Design of Beam-USD

Embed Size (px)

Citation preview

  • 8/10/2019 Design of Beam-USD

    1/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    DESIGN OF FLOOR BEAM

    (Considering Critical Beam Only along Row E)

    DESIGN CRITERIA:f'c = 20.7 MPa

    fy = 275 Mpa

    DESIGN LOADS:

    Dead Loadings;( assumed section 20cm x 30 cm)

    Self weight = 0.20mx0.30mx 2.3x9.81 = 1.412 kN/m

    a. Dead Loads

    1. Weight of Concrete = 23.60 kN/m3

    2. Utilities = 135 Pa

    3. Wt. of Ceiling = 120 Pa

    4. Hard Wooden flooring frames= 190 Pa

    5. Floor finish = 158 kPa

    6. Wood studs partition = 960 Pa

    Total deadload = 1563 Pa

    Total distributed load = 1563 (3.00 ) = 4689 N/m = 4.69 kN/m

    Live Loads:

    Floor Live LoadBedroom = 750 Pa

    Hallway = 750 Pa

    Stairs = 750 Pa

    a) Factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu = 1.4(4.69) + 1.7(.75) = 7.841 kN/m

    1) Max Positive bending moment

    Max Mu = -0.10wL2kN.m.+Pab

    2/L

    2

    b) Compute Ultimate moment, Mu

    Mu = 0.10(7.841) (4.25)2+ 3.55(2.6) (1.4)

    2/4

    = 16.26 kN-/m

  • 8/10/2019 Design of Beam-USD

    2/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    c) Compute maximum steel ratio, max = 0.75 b

    b = 0.85 (20.7) (600) (0.85) = 0.037275(600+275)

    max = 0.75(0.037) = 0.028Assume = (max) = max (0.028) = 0.014

    min = 1.4 = 0.005 < min OK275

    d) Compute strength ratio, w

    w = (FY) = 0.011(275) = 0.186f'c 20.7

    Compute for Ultimate reaction, Ru

    Ru = f'c w (1- 0.59w)= 20.7 (0.18) (10.59(0.1860)) = 3.317 Mpa

    e) Compute depth of beam (d)

    Mu = Ru b d2 assume b = d

    16.26 x 106

    = 0.90 (3.3173) d (d)2

    16.26 x 106

    = 1.7712 d3

    d3

    = 10892392.41 mm

    d = 221.67 say; 250 mm.B = 2/3 (275) = 183.330 mm say 200.

    H = 250 + 30 +20 = 300 mm.

    g) Compute new resisting force based bd.

    MuT = Ru b d2

    16.26 x 106= 0.90(200) (250)

    2Ru

    Ru = 1.445 Mpa

    h) Compute for new steel ratio/ actual steel ratio, = 0.85fc [1 - 1 2 Ru]

    FY 0.85f'c

    = 0.85(20.7) [1 - 1 2 (1.445)] = 0.0053

    275 0.85(20.7)

    min < < max ok (singly Reinforced design)

  • 8/10/2019 Design of Beam-USD

    3/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    I) compute steel area requirement; use 16 mm. Dia. Rebars

    As = bd

    = 0.0053 (200) (250) = 267.07 mm2

    No. of Bars = As / Ab= 267.07 = 1.32 pcs.

    (16)2

    4

    Say; 3 pcs16mm. Dia. RSB

    Actual As = As

    A16 =201.06 (3) = 603.16 mm2

    > 267.07 mm2

    2) Check for Ultimate moment Capacity, Mu

    Mu = Asfy [da / 2]

    Mu = 0.90 (603.16) (275) [250120/2]

    Mu = 28.36 kN.m > MuT = 16.26 kN-mOk. (SAFE)

    Use 2 pcs16 mm dia cont. main bot. bars and 1 -16 mm extr a bars and

    216mm dia cont. top bars near the suppor t w/ 1 -16 mm extr a top bars

    (To be applied to all beams of the structu re)

    k) Check for web Reinforcement

    Vu = (WuL) + Pab2/L3 (3a + b) - Wud

    2

    Vu = 7.841(4.25) + (3.55) (1.8) (2.43)2/ (4.25)3

    (3(1.8) + 2.43 - 7.841(0.250)

    2

    Vu = 14.76 kN.

