL LL  EL 1 2 3 4 5 6 7

    AB1BB1 MOMENTS   ‐10.6   ‐7.67 28.99   ‐27.405 33.945   ‐53.025 27.585   ‐59.385 12.864   ‐56.712

    AXIAL 133.43 21 11.6 231.645 137.487 102.687 217.545 182.745 199.236 171.396

    BB1CB1 MOMENTS   ‐21.2   ‐15.35 44.72   ‐54.825 48   ‐86.16 35.28   ‐98.88 9.804   ‐97.524

    AXIAL 266.86 0 41.09 400.29 301.809 178.539 461.925 338.655 369.54 270.924

    CB1DB1 MOMENTS   ‐10.6   ‐7.67 97.98   ‐27.405 137.43   ‐156.51 131.07   ‐162.87 95.652   ‐139.5

    AXIAL 400.29 21 95.29 631.935 503.196 217.326 743.37 457.5 619.896 391.2

    DB1EB1 MOMENTS   ‐21.2   ‐15.35 110.07   ‐54.825 146.025   ‐184.185 133.305   ‐196.905 88.224   ‐175.944

    AXIAL 533.72 21 175.64 832.08 743.808 216.888 1064.04 537.12 876.432 454.896

    EB1FB1 MOMENTS   ‐10.6   ‐7.67 119.97   ‐27.405 170.415   ‐189.495 164.055   ‐195.855 122.04   ‐165.888

    AXIAL 667.15 21 267.64 1032.225 1001.895 198.975 1402.185 599.265 1146.948 504.612

    FB1GB1 MOMENTS  ‐

    21.2  ‐

    15.35 123.46  ‐

    54.825 166.11  ‐

    204.27 153.39  ‐

    216.99 104.292  ‐

    192.012 AXIAL 800.58 21 364.98 1232.37 1267.992 173.052 1748.34 653.4 1423.872 547.92

    DL  LL EL 1 2 3 4 5

    AB1BB1   ‐10.6   ‐7.67 28.99   ‐18.27   ‐39.59 18.39 6.456   ‐39.928

    133.43 21 11.6 154.43 121.83 145.03 159.51 140.95

    BB1CB1   ‐21.2   ‐15.35 44.72   ‐36.55   ‐65.92 23.52 2.296   ‐69.256

    266.86 0 41.09 266.86 225.77 307.95 299.732 233.988

    CB1DB1   ‐10.6   ‐7.67 97.98   ‐18.27   ‐108.58 87.38 61.648   ‐95.12

    400.29 21 95.29 421.29 305 495.58 493.322 340.858

    DB1EB1   ‐21.2   ‐15.35 110.07   ‐36.55   ‐131.27 88.87 54.576   ‐121.536

    533.72 21 175.64 554.72 358.08 709.36 691.032 410.008

    EB1FB1   ‐10.6   ‐7.67 119.97   ‐18.27   ‐130.57 109.37 79.24   ‐112.712

    667.15 21 267.64 688.15 399.51 934.79 898.062 469.838

    FB1GB1   ‐21.2   ‐15.35 123.46   ‐36.55   ‐144.66 102.26 65.288   ‐132.248

    800.58 21 364.98 821.58 435.6 1165.56 1109.364 525.396

    POINT OF REFERENCE   SERVICIBILITY LIMIT STATE

    (6)1.2(DL+LL+EQ) (5)DL+.8LL‐.8EQ 

    (7)1.2(DL+LL‐

    EQ)

    Point oF rEFErEnCE   ULTIMATE LIMIT STATE

    Column

    (3) .9DL‐1.5EQ (2)DL‐EQ 

    (4) 1.5(DL+EQ) (3)DL+EQ  

    (5) 1.5(DL‐EQ) (4)DL+.8LL+.8EQ  

    LOAD COMBINATION Column(KN.m)

    ULTIMATE LIMIT STATE  SERVICEABLITY LIMIT STATE

    (1)  1.5(DL+LL)

    (2) .9DL+1.5EQ (1)DL+LL

  • 8/18/2019 Design of RCC building

    49/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    44 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Beam Design

    Design +ve bending moment= 58.17kNm

    Design -ve bending moment= 419.2634kNm

    Design shear force= 212 kN

    Design of beam GB2GB3 at floor level:

    Grade of concrete = M25

    Beam size = 300 mm x 500 mm

    Width/depth =300/500 = 0.6>0.3

    Hence ok

    As per IS 456 Width should not be less than 200 mm.

    Hence 300 mm width is ok

    Depth should not be greater than span/4 = 5/4= 1.2

    Hence 500 mm is ok

    Effective depth of beam (d) = 500-30-25/2=457.5mm

    Design of Longitudinal reinforcement

    Due to hogging moment of 419.2634=420knm

    Mu lim=0.138f ck  bd 2=0.138x25x300x457.52 = 221.39 knm

    Since Mu= 420> 221.39 knm

    Hence doubly reinforced section

    Mu/bd 2=(420x106)/(300x457.52) = 6.686 

    d'/d= (30+25/2)/457.5 = 0.08

    Using SP 16 TABLE 51

    PTOP = 2.17%

  • 8/18/2019 Design of RCC building

    50/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    45 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    P BOTTOM=1.02%

    Top reinforcement= 2.17x300x457.5/100 = 2389.32 mm2 

    Using 32 mm bars , no. of bars = 3 

    Bottom reinforcement= 1.02x300x457.5/100 = 1299.97 mm2 

    Using 25 mm bars, no. of bars = 3

    Check

    As per IS CODE 13920, CLAUSE 6.2.1

    Tension steel ≥.24(√f ck /f y)*100

    =0.24x(√25/415)/100= 0.29% 

    Hence tensile steel is ok

    As per IS CODE 13920, Clause6.2.2

    Max Steel(2.45%) ≤2.5% 

    Hence ok

    Sagging moment=58.17kNm

    58.17

  • 8/18/2019 Design of RCC building

    51/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    46 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    SF= 212 kN

    SF for which shear reinforcement is to be provided.

