26
15 June 2010 Elisa Franco Richard M. Murray Design of in vitro Synthetic Gene Circuits IWBDA

Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

15 June 2010

Elisa FrancoRichard M. Murray

Design of in vitro Synthetic Gene Circuits

IWBDA

Page 2: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Programming large scale circuits

Elisa Franco, Caltech2

y = uG

1 + KG

y = G(u−Ky)

G→∞ ⇒ y =1K

u

G

K

u y+−

?

Page 3: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Bottom-up approach:In vitro molecular programming

Elisa Franco, Caltech3

OBJECTIVES:

Design and synthesis of biologically plausible feedback loops

Understand and implement design principles

Use few components: DNA and enzymes (off the shelf)

DESIGN

input

ou

tpu

t

MODELING

M1 + M2

k+1

k−1

M3

M3 + M4

k+2

k−2

M5

dc

dt= νER(c)...

Page 4: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

In this talk

In vitro genetic circuits: our tool kit

4

Programming a reaction network for rate regulation

Interconnecting modules

Insulating devices

Page 5: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Simplification of feedback loops:Transcription is switched on and off without transcription factors

In vitro genetic circuits: the key ideas Kim and Winfree Nature MSB06

5

ON

OFF

+ activator

T7 promoter

Switching: by toehold mediated branch migration - Yurke 03

+

+

k+k-

35 basesC=A’

C=A’

A

B

35 bases

25 bases

A

B

∆G-60kcal/mol

∆G-40kcal/mol

OFF ON

ACTIVATOR

INHIBITOR

TRANSCRIPTION

Page 6: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Design and specification of parts

Enzymes off the shelf:

T7 RNA polymerase RNase H

6

SOFTWARE:

• Maximize (-∆G) of desired interactions

• Minimize (-∆G) of unwanted interactions

toehold 4-10 bases

Consensus domain 17-20 bases

T7 promoter 17 bases

Transcribed domain

TerminatorFunctional domain

Activator

Page 7: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Programming a simple biochemical network

Produce reactants R1, R2 R1, R2 >> output P R1 + R2

k+

k−

PT1

k1 R1

T2k2 R2

Objective: steady flow of P

7

Constraints: avoid bottlenecks and waste of resources

IDEAS:

Negative feedback Positive feedback

Design network to decrease excess species

Design network to stimulate production of less abundant species

Page 8: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Self repression based flow regulation

8

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

• Reactants: transcripts

• Product: RNA complex

• Transcriptional circuits implementation

• Circuit design:

A1

R1A1’

T1

R2A2’

A2

A1

Monitor fraction of ‘on’ switch

Page 9: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Modeling the dynamics

Mass action kinetics

Ti + AikTiAi→ TiAi

Ri + AikRiAi→ RiAi

Ri + TiAikRiTiAi→ RiAi + Ti

Ri + RjkRiRj→ RiRj

Rj + TikRjTi→ RjTi

Enzymatic reactions:RNA polymerase - production of transcriptsRNase H - degradation of DNA/RNA hybrids

Michaelis-Menten kinetics

Rp + TiAi

k+ONii→←

k−ONii

Rp · TiAikcatONii→ Rp + TiAi + Ri

Rp + Ti

k+OF F ii→←

k−OF F ii

Rp · TikcatOF F ii→ Rp + Ti + Ri

Rh + RiAi

k+Hii→←

k−Hii

Rh · RiAikcatHii→ Rh + Ai

Rh + RjTi

k+Hji→←

k−Hji

Rh · RjTikcatHji→ Rh + Ti

Rp + RjTi

k+OF F ji→←

k−OF F ji

Rp · RjTikcatOF F ji→ Rp + RjTi + Ri

Faster

Activation

Inhibition

Output

Unwanted interactions

9

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

Page 10: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

---- Model

Data

Experimental results

1 2 3 4 5

Hours

100

50

nM

[T2(0)] 50 nM

[T1(0)] 100 nM

1 2 3 4 5

Hours

100

50

nM

[T2(0)] 100 nM

[T1(0)] 50 nM

1 2 3 4 5

Hours

100

50

nM

[T2(0)] 100 nM

[T1(0)] 100 nM

1 2 3 4 5

Hours

100

200

300nM

[T2(0)] 300 nM

[T1(0)] 100 nM

Enzymes added Feedback activated

Page 11: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Initial template ratio

Ratio plot

Elisa Franco, Caltech11

1 2 3

1

2

a.u.

a.u.