    VC = 1/6 f'c (b) (d) = 1/6 20.7 (200) (250) = 37.92 KN

    VC = 0.85 (37.92) = 16.116 KN > Vu (no need web reinforcements)

    2 2

    But Provide close stirrups w/ the ff spacing:

    10 mm 1 @ 50cm; 5@ 150 cm, rest @ 200 cm

    TO BE APPLIED/USED FOR ALL FLOOR BEAMS

  • 8/10/2019 Design of Beam-USD

    4/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    2) Max. Positive moment ;

    Max Mu = -0.1071wL2+2Pa

    2b

    2/L

    3

    b) Compute Ultimate moment, Mu

    Mu = 0.1071(1.9768) 42+2(97.88) (2.6)

    2(1.4)

    2/ (4)

    3

    = 43.907 kN-m

    c) Compute maximum steel ratio, max = 0.75 b

    max = 0.75 (20.7) (600) (0.85) = 0.0189414(600+414)

    max = 0.75(0.01891) = 0.0141

    Assume = (max) = max (0.0141) = 0.0071

    min = 1.4 = 0.0034 < max OK414

    d) Compute strength ratio, w

    w = (FY) = 0.0071(414) = 0.1415f'c 20.7

    Compute for Ultimate reaction, Ru

    Ru = f'c w (1- 0.59w)

    = 20.7 (0.1415) (10.59(0.1415) = 2.6846 Mpa

    e) Compute depth of beam (d)

    Mu = Ru b d2 assume b = d

    43.907 x 106

    = 0.90 (2.6846) d (d)2

    43.907 x 106

    = 1.208 d3

    d3

    = 36346854.3 mm

    d = 331.25 say; 420 mm.

  • 8/10/2019 Design of Beam-USD

    5/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    B = (420) = 210.

    H = 420 + 40 +20 = 480 mm.

    g) Compute new resisting force based bd.

    MuT = Ru bd2

    43.907 x 106= 0.90(220) (420)

    2Ru

    Ru = 1.257 Mpa

    h) Compute for new steel ratio/ actual steel ratio,

    = 0.85fc [1 - 1 2 Ru]

    FY 0.85f'c

    = 0.85(20.7) [1 - 1 2 (1.257)] = 0.0032

    414 0.85(20.7)min < < max ok (singly Reinforced design)

    I) compute steel area requirement; use 20 mm. Dia. Rebars

    As = bd

    = 0.0032 (220) (420) = 295.68 mm2

    No. of Bars = As / Ab

    = 295.68 = .9412 pcs.

    (20)2

    4Say; 3pcs20mm. Dia. RSB

    Actual As = AsA16 =314.16(3) = 942.48 mm

    2> 295.68 mm

    j) Investigate the beam

    From StressStrain Diagram

    1) Check if steel yeilds; T = C

    Asfy = 0.85 f'c a b

    a = 942.48 mm2(414) = 100.8 mm Say; 101 mm.

    0.85(20.7) (220)

    a = c ; c = 101 = 118.82 mm. Say 120.00 mm0.85

    By Ratio and Proportion from strain diagram

    s = 0.003(dc)C

  • 8/10/2019 Design of Beam-USD

    6/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    s = 0.003(420120) = 0.0075120

    y = 414 = 0.00207 < s Ok, (Steel Yield)200,000

    2) Check for Ultimate moment Capacity, Mu

    Mu = Asfy[da / 2]

    Mu = 0.90 (942.48) (414) [420120/2]

    Mu = 136.42 kN.m > MuT = 127.86 kN-m Ok. (SAFE)

    k) Check for web Reinforcement

    Vu = (WuL) + Pab2/L3 (3a + b) - Wud

    2

    Vu = 1.9768(4) + (97.88) (2.6) (1.4)2/ (4)3

    (3(2.6) + 2.4 - 1.9768(0.420)

    2

    Vu = 82.50 kN.