    V s= 212-119 = 93kN

    Using 8mm stirrups 2 legged

    Spacing =0.87x415x2x(3.14x82/4)x457.5/(101x1000)

    =166 mm

    As per IS 13920 Clause 6.35

    Spacing of hoops over a length of 2d from support

  • 8/18/2019 Design of RCC building

    52/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    47 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Beam Design

    Design +ve bending moment= 38.0859 kNm

    Design -ve bending moment= 251.4584kNm

    Design shear force= 139.616 kN

    Design of beam CB2CB3 at fourth floor level:

    Grade of concrete = M25

    Beam size = 300 mm x 500 mm

    Width/depth = 300/500 = 0.6 >0.3

    Hence ok

    As per IS 456 Width should not be less than 200 mm.

    Hence 300 mm width is ok

    Depth should not be greater than span/4 = 5/4= 1.2

    Hence 500 mm is ok

    Effective depth of beam (d) = 500-30-25/2=457.5mm

    Design of Longitudinal reinforcement

    Due to hogging moment of 251.4854 kNm

    Mu lim=0.138f ck  bd 2=0.138x25x300x457.52 = 221.39 kNm

    Since Mu= 251.4854> 221.39 kNm

    Hence doubly reinforced section

    Mu/bd 2=(251.4854x106)/(300x457.52) = 4.00 

    d'/d= (30+25/2)/457.5 = 0.08

    Using SP 16 TABLE 51

    PTOP = 1.364%

  • 8/18/2019 Design of RCC building

    53/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    48 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    P BOTTOM=0.174%

    Top reinforcement= 1.364x300x457.5/100 = 1872.09 mm2 

    Using 32 mm bars , no. of bars = 3 

    Bottom reinforcement= 0.174x300x457.5/100 = 238.82 mm2 

    Using 20 mm bars, no. of bars = 2

    Check

    As per IS CODE 13920, CLAUSE 6.2.1

    Tension steel ≥.24(√f ck /f y)*100

    =0.24x(√25/415)/100= 0.29% 

    Hence tensile steel is ok

    As per IS CODE 13920, Clause 6.2.2

    Max Steel ≤2.5% 

    Hence ok

    Sagging moment= 38.0859 kNm

    38.0859

  • 8/18/2019 Design of RCC building

    54/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    49 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    SF= 212kN

    SF for which shear reinforcement is to be provided.

    V s= 212-98.82 = 113.18kN

    Using 8mm stirrups 2 legged

    Spacing =0.87x415x2x(3.14x82/4)x457.5/(101x1000)

    =166 mm

    As per IS 13920 Clause 6.35

    Spacing of hoops over a length of 2d from support

  • 8/18/2019 Design of RCC building

    55/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    50 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Beam Design

    Design +ve bending moment=161 kNm

    Design -ve bending moment= 271.24 kNm

    Design shear force= 182kN

    Design of beam GB2GB3 at floor level:

    Grade of concrete = M25

    Beam size = 300 mm x 500 mm

    Width/depth =300/500 = 0.6>0.3

    Hence ok

    As per IS 456 Width should not be less than 200 mm.

    Hence 300 mm width is ok

    Depth should not be greater than span/4 = 10/4= 2.4

    Hence 500 mm is ok

    Effective depth of beam (d) = 500-30-25/2=457.5mm

    Design of Longitudinal reinforcement

    Due to hogging moment of 419.2634=271.2knm

    Mu lim=0.138f ck  bd 2=0.138x25x300x457.52 = 221.39 knm

    Since Mu= 271.2> 221.39 knm

    Hence doubly reinforced section

    Mu/bd 2=(271.2x106)/(300x457.52) = 4.32 

    d'/d= (30+25/2)/457.5 = 0.08

    Using SP 16 TABLE 51

    PTOP = 1.45%

  • 8/18/2019 Design of RCC building

    56/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    51 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    P BOTTOM=0.27%

    Top reinforcement= 1.45x300x457.5/100 = 1988.32 mm2 

    Using 32 mm bars , no. of bars = 3

    Sagging moment=161kNm

    161

  • 8/18/2019 Design of RCC building

    57/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    52 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Tc=0.87N/mm2(IS 456, Table 19)

    Vc=0.87x300x457.5 = 119 kN

    SF= 182kN

    SF for which shear reinforcement is to be provided.

    V s=182-119 = 63kN

    Using 8mm stirrups 2 legged

    Spacing =0.87x415x2x(3.14x82/4)x457.5/(101x1000)

    =166 mm

    As per IS 13920 Clause 6.35

    Spacing of hoops over a length of 2d from support

  • 8/18/2019 Design of RCC building

    58/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    53 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    COLUMN DESIGN

    Top floor column design

    Design axial force, Pu = 102 kN

    Design bending moment, Mu = 79.49 kNm

    Taking column cross-section 450mm x 450mm

    L/D=2.7/.5=5.4 0.8% and 6mm

  • 8/18/2019 Design of RCC building

    59/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    54 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Providing 10 mm links

    As per IS 13920, clause 7.33

    Spacing of hoops 52.5 mm2 

    10mm bars @ 75 mm spacing will be adequate

    As per IS 13920, clause 7.2.1, Spacing of hoops at lap splice should be less than or equal to

    150mm

    Hence provide 150mm c/c spacing at lap splices

    As per IS 13920, clause 7.4.1 special confining reinforcement length (lo) shall not be less than

    a.  Larger lateral dimension = 450mm

     b.  One sixth of clear span =1/6 x (2700-390) = 385mm

    c.  450mm

    Hence provide lo = 600 mm

  • 8/18/2019 Design of RCC building

    60/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    55 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    COLUMN DESIGN