Steady state template ratio

T1/T2

T2/T1

No feedback

Ideal case

Model

---- Model

Data

Page 12: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Cross activation circuit design

Reactants: transcripts

Product: RNA complex

R1I2’

T1

R2I1’I2I1

Transcripts: ‘releaser’ strands for the activators. Possibility of unwanted self inhibition.

A1

I1

12

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

Page 13: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech13

Preliminary dataCurrent design is asymmetric

Total template ratio

1 2 3

1

2

a.u.

a.u.

Steady state ‘on’ template ratio

4

3

4

No domain sequestration (ideal)

T2/T1

T1/T2

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

Page 14: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

In this talk

In vitro genetic circuits: our tool kit

14

Programming a reaction network for rate regulation

Interconnecting modules

Insulating devices

Page 15: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Interconnections can introduce unwanted dynamics

15

Σyu

xsr

Interconnections introduce parasitic signals

RETROACTIVITY TO INPUTS AND OUTPUTS

Σ

u

y

Del Vecchio et al. Nature MSB 2008

x = f(x, u, s)y = Y (x, u, s)

r = R(x, u, s)

x = f(x, u)

y = Y (x, u)

Page 16: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Del Vecchio, Ninfa and Sontag, MSB08; Del Vecchio, Jayanthi, ACC08

Existing theoretical results suggest how to design an insulating device

16

uy = xn

positive scalars1)

Σ : x =

Gf1(x, u)Gf2(x)

...Gfn−1(x)Gfn(x)

3)

Λ : ν =

g1(ν, y)g2(ν)

...gp(ν)

4)

Ω : u = f0(t, u)2)prior to theinterconnection

Ω ΛΣyu

x νsrx = f(x, u, s)y = Y (x, u, s)r = R(x, u, s)

Σ :x = (x1, ..., xn) ∈ D ⊆ Rn

+

Structural assumptions

5)

u = f0(t, u) + r(x, u)xn = y = Gfn(x) + s(ν, y)

Parasitic signals are additive

6)

r(x, u) = −Gf1(x, u)s(ν, y) = −g1(ν, y)

Conservation laws

Page 17: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech17

Existing theoretical results suggest how to design an insulating device

Stability assumption:

DFx(a, x)The Jacobian:

has all eigenvalues with negative real part in all its domain

F : R+ ×D → Rn

x ∈ Da ∈ R+

F (a, x) = (f1(x, a− x1), f2(x), ..., fn(x))

Define:

Ω ΛΣyu

x νsr

x = f(x, u, s)y = Y (x, u, s)r = R(x, u, s)

Σ : x =

Gf1(x, u)Gf2(x)

...Gfn−1(x)Gfn(x)

Page 18: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

The insulation property is achieved if the device is sufficiently fast

18

Ω ΛΣyu

x νsr

x = f(x, u, s)y = Y (x, u, s)r = R(x, u, s)

Σ :x =

Gf1(x, u)Gf2(x)

...Gfn−1(x)Gfn(x)

Claim 1 There exist G* sufficiently large such that for any G>G*:

Claim 2There exist G’ sufficiently large such that for any G>G’:

xref(t)− x(t) = O(1/G)

xref(t) s(ν, y) = 0Where is the state of the device when the load is absent, i.e.

u(t) = u(t) +O(1/G) wheredu

dt= f0(t, u)

1

(1 + ∂γ1(u)/∂u)

Low output retroactivity

All proofs are based on timescale separation

Page 19: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Can we make an insulator in an in vitro setting?