    VC = 1/6 f'c (b) (d) = 1/6 20.7 (220) (420)

    = 80.07 KN

    VC = 0.85 (80.07) = 34.030 KN < Vu (need web reinforcements)

    2 2

    Vs = Vu - VC = 82.5 - 80.07

    0.85

    = 16.98 KN

    Compute Spacing of web reinforcements / stirrups; use 10 mm. Dia. Bars

    S = Av FY d Av = (10)2 = 78.54 mm2

    Vs 4

    S = 78.54 (276) (420) = 536.18 mm.

    16.98(1000)

    Check Max Spacing.1/3 f'c (b) (d) = 1/3 20.7 (220) (420)

    = 140.13 KN > Vs

    Therefore Max Spacing = d/2

    = 420 = 210 mm.2

    S = 10 mm. Dia. RSB

  • 8/10/2019 Design of Beam-USD

    7/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Provide close stirrups:

    10 mm 1 @ 50cm; 5@ 150 cm, rest @ 200 cm

    DESIGN OF FLOOR BEAMS / GIRDER

    DESIGN CRITERIA

    f'c = 20.7MPaFY = 275 Mpa

    Dead Loadings;

    Window, glass frames and sash = 0.38 kPa

    Self weight assumed section (0.220mx.350mx2.3) = 0.177kPa

    FOR BEAM, FB1

    Ws-6 DL = 2.9542(2.5) [3(0.625)2] = 3.215 kN/m3 2

    Ws-6 LL = 4.8 (2.5) [3(0.625)2] = 5.218kN/m3 2

    a) Factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu = 1.4(3.215) + 1.7(5.218) = 13.373 kN/m

    Design the beam

    1) Negative moment @ support;

    Max Mu = -0.10wL2kN.m.

    b) Compute Ultimate moment, Mu = -0.10wL2

    Mu = 0.10(13.373.11) 42

    = 21.3967 kN/m

    c) Compute maximum steel ratio, max = 0.75 b

  • 8/10/2019 Design of Beam-USD

    8/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    b = 0.85 ((20.7)) (600) (0.85) = 0.0214414(600+414)

    max = 0.75(0.0214) = 0.0160

    Assume = (max) = max (0.016) = 0.008

    min = 1.4 = 0.0034 < min OK414

    d) Compute strength ratio, w

    w = (FY) = 0.008(414) = 0.1603f'c 20.7

    Compute for Ultimate reaction, RuRu = f'c w (1- 0.59w)

    = 20.7 (0.1603) (10.59(0.1603)) = 3.0043 Mpa

    e) Compute depth of beam (d)

    Mu = Ru b d2 assume b = d

    21.3967 x 106

    = 0.90 (3.0043) d (d)2

    21.3967 x 106

    = 1.3520 d3

    d

    3

    = 15825961.23 mmd = 251.06 say; 290 mm.

    B = (290) = 145 mm say 200.

    H = 290 + 40 +20 = 350 mm.

    h) Compute for new steel ratio/ actual steel ratio,

    = 0.85fc [1 - 1 2 Ru]

    FY 0.85f'c

    = 0.85(20.7) [1 - 1 2 (3.043)] = 0.0081

    414 0.85(20.7)

    min < < max ok (singly Reinforced design)

    I) compute steel area requirement; use 20 mm. Dia. Rebars

    As = bd

    = 0.0081 (200) (290) = 469.8 mm2

  • 8/10/2019 Design of Beam-USD

    9/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    No. of Bars = As / Ab

    = 469.8 = 1.49 pcs.(20)2

    4

    Say; 2pcs20 mm. Dia. RSB

    Actual As = As

    A20 =314.16 (2) = 628.32 mm2

    > 402.24 mm2

    j) Investigate the beam

    From StressStrain Diagram

    1) Check if steel yields; T = C

    Asfy = 0.85 f'c a b

    a = 628.32 mm2(414) 73.92 mm Say; 74 mm.

