55
Design of PGNs for malaria parasite and cell cycle control systems Junior Barrera DCC-IME-USP / BIOINFO-USP

Design of PGNs for malaria parasite and cell cycle control systemsjb/lectures/genetic networks... · 2006. 3. 1. · • Cell cycle regulation • Design of PGN from data • Malaria

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Design of PGNs for

    malaria parasite and cell cycle

    control systems

    Junior Barrera

    DCC-IME-USP / BIOINFO-USP

  • Layout

    • Introduction

    • Probabilistic genetic network (PGN)

    • Cell cycle regulation

    • Design of PGN from data

    • Malaria parasite

  • Layout

    • Introduction

    • Probabilistic genetic network (PGN)

    • Cell cycle regulation

    • Design of PGN from data

    • Malaria parasite

  • GENES NETWORK

    Translat.Transcr.

    Proteins

    Pool

    Pathways

    Metabolic

    microarray

    Regulatory System

  • Layout

    • Introduction

    • Probabilistic genetic network (PGN)

    • Cell cycle regulation

    • Design of PGN from data

    • Malaria parasite

  • GENE is aGENE is a

    NON LINEAR STOCHASTIC GATENON LINEAR STOCHASTIC GATE

    SYSTEM: SYSTEM: built by compiling these gatesbuilt by compiling these gates

    Expression of a Gene Expression of a Gene depends ondepends on

    Activator and Inhibitory SignalsActivator and Inhibitory Signals

  • Network dynamics:

    State of the regulatory network at time t:

    =

    ][

    .

    .

    ][

    ][

    ][

    2

    1

    tx

    tx

    tx

    tx

    n

    }1,0,1{][ +−∈txi

    ])[(]1[ txtx φ=+

    Expression of gene i at time t:

  • φi ]1[ +txi

    ][tx j

    ][txk

    =

    φ

    φ

    φ

    .

    .

    .

    2

    1

    ])[(]1[ txtx ii φ=+

    target

    predictors

  • Probabilistic Genetic Network (PGN)

    φi

    −−

    =+

    ])[],[|1( 1

    ])[],[|0(0

    ])[],[|1(1

    ]1[

    txtxp

    txtxp

    txtxp

    tx

    kj

    kj

    kj

    i

    ][tx j

    ][txk

    ])[],[|(])[],[|(])[],[|(

    :},1,0,1{,,

    txtxwptxtxzptxtxyp

    wzywzy

    kjkjkj +>>

    ≠≠−∈∃

  • Layout

    • Introduction

    • Probabilistic genetic network (PGN)

    • Cell cycle regulation

    • Design of PGN from data

    • Malaria parasite

  • Phases of the Cell CyclePhases of the Cell Cycle

    (*)

  • Model: architecture and dynamicsModel: architecture and dynamics

    Transition Function

    aij = ag green arrow from i to j

    aij = ar red arrow from i to j

    Simulation parameters: ag = -ar = 1

    Li, 2004.

  • Time StepsTime Steps

    One single pulse of One single pulse of CSCS = 2 at = 2 at t = t = --11DeterministicDeterministic

    START

    G1

    S

    G2

    M

    Stationary G1

  • 0000--33

    0000--22

    0000--11

    110000

    111111

    111122

    111133

    )1( +tS j0)( =tS j 1)( =tS j

    ∑j

    jij Sa )0(

    M MM

    M M M

    00

    00

    11

    22

    22

    22

    22

    00

    00

    00

    11

    22

    22

    22

    00

    00

    00

    00

    11

    22

    22

    --33

    --22

    --11

    00

    11

    22

    33

    )1( +ty j

    0)( =tS j 1)( =tS j∑

    j

    jij Sa )0(

    M MM

    M M M

    2)( =tS j

    M

    M

    Binary 3 Levels (0, 1, 2)00

    21 →→

  • 00

    00

    11

    22

    22

    22

    22

    00

    00

    00

    11

    22

    22

    22

    00

    00

    00

    00

    11

    22

    22

    --33

    --22

    --11

    00

    11

    22

    33

    )1( +ty j

    0)( =tS j 1)( =tS j∑

    j

    jij Sa )0(

    M MM

    M M M

    2)( =tS j

    M

    M

    =

    =

    =+

    =+

    005.0 with

    005.0 with

    99.0 with )1(

    )1(

    Pb

    Pa

    Pty

    tx

    i

    i

    { } { })1(2,1,0, where +−∈ tyba i

    Stochastic Transition Function

  • PGN with PGN with P = P = 0.99 0.99 One single pulse of One single pulse of CSCS = 2 at = 2 at t = t = --11