    Top floor column design

    Design axial force, Pu = 1064.04kN

    Design bending moment, Mu = 256 kNm

    Taking column cross-section 450mm x 450mm

    L/D=3.6/.5=7.2 0.8% and 6mm

  • 8/18/2019 Design of RCC building

    61/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    56 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Providing 10 mm links

    As per IS 13920, clause 7.33

    Spacing of hoops 57.5mm2 

    10mm bars @ 75 mm spacing will be adequate

    As per IS 13920, clause 7.2.1, Spacing of hoops at lap splice should be less than or equal to

    150mm

    Hence provide 150mm c/c spacing at lap splices

    As per IS 13920, clause 7.4.1 special confining reinforcement length (lo) shall not be less than

    a.  Larger lateral dimension = 450mm

     b.  One sixth of clear span =1/6 x (2700-390) = 385mm

    c.  450mm

    Hence provide lo = 600 mm

  • 8/18/2019 Design of RCC building

    62/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    57 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    COLUMN DESIGN

    Top floor column design

    Design axial force, Pu = 1784.34 kN

    Design bending moment, Mu = 273.24 kNm

    Taking column cross-section 450mm x 450mm

    L/D=3.6/.5=7.2 0.8% and 6mm

  • 8/18/2019 Design of RCC building

    63/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    58 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Providing 10 mm links

    As per IS 13920, clause 7.33

    Spacing of hoops 52.5 mm2 

    10mm bars @ 75 mm spacing will be adequate

    As per IS 13920, clause 7.2.1, Spacing of hoops at lap splice should be less than or equal to

    150mm

    Hence provide 150mm c/c spacing at lap splices

    As per IS 13920, clause 7.4.1 special confining reinforcement length (lo) shall not be less than

    a.  Larger lateral dimension = 450mm

     b.  One sixth of clear span =1/6 x (2700-390) = 385mm

    c.  450mm

    Hence provide lo = 600 mm

  • 8/18/2019 Design of RCC building

    64/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    59 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    FOOTING DESIGN

    Footing (For Inner Column):

    Factored load coming from column is 1902 kN

    Size of column 450mmx450mm

    Grade of concrete M30

    Grade of steel Fe 415

    Safe bearing capacity of soil = 160 + 33% of this value

    = 160 +52.8 kN/m2 

    = 212.8 kN/m2 

    1. FOOTING SIZE : 

    Load = (factored load/factor of safety) + self-weight of flooring

    = 1902/1.2 +10 ×1902/(100×1.2)

    = 1743.5 kN

     Now area of footing= 1743.5/212.8 =8.19 m2=2.86×2.86

    2.9×2.9 m2 is adopted.

    Since we considered safe bearing capacity of soil therefore characteristic load is considered

    in finding area of footing.

    2. DEPTH FROM ONE WAY SHEAR 

    Minimum shear stress = 0.35 N/mm2 

    Q = P/L2 

    V= qL{(L-a)/2- d}

    =P/L{(L-a)/2- d}

    = P/2L(L-a-2d)

     Now,LdƬc= P/2L (L-a-2d)d=P(L-a)/2(P+ƬcL

    2)

    3.DESIGN OF LOAD 

    Pu= 1902 kN

    Reaction of soil =1902/(2.9*2.9)=226.16 KN/m2 

     Now,d=P(L-a)/2(P+ ƬcL2) =1902(2.9-0.5)/(2(1902+350×2.92))

    = 0.471 m

    4.DEPTH REQUIRED FOR PUNCHING SHEAR 

  • 8/18/2019 Design of RCC building

    65/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    60 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    To find the punching shear we have to take critical section at d/2 from face of column

    Perimeter = (a+d)×4

    Considering the equilibrium forces = P/L2[ L2-(a+d)2]=4(a+d)dτ p 

    Where τ p =0.25√f ck  Perimeter =4 ×(0.5+0.471) =3.884Shear force =P/L2(L2-(a+d)2) =1902/2.92 [ 2.92-(0.5 + 0.471)2]

    = 1688.77 kN

    Permissible shear stress =0.25× f ck .5 = 0.25× 0.300.5= 1.36 N/mm2 

     Now, P/L2[ L2-(a+d)2]=4(a+d)dτ pd=1688.77/3.7×1.36=304.17 mm < 471 mm,design is ok for both shear

    5. DEPTH REQUIRED FOR BENDING 

    Moment at the face of column

    Mu= P/ L2[ L(L-a)2/8] = 1902/2.92x[2.9×(2.9-0.5)2]/8 =472.22 kNm.

    d=√( Mu /(0.138 f ck  b))

     Now, Mu =0.138 f ck  bd 2

    Calculating d=347

  • 8/18/2019 Design of RCC building

    66/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    61 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Spacing is

  • 8/18/2019 Design of RCC building

    67/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    62 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Staircase Design

    The height of each floor = 3.6m

     Number of rise provided = 24

    So the height of each rise (R) = 150 mm

    Let tread (T) = 270 mm

    Flights provided = 2

    1st flight

     No. of rise in = 12

    Height from 0.0 m to 1.8 m

    2nd flight

  • 8/18/2019 Design of RCC building

    68/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    63 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

     No. of rise in = 12

    Height from 1.8 m to 3.6 m

    Design of waist slab

    Calculation of depth:

    If we consider

    l/d= 30

    11 steps with tread 270mm, Going= 11*270=2970 mm

    l= 1500+2970*[(R 2+T2)0.5/T] = 1500+2970*[(1502+2702)/270] = 4897 mm ≈ 4900 mm 

    Hence d= 4900/30 = 163.33 mm

    Let d = 165 mm

    Considering 20 mm clear cover and 10 mm dia bar

    Total depth, D = 165+20+(0.5*10) = 190 mm

    Calculation of loads:

    Self weight of waist slab= D*[(R 2+T2)0.5/T]*25 = 0.19*[(1452+2502)0.5/250]*25 = 5.51

    KN/m2 

    Self weight of steps= (1000/270)*(0.5*R*T)*25 = 1.875 KN/m2 

    Floor finish= 2 KN/m2

     

    Self weight of landing slab = 25*0.19 = 4.75 KN/m2 

    Total dead load on flights = 5.51+1.875+2 = 9.385 ≈ 9.5 KN/m2 

    Total dead load on landings = 4.75+2 = 6.75 KN/m2 

    Live load = 4 KN/m2  [As per IS875 for commercial buildings]

    Combined load on flight = 1.5(DL+LL) = 1.5*(9.5+4) = 20.25 KN/m2 

  • 8/18/2019 Design of RCC building

    69/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    64 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    Combined load on landings = 1.5(DL+LL) = 1.5*(6.75+4) = 16.125 KN/m2 

    Calculation of Bending Moment and Shear Force: 

    For each flight:

    Maximum Bending Moment = 44.62 KN-m

    Maximum Shear Force = 50.625 KN

    Check:

    Mu, max= 0.138f ck  bd 2 

    44.62*106

     = 0.138*25*1000*d 2

     

    d=113.72mm

    d = 165mm>113.72mm (provided)

    hence ok

    Calculation of area of steel:

    Ast= 0.5 bdf ck /f y [1 - (1 - 4.6Mu/f ck  bd 2)0.5]

    Since Mu= 44.62*106 N-mm

    Ast = 763 mm2 

     provided Ast=785 mm2> 763 mm2 

    Provide 10 mm dia bars @ 100 mm c/c [Total 10 no.s provided]

    max spacing= 3d=3*165=495mm or 300 mm whichever is smaller

    hence ok

    Check for Shear: 

    100Ast/bd = (100*785)/(1000*165) = 0.475

    For Ast=0.475%, Tc=0.477 [As per IS 456:2000, Table 19, pg 73]

    Shear strength of slab = 0.477*1000*0.165 = 78.7 KN > 50.625 KN

  • 8/18/2019 Design of RCC building

    70/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    65 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    So the slab is capable of taking maximum shear force.

    Calculation of distribution steel: 

    Ast= 0.12% of Ag = (0.12/100)*1000*165 = 198 mm2 per m

    So provide 8 mm dia bar @ 200 mm c/c [Total 5 no.s]

    Area provided: 251.33 mm2> 198 mm2 per m

    So safe.

  • 8/18/2019 Design of RCC building

    71/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    65 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    BEAM COLUMN LAYOUT

  • 8/18/2019 Design of RCC building

    72/94

    Tuesday, May 05, 2015, 04:56 PM 

    PAGE NO. 1

    ****************************************************

    * *

    * STAAD.Pro *

    * Version 2007 Build 04 *

    * Proprietary Program of *

    * Research Engineers, Intl. *

    * Date= MAY 5, 2015 *

    * Time= 16:41:33 *

    * *

    * USER ID: *

    ****************************************************

    1. STAAD SPACE

    I NPUT FI LE: Fi nal . STD

    2. START J OB I NFORMATI ON

    3. ENGI NEER DATE 21- APR- 15

    4. END J OB I NFORMATI ON

    5. I NPUT WI DTH 79

    6. UNI T METER KN

    7. J OI NT COORDI NATES8. 28 0 5. 4 5; 29 3 5. 4 5; 30 0 1. 8 0; 31 3 1. 8 0; 32 8 1. 8 0; 33 13 1. 8 0

    9. 34 18 1. 8 0; 35 23 1. 8 0; 38 23 1. 8 5; 39 18 1. 8 5; 40 0 1. 8 5; 41 0 1. 8 10

    10. 42 3 1. 8 10; 43 3 1. 8 5; 44 8 1. 8 5; 45 8 1. 8 10; 46 13 1. 8 10; 47 13 1. 8 5

    11. 48 18 1. 8 10; 49 23 1. 8 10; 57 0 5. 4 0; 58 3 5. 4 0; 59 8 5. 4 0; 60 13 5. 4 0

    12. 61 18 5. 4 0; 62 23 5. 4 0; 63 24. 8 5. 4 0; 64 24. 8 5. 4 5; 65 23 5. 4 5

    13. 66 18 5. 4 5; 67 0 5. 4 10; 68 3 5. 4 10; 69 8 5. 4 5; 70 8 5. 4 10; 71 13 5. 4 10

    14. 72 13 5. 4 5; 73 18 5. 4 10; 74 23 5. 4 10; 75 0 5. 4 11. 8; 76 3 5. 4 11. 8

    15. 77 8 5. 4 11. 8; 78 13 5. 4 11. 8; 79 18 5. 4 11. 8; 80 23 5. 4 11. 8; 81 24. 8 5. 4 10

    16. 82 0 7. 2 5; 83 3 7. 2 5; 84 0 9 0; 85 3 9 0; 86 8 9 0; 87 13 9 0; 88 18 9 0

    17. 89 23 9 0; 90 24. 8 9 0; 91 24. 8 9 5; 92 23 9 5; 93 18 9 5; 94 0 9 5; 95 0 9 10

    18. 96 3 9 10; 97 3 9 5; 98 8 9 5; 99 8 9 10; 100 13 9 10; 101 13 9 5; 102 18 9 10