19

Ω ΛΣyu

x νsrΩ Λ

u

R

Minimizes, r

Rp

Rh

Page 20: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

• Input U drives a switch• RNA output binds to RNA load

Page 21: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Input stage

Reactions for a transcriptional insulator

21

∅ pU (t) U(t) dU (t)

DI + Uk+

IU

k−IU

DIU

DADI + UkAIU

DIU + DA

DA + DTkAT DADT ,

DADT + DIkAIT

DT + DADI ,

DA + DIkAI DADI .

dDDRY (t) = γ h

[ DDRY ]KMH

pRY (t) = α h

[ DADT ]KMP

Core device

∅ pL(t) RL(t),

RY + RL

kY L RY RL

Output stage

Page 22: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Structural assumptions: dynamic gain can be tuned

22

U = +pU (t)− dU (t)− k+IU

DIU + k−IU

DIU

−kAIUDADIU

DIU = +k+IU

DIU − k−IU

DIU + kAIUDADIU

DADI = +kAIDADI − kAIUDADIU

DADT = +kAT DADT − kAIT DIDADT

DD = −kDY DDRY + γ h

DDRY

KMH

RY = +α h

DADT

KMP

− kDY DDRY − kY LRY RL

RL = +pL(t)− kY LRY RL

Input

Co

re d

evic

e

Output

x =

Gf1(x, u)Gf2(x)

...Gfn−1(x)Gfn(x)

• Fast toehold kinetics• High enzyme

concentrations/activities

Page 23: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Structural assumptions: additive retroactivity and conservation laws

23

U = +pU (t)− dU (t)− k+IU

DIU + k−IU

DIU

−kAIUDADIU

DIU = +k+IU

DIU − k−IU

DIU + kAIUDADIU

DADI = +kAIDADI − kAIUDADIU

DADT = +kAT DADT − kAIT DIDADT

DD = −kDY DDRY + γ h

DDRY

KMH

RY = +α h

DADT

KMP

− kDY DDRY − kY LRY RL

RL = +pL(t)− kY LRY RL

Input

Co

re d

evic

e

Output

u = f0(t, u) + r(x, u)

x =

Gf1(x, u)Gf2(x, u)Gf3(x)Gf4(x)

Gf5(x) + Gs(ν, y)

ν = fν(t) + Gs(ν, y).

Page 24: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech

Structural assumptions: stability

24

DFx(a, x) =P ∅L Q

Jacobian of the dynamics of the core device:

The eigenvalues have negative real part at any equilibrium point.

Lower diagonal

All structural assumptions are verified.

• Claim 1 holds: Low output retroactivity

• Claim 2 holds: Low input retroactivity

Note: Analytical mapping I/O not available, device may work in non linear regime

Page 25: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

Elisa Franco, Caltech25

Simulation results

Low enzyme amounts, bottleneck

High enzyme amounts, time scale separation works again!

Page 26: Design of in vitro Synthetic Gene Circuitscctbio.ece.umn.edu/wiki/images/a/a9/Iwbda-2010-franco.pdf · Elisa Franco, Caltech Simplification of feedback loops: Transcription is switched

THANKS:Richard Murray, Caltech CDS and BEErik Winfree, Caltech CS, CNS and BE

Institute for Collaborative Biotechnologies (ICB)NSF Molecular Programming Project

Programming synthetic biomolecular systems: embedding engineering principles in the hardware of life

Designing and building biosynthetic systems is today• Easier• Faster• Cheaper

A

BBA

Example: flow control systems

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

• In vitro bio-computational networks

Caltech Jongmin Kim, Fei ChenLund UniversityPer-Ola Forsberg, Chris Sturk,TU MunichEike Friedrichs, Ralf Jungmann, Fritz Simmel

• Scaling up networks, modularity[nM]

Ω ΛΣyu

x νsr