    Time StepsTime Steps

  • Total input signal driving a generic variable

    : memory of the system

    Driving functionDriving function forfor

    : weight for variable at time

    Our gene modelOur gene model

    ∑∑= =

    −=N

    j

    m

    k

    j

    k

    jii ktxatd1 1

    )()(

  • StochasticStochastic

    TransitionTransition

    FunctionFunction

    Our gene modelOur gene model

    <

    ≤≤

    =+

    1

    21

    2

    )(0

    )(1

    )(2

    )1(

    ii

    iii

    ii

    i

    thtdif

    thtdthif

    thtdif

    ty

  • Our network architectureOur network architecture

    G1 G1 phasephase S, G2 S, G2 andand M M phasesphases

    time

    Forward Forward signalsignal

    Feedback to P Feedback to P

    Feedback to Feedback to previousprevious

    layerlayer

    Trigger gene

    F F : : integrationintegration ofof signalssignals fromfrom layerlayer ss

    ss PP wwvv zzyyxxGene Gene LayersLayers

    s1

    I

    s2

    s5

    ExternalExternal

    stimulistimuli

    F

    P

    v

    w1

    w2

    x1

    x6

    y1

    y2

    z

    .

    .

    .

    .

    .

    .

  • One single pulse of One single pulse of FF = 2 at = 2 at t = t = --11

    Time StepsTime Steps

    z

    F

    P

    v

    w1

    x1

    y1

    PGN with PGN with P = P = 0.990.99

  • Signal Signal FF = period 50 oscillator= period 50 oscillator

    Time StepsTime Steps

    z

    F

    P

    v

    w1

    x1

    y1

    PGN with PGN with P = P = 0.990.99

  • Signal Signal FF = period 10 oscillator= period 10 oscillator

    Time StepsTime Steps

    z

    F

    P

    v

    w1

    x1

    y1

    PGN with PGN with P = P = 0.990.99

  • Signal Signal FF = period 3 oscillator= period 3 oscillator

    Time StepsTime Steps

    z

    F

    P

    v

    w1

    x1

    y1

    PGN with PGN with P = P = 0.990.99

  • Layout

    • Introduction

    • Probabilistic genetic network (PGN)

    • Cell cycle regulation

    • Design of PGN from data

    • Malaria parasite

  • Architecture

    Identification.][],...,2[],1[ nxxx

    target genes

  • Entropy

    ∑−∈

    =

    →−

    }1,0,1{

    1)(

    ]1,0[}1,0,1{:

    y

    yP

    P

    Distribution of Y

    ∑−∈

    −=}1,0,1{

    )(log)()(y

    yPyPYH

    Mutual information

    0)|()(),( ≥−= XYHYHYXI

    -1 0 1

    P(Y)

    -1 0 1

    P(Y’)

    )'()( YHYH > )''()'( YHYH =

    -1 0 1

    P(Y’’)

  • Mean mutual information estimation

    ∑ ∑∧∧∧∧

    −= .))|(log()|()()]|([ XYPXYPXPXYHE

    Mean conditional entropy

    ∑ ∑−= ))|(log().|()()]|([ XYPXYPXPXYHE

    Mean mutual information

    ]]|[[)()],([ XYHEYHYXIE −=

    )]|([)()],([ XYHEYHYXIE∧∧∧

    −=

  • Estimation of P(Y|X)

    If #(X=(a,b)) ≥ n, then

    If #(X=(a,b)) < n, then is uniform)),(|(^

    baXYP =

    )),((#

    )),()((#)),(|(

    ^

    baX

    baXcYbaXcYP

    =

    =∧====

    Y: the taget gene at t+1, that is,

    X: the predictors at t, that is, ])[],[( txtxX kj=

    ]1[ += txY i

    For a fixed parameter n

  • Estimation of P(X) for a fixed parameter n

    X

    P(X)

    If #(X=(a,b)) ≥ n, then

    If #(X=(a,b)) < n, then

    ])[],[( txtxX kj=

    ∑∀

  • - For each target gene, rank the couples of all genes by

    _their estimated mutual information and sample size;

    - When two mutual information are equal, the one

    _estimated from a larger sample comes first;

    - Choose the best couples;

    - Design the interaction graph

    Buiding Interaction Graphes

  • Layout

    • Introduction

    • Probabilistic genetic network (PGN)

    • Cell cycle regulation

    • Design of PGN from data

    • Malaria parasite

  • The life cycle of the malaria parasite

    CAMDA, 2004

  • Back

  • Malaria parasite genes with almost

    sinusoidal signals

    DeRisi, 2003.