    19. 103 23 9 10; 104 0 9 11. 8; 105 3 9 11. 8; 106 8 9 11. 8; 107 13 9 11. 8

    20. 108 18 9 11. 8; 109 23 9 11. 8; 110 24. 8 9 10; 111 0 10. 8 5; 112 3 10. 8 5

    21. 113 0 12. 6 0; 114 3 12. 6 0; 115 8 12. 6 0; 116 13 12. 6 0; 117 18 12. 6 022. 118 23 12. 6 0; 119 24. 8 12. 6 0; 120 24. 8 12. 6 5; 121 23 12. 6 5; 122 18 12. 6 5

    23. 123 0 12. 6 5; 124 0 12. 6 10; 125 3 12. 6 10; 126 3 12. 6 5; 127 8 12. 6 5

    24. 128 8 12. 6 10; 129 13 12. 6 10; 130 13 12. 6 5; 131 18 12. 6 10; 132 23 12. 6 10

    25. 133 0 12. 6 11. 8; 134 3 12. 6 11. 8; 135 8 12. 6 11. 8; 136 13 12. 6 11. 8

    26. 137 18 12. 6 11. 8; 138 23 12. 6 11. 8; 139 24. 8 12. 6 10; 140 0 14. 4 5

    27. 141 3 14. 4 5; 142 0 16. 2 0; 143 3 16. 2 0; 144 8 16. 2 0; 145 13 16. 2 0

    28. 146 18 16. 2 0; 147 23 16. 2 0; 148 24. 8 16. 2 0; 149 24. 8 16. 2 5; 150 23 16. 2 5

    29. 151 18 16. 2 5; 152 0 16. 2 5; 153 0 16. 2 10; 154 3 16. 2 10; 155 3 16. 2 5

    30. 156 8 16. 2 5; 157 8 16. 2 10; 158 13 16. 2 10; 159 13 16. 2 5; 160 18 16. 2 10

    31. 161 23 16. 2 10; 162 0 16. 2 11. 8; 163 3 16. 2 11. 8; 164 8 16. 2 11. 8

    32. 165 13 16. 2 11. 8; 166 18 16. 2 11. 8; 167 23 16. 2 11. 8; 168 24. 8 16. 2 10

    33. 171 0 18. 9 0; 172 3 18. 9 0; 173 8 18. 9 0; 174 13 18. 9 0; 175 18 18. 9 0

    34. 176 23 18. 9 0; 177 24. 8 18. 9 0; 178 24. 8 18. 9 5; 179 23 18. 9 5; 181 0 18. 9 5

    35. 182 0 18. 9 10; 183 3 18. 9 10; 184 3 18. 9 5; 186 8 18. 9 10; 187 13 18. 9 1036. 189 18 18. 9 10; 190 23 18. 9 10; 191 0 18. 9 11. 8; 192 3 18. 9 11. 8

    37. 193 8 18. 9 11. 8; 194 13 18. 9 11. 8; 195 18 18. 9 11. 8; 196 23 18. 9 11. 8

    38. 197 24. 8 18. 9 10; 198 0 21. 6 0; 199 3 21. 6 0; 200 8 21. 6 0; 201 13 21. 6 0

    39. 202 18 21. 6 0; 203 23 21. 6 0; 204 24. 8 21. 6 0; 205 24. 8 21. 6 5; 206 23 21. 6 5

    40. 207 0 21. 6 5; 208 0 21. 6 10; 209 3 21. 6 10; 210 3 21. 6 5; 211 8 21. 6 10

    Page 1 of 778D:\__8th sem project\STAAD Pro\Final\Final.anl

  • 8/18/2019 Design of RCC building

    73/94

    Tuesday, May 05, 2015, 04:56 PM 

    STAAD SPACE - - PAGE NO. 2

    41. 212 13 21. 6 10; 213 18 21. 6 10; 214 23 21. 6 10; 215 0 21. 6 11. 8

    42. 216 3 21. 6 11. 8; 217 8 21. 6 11. 8; 218 13 21. 6 11. 8; 219 18 21. 6 11. 8

    43. 220 23 21. 6 11. 8; 221 24. 8 21. 6 10; 222 24. 8 1. 8 0; 223 24. 8 1. 8 5

    44. 224 24. 8 1. 8 10; 225 0 3. 6 5; 226 3 3. 6 5; 227 0 1. 8 11. 8; 228 3 1. 8 11. 8

    45. 229 8 1. 8 11. 8; 230 13 1. 8 11. 8; 231 18 1. 8 11. 8; 232 23 1. 8 11. 8

    46. 233 0 2. 38419E- 007 0; 234 3 2. 38419E- 007 0; 235 8 2. 38419E- 007 0

    47. 236 13 2. 38419E- 007 0; 237 18 2. 38419E- 007 0; 238 23 2. 38419E- 007 0

    48. 239 23 2. 38419E- 007 5; 240 18 2. 38419E- 007 5; 241 0 2. 38419E- 007 5

    49. 242 0 2. 38419E- 007 10; 243 3 2. 38419E- 007 10; 244 3 2. 38419E- 007 5

    50. 245 8 2. 38419E- 007 5; 246 8 2. 38419E- 007 10; 247 13 2. 38419E- 007 10

    51. 248 13 2. 38419E- 007 5; 249 18 2. 38419E- 007 10; 250 23 2. 38419E- 007 10

    52. 251 0 - 1. 8 5

    53. MEMBER I NCI DENCES

    54. 41 28 29; 107 30 57; 108 31 58; 109 32 59; 110 33 60; 111 34 61; 112 35 62

    55. 115 38 65; 116 39 66; 117 40 225; 118 41 67; 119 42 68; 120 43 226; 121 44 69