    0.85(20.7) (200)

    a = c ; c = 74 = 87.06 mm. Say 88 mm0.85

    By Ratio and Proportion from strain diagram

    s = 0.003(dc)C

    s = 0.003(29088) = 0.0069

    88y = 414 = 0.00207 < s Ok, (Steel Yeild)

    200,000

    2) Check for Ultimate moment Capacity, Mu

    Mu = Asfy[da / 2]

    Mu = 0.90 (628.32) (414) [29074/2]

    Mu = 59.23kN.m > 21.3967 MuT Ok. (SAFE)

    k) Check for web ReinforcementVu = WuL - Wud

    2

    Vu = 13.373 (4) - 13.373(0.29)

    2

    Vu = 22.867 kN.

    VC = 1/6 f'c (b) (d) = 1/6 28 (200) (290)

  • 8/10/2019 Design of Beam-USD

    10/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    = 51.15 KN

    VC = 0.85 (51.15) = 21.74 KN < Vu (need web reinforcements)

    2 2

    Vs = Vu - VC ; 51.15 - 43.478 0.85

    = 16.70Kn

    Compute Spacing of web reinforcements / stirrups; use 8 mm. Dia. Bars

    S = Av FY d Av = (10)2 = 78.54 mm2

    Vs 4

    S = 78.54 (276) (290) = 376.43 mm. say 350mm

    16.70(1000)

    Check Max Spacing.

    1/3 f'c (b) (d) = 1/3 20.7 (200) (290)

    = 87.96 KN > Vs

    Therefore Max Spacing = d/2

    = 350 = 175 mm.

    2

    Provide close stirrups:

    10 mm 1 @ 50cm; 5@ 150 cm, rest @ 200 cm

    FOR BEAM, FB2

    a) Slab loading

    Ws-7 DL = 3.9542(2) [3(0.5)2] (2) = 6.73 kN/m3 2

    Ws-6 LL = 4.8 (2) [3(0.5)2] (2) = 8.16 kN/m3 2

    b) Factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu = 1.4 (6.73) + 1.7 (8.16) = 23.294 kN/m

    c) Compute beam weight, Consider 1 meter strip

    Use d = 300 mm.

    B = 150 mm.

    H = 300 + 40 + 10 + 10 = 360 mm.

    Wb = (0.36) (0.15) (23.544) = 1.27 kN/m

  • 8/10/2019 Design of Beam-USD

    11/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Factored Load = 1.4(1.27) = 1.80 kN/m

    WuT = 1.8 + 23.294 = 25.10 kN/m

    MuT =Wu L2

    = 0.90(25.1) (32) = 25.4 kN.m

    8 8

    d) Solve for Ru (Ultimate Reaction)

    25.4 x 106 =

    0.90 (150) (300)2

    Ru

    Ru = 2.091 MPa

    e) Solvefor actual steel ratio,

    = 0.85fc [1 - 1 2 Ru]FY 0.85f'c

    = 0.85(28) [1 - 1 2(2.091)] = 0.0053414 0.85(28)

    min < < max ok (singly Reinforced design)

    f) Compute steel area requirement; use 16 mm. Dia. Rebars

    As = bd

    = 0.0053 (150) (300) = 238.5 mm2

    No. of Bars = As / Ab

    = 238.5 = 1.20 pcs.

    (16)2

    4Say; 2 pcs16 mm. Dia. RSB

    Actual As = As = 2 [(16)2]= 402.12 mm2

    4

    g) Investigate the beam

    From StressStrain Diagram

    1) Check if steel yields; T = C

    Asfy = 0.85 f'c a b

    a = 402.12 (414) = 46.63 mm Say; 47 mm.0.85(28) (150)

    a = c ; c = 47 = 55.3 mm. Say 56 mm0.85

    By Ratio and Proportion from strain diagram

    s = 0.003(dc)C

  • 8/10/2019 Design of Beam-USD

    12/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    s = 0.003(30056) = 0.013156

    y = 414 = 0.00207 < s Ok, (Steel Yeild)200,000

    2) Check for Ultimate moment Capacity, Mu

    Mu = Asfy[da / 2]

    Mu = 0.90 (402.12) (414) [30047/2]

    Mu = 41.43 kN.m > MuT Ok. (SAFE)

    h) Check for web Reinforcement

    Vu = WuL - Wud

    2

    Vu = 25.1 (3) - 25.1(0.30)2

    Vu = 30.12 kN.