    Sinousoidal

    signals

  • DeRisi, 2003.

    Functional Classification

  • Malaria parasite genes

    Sinousoidal

    signals

    Non sinousoidal

    signals

  • Functional Classification

  • Interaction Graph

    Glycolisis Apicoplast

  • System architecture

    USP datasetdetermination

    USP

    dataset

    Scaling

    and

    quantization

    Quantized

    USPdataset

    Design

    of

    PGN

    Target

    genes

    Plasmo DB

    MetabolicPathways

    DeRisi´s

    transcriptomeTable

    of

    predictors

    GraphViz

    Functional

    groups

    Overview

    set

    Output

    graph

    Biological Interpretation

  • System architecture

    USP datasetdetermination

    USP

    dataset

    Scaling

    and

    quantization

    Quantized

    USPdataset

    Design

    of

    PGN

    Target

    genes

    Plasmo DB

    MetabolicPathways

    DeRisi´s

    transcriptomeTable

    of

    predictors

    GraphViz

    Functional

    groups

    Overview

    set

    Output

    graph

    Biological Interpretation

  • Good spots

    Weak spots

    Bad spots

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

    1

    .

    .

    .

    6532

    Genes

    t

    NO INTERPOLATION

  • System architecture

    USP datasetdetermination

    USP

    dataset

    Scaling

    and

    quantization

    Quantized

    USPdataset

    Design

    of

    PGN

    Target

    genes

    Plasmo DB

    MetabolicPathways

    DeRisi´s

    transcriptomeTable

    of

    predictors

    GraphViz

    Functional

    groups

    Overview

    set

    Output

    graph

    Biological Interpretation

  • Scaling

    For each i, estimate the mean

    and standard desviation

    of the spots

    ]][[^

    txE i

    ]][[^

    txiσ

    ]][[

    ]][[][][

    ^

    ^

    tx

    txEtxtn

    i

    iii

    σ

    −=

    Scale normalization of the spots

  • Quantization

    Let and denote, respectively, the normalized

    signals greater and lower than zero at t.

    ][tni+ ][tni

    1 then ]],[[][ If

    0 then ]],[[][ and ]][[][ If

    1 then ]],[[][ If

    ^

    ^^

    ^

    −=<

    =≤≥

    +=>

    −−

    ++−−

    ++

    [t]xtnEtn

    [t]xtnEtntnEtn

    [t]xtnEtn

    iii

    iiiii

    iii

  • System architecture

    USP datasetdetermination

    USP

    dataset

    Scaling

    and

    quantization

    Quantized

    USPdataset

    Design

    of

    PGN

    Target

    genes

    Plasmo DB

    MetabolicPathways

    DeRisi´s

    transcriptomeTable

    of

    predictors

    GraphViz

    Functional

    groups

    Overview

    set

    Output

    graph

    Biological Interpretation

  • Architecture

    Identification.]48[],...,2[],1[ xxx

    target genes

  • System architecture

    USP datasetdetermination

    USP

    dataset

    Scaling

    and

    quantization

    Quantized

    USPdataset

    Design

    of

    PGN

    Target

    genes

    Plasmo DB

    MetabolicPathways

    DeRisi´s

    transcriptomeTable

    of

    predictors

    GraphViz

    Functional

    groups

    Overview

    set

    Output

    graph

    Biological Interpretation

  • Output example

    Plastid genomeIn Overview

    Organelar Translation machinery

    In Overview

    Unknown groupIn Overview

    Unknown groupNot in Overview

    In Overview

    Not in Overview

  • Back

  • Back

  • Back

  • Back

  • J. Barrera, R.M. Cesar Jr., C. P. Pereira, D. Martins,

    R. Z. Vencio, E. F. Merino, M. M. Yamamoto

    www.bioinfo.usp.br