    56. 122 45 70; 123 46 71; 124 47 72; 125 48 73; 126 49 74; 136 57 58; 137 58 59

    57. 138 59 60; 139 60 61; 140 61 62; 141 62 63; 142 64 65; 143 65 66; 144 66 61

    58. 145 57 28; 146 28 67; 147 67 68; 148 68 29; 149 29 69; 150 69 70; 151 70 71

    59. 152 71 72; 153 72 66; 154 66 73; 155 73 74; 156 74 65; 157 65 62; 158 58 29

    60. 159 59 69; 160 69 72; 161 72 60; 162 67 75; 163 76 68; 164 68 70; 165 70 77

    61. 166 78 71; 167 71 73; 168 73 79; 169 80 74; 170 74 81; 171 82 83; 172 82 28

    62. 173 83 29; 174 57 84; 175 58 85; 176 59 86; 177 60 87; 178 61 88; 179 62 89

    63. 182 65 92; 183 66 93; 184 28 94; 185 67 95; 186 68 96; 187 29 97; 188 69 98

    64. 189 70 99; 190 71 100; 191 72 101; 192 73 102; 193 74 103; 201 82 11165. 202 83 112; 203 84 85; 204 85 86; 205 86 87; 206 87 88; 207 88 89; 208 89 90

    66. 209 91 92; 210 92 93; 211 93 88; 212 84 94; 213 94 95; 214 95 96; 215 96 97

    67. 216 97 98; 217 98 99; 218 99 100; 219 100 101; 220 101 93; 221 93 102

    68. 222 102 103; 223 103 92; 224 92 89; 225 85 97; 226 97 94; 227 86 98

    69. 228 98 101; 229 101 87; 230 95 104; 231 105 96; 232 96 99; 233 99 106

    70. 234 107 100; 235 100 102; 236 102 108; 237 109 103; 238 103 110; 239 111 112

    71. 240 111 94; 241 112 97; 242 84 113; 243 85 114; 244 86 115; 245 87 116

    72. 246 88 117; 247 89 118; 250 92 121; 251 93 122; 252 94 123; 253 95 124

    73. 254 96 125; 255 97 126; 256 98 127; 257 99 128; 258 100 129; 259 101 130

    74. 260 102 131; 261 103 132; 269 111 140; 270 112 141; 271 113 114; 272 114 115

    75. 273 115 116; 274 116 117; 275 117 118; 276 118 119; 277 120 121; 278 121 122

    76. 279 122 117; 280 113 123; 281 123 124; 282 124 125; 283 125 126; 284 126 127

    77. 285 127 128; 286 128 129; 287 129 130; 288 130 122; 289 122 131; 290 131 132

    78. 291 132 121; 292 121 118; 293 114 126; 294 126 123; 295 115 127; 296 127 13079. 297 130 116; 298 124 133; 299 134 125; 300 125 128; 301 128 135; 302 136 129

    80. 303 129 131; 304 131 137; 305 138 132; 306 132 139; 307 140 141; 308 140 123

    81. 309 141 126; 310 113 142; 311 114 143; 312 115 144; 313 116 145; 314 117 146

    82. 315 118 147; 318 121 150; 319 122 151; 320 123 152; 321 124 153; 322 125 154

    83. 323 126 155; 324 127 156; 325 128 157; 326 129 158; 327 130 159; 328 131 160

    84. 329 132 161; 339 142 143; 340 143 144; 341 144 145; 342 145 146; 343 146 147

    85. 344 147 148; 345 149 150; 346 150 151; 347 151 146; 348 142 152; 349 152 153

    86. 350 153 154; 351 154 155; 352 155 156; 353 156 157; 354 157 158; 355 158 159

    87. 356 159 151; 357 151 160; 358 160 161; 359 161 150; 360 150 147; 361 143 155

    88. 362 155 152; 363 144 156; 364 156 159; 365 159 145; 366 153 162; 367 163 154

    89. 368 154 157; 369 157 164; 370 165 158; 371 158 160; 372 160 166; 373 167 161

    90. 374 161 168; 378 142 171; 379 143 172; 380 144 173; 381 145 174; 382 146 175

    91. 383 147 176; 386 150 179; 388 152 181; 389 153 182; 390 154 183; 391 155 184

    92. 393 157 186; 394 158 187; 396 160 189; 397 161 190; 407 171 172; 408 172 17393. 409 173 174; 410 174 175; 411 175 176; 412 176 177; 413 178 179; 416 171 181

    94. 417 181 182; 418 182 183; 419 183 184; 422 186 187; 426 189 190; 427 190 179

    95. 428 179 176; 429 172 184; 430 184 181; 434 182 191; 435 192 183; 436 183 186

    96. 437 186 193; 438 194 187; 439 187 189; 440 189 195; 441 196 190; 442 190 197

    Page 2 of 778D:\__8th sem project\STAAD Pro\Final\Final.anl

  • 8/18/2019 Design of RCC building

    74/94

    Tuesday, May 05, 2015, 04:56 PM 

    STAAD SPACE - - PAGE NO. 3

    97. 443 171 198; 444 172 199; 445 173 200; 446 174 201; 447 175 202; 448 176 203

    98. 451 179 206; 452 181 207; 453 182 208; 454 183 209; 455 184 210; 456 186 211

    99. 457 187 212; 458 189 213; 459 190 214; 467 198 199; 468 199 200; 469 200 201

    100. 470 201 202; 471 202 203; 472 203 204; 473 205 206; 474 198 207; 475 207 208

    101. 476 208 209; 477 209 210; 478 211 212; 479 213 214; 480 214 206; 481 206 203

    102. 482 199 210; 483 210 207; 484 208 215; 485 216 209; 486 209 211; 487 211 217

    103. 488 218 212; 489 212 213; 490 213 219; 491 220 214; 492 214 221; 493 200 211

    104. 494 201 212; 495 202 213; 499 225 28; 500 82 225; 501 226 29; 502 83 226

    105. 503 40 43; 504 30 31; 505 31 32; 506 32 33; 507 33 34; 508 34 35; 509 35 222