    Vc = 1/6 f'c (b)(d) = 1/6 28 (150)(300)

    = 39.69 KN

    Vc = 0.85 (39.69) = 16.87 kN < Vu (need web reinforcements)2 2

    Vs = Vu - Vc ; 30.12 - 39.69

    0.85= - 4.25 KN

    Compute Spacing of web reinforcements / stirrups; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    Therefore Max Spacing = d/2

    = 300 = 150 mm.

    2

    S = 10 mm. Dia. RSB @ 150 mm. o.c. Ok...

    FOR BEAM , B3 (FB2)

    a) Slab loading

    Ws-4 DL = 3.9542(4) [3(1)2] = 5.27 kN/m3 2

    Ws-3 DL = 3.9542(3) [3(0.75)2] = 4.82 kN/m

  • 8/10/2019 Design of Beam-USD

    13/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    3 2 10.09 kN/m

    Ws-4 LL = 4.8 (4) [3(1)2](2) = 6.4 kN/m3 2

    Ws-3 LL = 4.8 (3) [3(0.75)2] (2) = 5.85 kN/m

    3 2 12.25 kN/m

    b) Factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu = 1.4 (10.09) + 1.7 (12.25) = 35.66 kN/m

    c) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

    B = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    DL = 150 mm. CHB exterior wall both face plastered = 2.4 kPaDL = 2.4 (1) = 2.4 kN/m

    Wb = (0.20)(.40)(23.544) = 1.88 kN/m

    4.28 kN/m

    Factored Load = 1.4 (4.28) = 6.0 kN/m

    Total Factored Load;

    = 6.0 + 35.66 = 41.66 kN/m

    f) Design the beam

    1) Negative moment @ support;

    Max Mu = -0.10wL2kN.m.

    = -0.10(41.66)(4)

    = 66.656

    a) Compute for Ru (Ultimate Reaction)

    66.656X 106

    = 0.90 (200) (340)2

    Ru

    Ru = 3.203 MPa

    b) Solve for actual steel ratio,

    = 0.85fc [1 - 1 2 Ru]fy 0.85f'c

    = 0.85(21) [ 1 - 1 2(3.203) ] = 0.0086414 0.85(21)

    min= < < max ok ( singly Reinforced design )

  • 8/10/2019 Design of Beam-USD

    14/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    c) compute steel area requirement ; use 16 mm. Dia. Rebars

    As = bd

    = 0.0086 (200)(340) = 584.8 mm2

    No. of Bars = As / Ab= 584.8 = 1.86 pcs. Say 2 pcs

    (20)2

    4

    A16 = 201.1 (1) = 201.1 mm2

    A20 = 314.16 (2) = 628.32 mm2

    829.42 mm2

    > 584.8 mm2

    say ; 2 pcs20 mm Dia.RSB cont top bars and 1pc16 mm Dia. RSB extra top bar

    Actual As = A's 829.42 mm2

    1) Positive moment @ Midspan, Max

    Max Mu = +0.08wL2kN.m.

    = 0.08(41.66) (4)2

    = 53.325 kN-m

    a) Compute for Ru (Ultimate Reaction)

    53.325 x 106

    = 0.90 (200)(340)2

    Ru

    Ru = 2.563 MPa

    d) Solve for actual steel ratio,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(21) [ 1 - 1 2(2.563) ] = 0.0067414 0.85(21)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement; use 20 mm. Dia. RebarsAs = bd

    = 0.0067 (200) (340) = 456.46 mm2

    No. of Bars = As / Ab

    = 456.46 = 1.45 pcs. (20)2

    4

  • 8/10/2019 Design of Beam-USD

    15/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    say ; 2 pcs20 mm Dia.RSB con. Bot bar 1 pc-16mm dia extra bar

    Actual As

    A16 = 201.1 (1) = 201.1 mm2

    A20 = 314.16 (2) = 628.32 mm2

    829.42 mm2 > 456.46 mm2

    j) Investigate the beam

    from StressStrain Diagram

    1) check if steel yeilds ; T = C

    Asfy = 0.85 f'c a b

    a = 829.42 (414) = 96.18 mm Say; 96 mm.

    0.85(21) (200)

    a = c ; c = 96 = 113.16 mm. Say 114.00mm0.85

    By Ratio and Proportion from strain diagram

    s = 0.003 ( dc )c

    s = 0.003 ( 340114 ) = 0.00591114

    y = 414 = 0.00207 < s Ok, (Steel Yield)200,000

    2) Check for Ultimate moment Capacity, Mu

    Mu = Asfy [ d a / 2 ]

    Mu = 0.90 (829.42) (414) [ 34096/2 ]

    Mu = 90.24 kN.m > MuT Ok. ( SAFE )

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    Vmax = 0.60Wl = 0.60(35.66)(4) = 85.584 kn

    Vu = 85.584 - 35.66(0.34)

    Vu = 73.46 kN

    Vc = 1/6 f'c (b)(d) = 1/6 21 (200)(340)

    = 199.16 kN

    Vc = 0.85 ( 199.1) = 84.64 kN > Vu ( no need web reinforcements )2 2

  • 8/10/2019 Design of Beam-USD

    16/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    From the code provide min web reinforcements/stirrups

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    Av = (8)2 = 50.2656 mm2

    4

    Provide Spacing = d/2= 340 = 170 mm.

    2

    S = 8 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B3 (FB3)

    a) Slab loading

    Ws-7 DL = 3.9542(7) [ 3(1 )2

    ] 2 = 18.453 kN/m3 2

    Ws-4DL = 3.9542(4) [ 3(1 )2 ] 2 = 10.54 kN/m3 2 28.993 kN/m

    Ws-4 LL = 4.8 (7) [ 3(1)2](2) = 22.4 kN/m3 2

    Ws-4 LL = 4.8 (4) [ 3(1)2](2) = 12.8 kN/m3 2 35.2 kN/m

    b) Factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu = 1.4 (28.993) + 1.7 (35.2) = 100.43 kN/m

    c) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

    B = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(.40)(23.544) = 1.88 kN/m

    Factored Load = 1.4 (1.88) = 2.632 kN/m

    Total Factored Load ;

    = 2.632 + 100.43 = 103.062 kN/mf) Design the beam

    1) Negative moment @ support ;

    Max Mu = -0.10wL2kN.m. = -0.10(41.66)(4) = 66.656

    a) Compute for Ru ( Ultimate Reaction )

    66.656X 106

    = 0.90 (200)(340)2

    Ru

  • 8/10/2019 Design of Beam-USD

    17/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Ru = 3.203 MPa

    d) solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(21) [ 1 - 1 2(3.203) ] = 0.0086414 0.85(21)

    min= < < max ok ( singly Reinforced design )

    c) compute steel area requirement ; use 16 mm. Dia. Rebars

    As = bd

    = 0.0086 (200)(340) = 584.8 mm2

    No. of Bars = As / Ab

    = 584.8 = 1.86 pcs. Say 2 pcs (20)2

    4A16 = 201.1 (1) = 201.1 mm

    2

    A20 = 314.16 (2) = 628.32 mm2

    829.42 mm2

    > 584.8 mm2

    say ; 2 pcs20 mm Dia.RSB cont top bars and 1pc16 mm Dia. RSB extra top bar

    Actual As = A's 829.42 mm2

    1) Positive moment @ Midspan, Max

    Max Mu = +0.08wL2kN.m. = 0.08(41.66)(4)