    106. 510 223 38; 511 38 39; 512 41 42; 513 43 44; 514 45 46; 515 47 39; 516 48 49

    107. 517 44 47; 518 42 45; 519 46 48; 520 49 224; 521 225 226; 522 28 40; 523 29 43

    108. 530 39 34; 531 30 40; 532 40 41; 533 42 43; 534 44 45; 535 46 47; 536 39 48

    109. 537 49 38; 538 38 35; 539 31 43; 540 32 44; 541 47 33; 542 41 227; 543 228 42

    110. 544 45 229; 545 230 46; 546 48 231; 547 232 49; 548 30 233; 549 31 234

    111. 550 32 235; 551 33 236; 552 34 237; 553 35 238; 554 38 239; 555 39 240

    112. 556 40 241; 557 41 242; 558 42 243; 559 43 244; 560 44 245; 561 45 246

    113. 562 46 247; 563 47 248; 564 48 249; 565 49 250

    114. DEFI NE MATERI AL START

    115. I SOTROPI C CONCRETE

    116. E 2. 17185E+007

    117. POI SSON 0. 17

    118. DENSI TY 23. 5616

    119. ALPHA 1E- 005

    120. DAMP 0. 05121. END DEFI NE MATERI AL

    122. MEMBER PROPERTY I NDI AN

    123. 41 136 TO 171 203 TO 239 271 TO 307 339 TO 374 407 TO 413 416 TO 419 422 426 -

    124. 427 TO 430 434 TO 442 467 TO 495 503 TO 521 530 TO 547 PRI S YD 0. 5 ZD 0. 3

    125. 107 TO 112 115 TO 126 172 TO 179 182 TO 193 201 202 240 TO 247 250 TO 261 -

    126. 269 270 308 TO 315 318 TO 329 378 TO 383 386 388 TO 391 393 394 396 397 443 -

    127. 444 TO 448 451 TO 459 499 TO 502 522 523 548 TO 565 PRI S YD 0. 45 ZD 0. 45

    128. CONSTANTS

    129. MATERI AL CONCRETE ALL

    130. SUPPORTS

    131. 233 TO 250 FI XED

    132. DEFI NE 1893 LOAD

    **WARNI NG- J OI NT NO. 251 NOT CONNECTED. OK, I F PART OF MASTER/ SLAVE.

    **WARNI NG- THI S STRUCTURE I S DI SJ OI NTED. I GNORE I FMASTER/ SLAVE OR I F UNCONNECTED J OI NTS.

    133. ZONE 0. 36 RF 5 I 1. 5 SS 2 ST 1 DM 0. 05 DT 1. 8

    134. SELFWEI GHT 1

    135. FLOOR WEI GHT

    **WARNI NG** about Fl oor / OneWay Loads/ Wei ghts.

    Pl ease not e t hat dependi ng on t he shape of t he f l oor you may

    have t o br eak up t he FLOOR/ ONEWAY LOAD i nt o mul t i pl e commands.

    For det ai l s pl ease r ef er to Techni cal Ref erence Manual

    Sect i on 5. 32. 4 Note 6.

    136. YRANGE 1. 7 1. 9 FLOAD - 10. 17 XRANGE 0 24. 8 ZRANGE 0 11. 8

    137. YRANGE 5. 3 5. 5 FLOAD - 10. 73 XRANGE 0 24. 8 ZRANGE 0 11. 8

    138. YRANGE 8. 9 9. 1 FLOAD - 10. 73 XRANGE 0 24. 8 ZRANGE 0 11. 8

    139. YRANGE 12. 5 12. 7 FLOAD - 10. 73 XRANGE 0 24. 8 ZRANGE 0 11. 8140. YRANGE 16. 1 16. 3 FLOAD - 10. 73 XRANGE 0 24. 8 ZRANGE 0 11. 8

    141. YRANGE 18. 8 19 FLOAD - 1. 67 XRANGE 0 24. 8 ZRANGE 0 11. 8

    142. YRANGE 21. 5 21. 7 FLOAD - 10. 59 XRANGE 0 24. 8 ZRANGE 0 11. 8

    143. LOAD 1 LOADTYPE SEI SMI C TI TLE EQ X

    Page 3 of 778D:\__8th sem project\STAAD Pro\Final\Final.anl

  • 8/18/2019 Design of RCC building

    75/94

    Tuesday, May 05, 2015, 04:56 PM 

    STAAD SPACE - - PAGE NO. 4

    NOTE : FOR SOFT STORY CHECKING WRITE "CHECK SOFT STORY" AT THE

    END OF LOADING UNDER DEFINE 1893 LOAD DEFINITION.

    144. 1893 LOAD X 1

    145. LOAD 2 LOADTYPE SEI SMI C TI TLE EQ Z

    146. 1893 LOAD Z 1

    147. LOAD 3 LOADTYPE LI VE REDUCI BLE TI TLE LI VE

    148. FLOOR LOAD

    149. YRANGE 1. 7 1. 9 FLOAD - 4 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY

    150. YRANGE 5. 3 5. 5 FLOAD - 4 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY

    151. YRANGE 8. 9 9. 1 FLOAD - 4 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY

    152. YRANGE 12. 5 12. 7 FLOAD - 4 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY

    153. YRANGE 16. 1 16. 3 FLOAD - 4 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY

    154. YRANGE 21. 5 21. 7 FLOAD - 1. 5 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY

    155. LOAD 4 LOADTYPE DEAD TI TLE DEAD

    156. FLOOR LOAD

    157. YRANGE 1. 7 1. 9 FLOAD - 5. 75 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY

    158. YRANGE 5. 3 5. 5 FLOAD - 5. 75 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY

    159. YRANGE 8. 9 9. 1 FLOAD - 5. 75 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY

    160. YRANGE 12. 5 12. 7 FLOAD - 5. 75 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY

    161. YRANGE 16. 1 16. 3 FLOAD - 5. 75 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY

    162. YRANGE 21. 5 21. 7 FLOAD - 1. 5 XRANGE 0 24. 8 ZRANGE 0 11. 8 GY163. MEMBER LOAD

    164. 467 TO 471 474 TO 476 478 480 481 486 UNI GY - 6. 25

    165. 339 TO 343 348 407 TO 411 416 UNI GY - 13. 75

    166. 136 TO 140 145 203 TO 207 212 271 TO 275 280 504 TO 508 531 UNI GY - 19. 375

    167. LOAD 5 LOADTYPE DEAD TI TLE SELF WEI GHT

    168. SELFWEI GHT Y - 1 LI ST 41 107 TO 112 115 TO 126 136 TO 179 182 TO 193 -

    169. 201 TO 247 250 TO 261 269 TO 315 318 TO 329 339 TO 374 378 TO 383 386 388 -

    170. 389 TO 391 393 394 396 397 407 TO 413 416 TO 419 422 426 TO 430 434 TO 448 -

    171. 451 TO 459 467 TO 495 499 TO 523 530 TO 565

    172. LOAD COMB 6 1. 5( DL+LL)

    173. 3 1. 5 4 1. 5

    174. LOAD COMB 7 1. 5( DL+ELX)

    175. 4 1. 5 1 1. 5

    176. LOAD COMB 8 1. 5( DL- ELX)177. 4 1. 5 1 - 1. 5

    178. LOAD COMB 9 1. 5( DL+ELZ)

    179. 2 1. 5 4 1. 5

    180. LOAD COMB 10 1. 5( DL- ELZ)

    181. 4 1. 5 2 - 1. 5

    182. LOAD COMB 11 1. 2( DL+LL+ELX)

    183. 1 1. 2 3 1. 2 4 1. 2

    184. LOAD COMB 12 1. 2( DL+LL- ELX)

    Page 4 of 778D:\__8th sem project\STAAD Pro\Final\Final.anl

  • 8/18/2019 Design of RCC building

    76/94

    Tuesday, May 05, 2015, 04:56 PM 

    STAAD SPACE - - PAGE NO. 5

    185. 3 1. 2 4 1. 2 1 - 1. 2

    186. LOAD COMB 13 1. 2( DL+LL+ELZ)

    187. 2 1. 2 3 1. 2 4 1. 2

    188. LOAD COMB 14 1. 2( DL+LL- ELZ)

    189. 3 1. 2 4 1. 2 2 - 1. 2

    190. LOAD COMB 15 0. 9DL+1. 5ELX

    191. 4 0. 9 1 1. 5

    192. LOAD COMB 16 0. 9DL- 1. 5ELX

    193. 4 0. 9 1 - 1. 5

    194. LOAD COMB 17 0. 9DL+1. 5ELZ

    195. 4 0. 9 2 1. 5

    196. LOAD COMB 18 0. 9DL- 1. 5ELZ

    197. 4 0. 9 2 - 1. 5

    198. PERFORM ANALYSI S

    P R O B L E M S T A T I S T I C S

    -----------------------------------

     NUMBER OF JOINTS/MEMBER+ELEMENTS/SUPPORTS = 210/ 375/ 18

    SOLVER USED IS THE IN-CORE ADVANCED SOLVER 

    TOTAL PRIMARY LOAD CASES = 5, TOTAL DEGREES OF FREEDOM = 1152

    **WARNI NG: I F THI S UBC/ I BC ANALYSI S HAS TENSI ON/ COMPRESSI ON

    OR REPEAT LOAD OR RE- ANALYSI S OR SELECT OPTI MI ZE, THEN EACH

    UBC/ I BC CASE SHOULD BE FOLLOWED BY PERFORM ANALYSI S CHANGE.

    ZERO STI FFNESS I N DI RECTI ON 1 AT J OI NT 251 EQN. NO. 1147

    LOADS APPLI ED OR DI STRI BUTED HERE FROM ELEMENTS WI LL BE I GNORED.

    THI S MAY BE DUE TO ALL MEMBERS AT THI S J OI NT BEI NG RELEASED OR

    EFFECTI VELY RELEASED I N THI S DI RECTI ON.

    ZERO STI FFNESS I N DI RECTI ON 2 AT J OI NT 251 EQN. NO. 1148

    ZERO STI FFNESS I N DI RECTI ON 3 AT J OI NT 251 EQN. NO. 1149

    ZERO STI FFNESS I N DI RECTI ON 4 AT J OI NT 251 EQN. NO. 1150ZERO STI FFNESS I N DI RECTI ON 5 AT J OI NT 251 EQN. NO. 1151

    ZERO STI FFNESS I N DI RECTI ON 6 AT J OI NT 251 EQN. NO. 1152

    *********************************************************

    * *

    * TI ME PERI OD FOR X 1893 LOADI NG = 0. 79795 SEC *

    * SA/ G PER 1893= 1. 704, LOAD FACTOR= 1. 000 *

    * FACTOR V PER 1893= 0. 0893 X 20384. 42 *

    * *

    *********************************************************

    Page 5 of 778D:\__8th sem project\STAAD Pro\Final\Final.anl

  • 8/18/2019 Design of RCC building

    77/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    66 Analysis and Design of Multi-Storied Shopping Mall cum Multiplex Cinema Hall  

    STAAD Pro 3D Model

  • 8/18/2019 Design of RCC building

    78/94

     

    Department of Civil Engineering National Institute of Technology, Silchar

    67 Analysis and Design of Multi-Storied Shoppin