    2 = 53.325 kN-m

    a) Compute for Ru ( Ultimate Reaction )

    53.325 x 106

    = 0.90 (200)(340)2

    Ru

    Ru = 2.563 MPa

    b) solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(21) [ 1 - 1 2(2.563) ] = 0.0067414 0.85(21)

    min < < max ok ( singly Reinforced design )

    c) compute steel area requirement ; use 20 mm. Dia. Rebars

  • 8/10/2019 Design of Beam-USD

    18/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    As = bd

    = 0.0067 (200)(340) = 456.46 mm2

    No. of Bars = As / Ab

    = 456.46 = 1.45 pcs. (20)2

    4

    say ; 2 pcs20 mm Dia.RSB con. Bot bar 1 pc-16mm dia extra bar

    Actual As

    A16 = 201.1 (1) = 201.1 mm2

    A20 = 314.16 (2) = 628.32 mm2

    829.42 mm2

    > 456.46 mm2

    j) Investigate the beam

    from StressStrain Diagram

    1) check if steel yeilds ; T = C

    Asfy = 0.85 f'c a b

    a = 829.42 (414) = 96.18 mm Say; 96 mm.

    0.85(21) (200)

    a = c ; c = 96 = 113.16 mm. Say 114.00mm0.85

    By Ratio and Proportion from strain diagram

    s = 0.003 ( dc )c

    s = 0.003 ( 340114 ) = 0.00591114

    y = 414 = 0.00207 < s Ok, ( Steel Yeild )200,000

    2) Check for Ultimate moment Capacity, Mu

    Mu = Asfy [ d a / 2 ]

    Mu = 0.90 (829.42) (414) [ 34096/2 ]

    Mu = 90.24 kN.m > MuT Ok. ( SAFE )

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    Vmax = 0.60wL = 0.60(35.66)(4) = 85.584 kn

    Vu = 85.584 - 35.66(0.34) = 73.46 kN

  • 8/10/2019 Design of Beam-USD

    19/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Vc = 1/6 f'c (b)(d) = 1/6 21 (200)(340) = 199.16 kN

    Vc = 0.85 ( 199.1) = 84.64 kN > Vu ( no need web reinforcements )2 2

    From the code provide min web reinforcements/stirrups

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    Av = (8)2 = 50.2656 mm2

    4

    Provide Spacing = d/2

    = 340 = 170 mm.

    2

    S = 8 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B

    4

    a) slab loading

    Ws-1 DL = 4.47(1.5) [ 3(0.3)2 ] = 3.25 kN/m3 2

    Ws- LL = 4.8 (1.5) [ 3(0.3)2] = 3.492 kN/m3 2

    b) factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu = 1.4 (3.25) + 1.7 (3.492) = 10.49 kN/m

    c) Compute beam weight, Consider 1 meter strip

    Use d = 300 mm.

    B = 150 mm.

    H = 300 + 40 + 10 + 10 = 360 mm.

    Wb = (0.150)(0.36)(23.544) = 1.27 kN/m

    dead loads = steel studs = 0.38 kN/m1.65 kN/m

    Factored Load = 1.4 (1.65) = 2.31 kN/m

    Total Factored Load ;

    = 2.31 + 10.49 = 12.8 kN/m

    d) Compute for moment and Reaction ( see Table 4 )

  • 8/10/2019 Design of Beam-USD

    20/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    e) Shear and moment diagram ( see figure 4 )

    f) Design the beam

    1) Negative moment @ support ; Max Mu = 29.44 kN.m.

    a) Compute for Ru ( Ultimate Reaction )29.44 x 10

    6= 0.90 (150)(300)

    2Ru

    Ru = 2.423 MPa

    b) solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.423) ] = 0.0062414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) compute steel area requirement ; use 16 mm. Dia. Rebars

    As = bd

    = 0.0062 (150)(300) = 279 mm2

    No. of Bars = As / Ab

    = 279 = 1.39 pcs.

    say ; 2 pcs16 mm Dia.RSB

    Actual As = A's = (2) 279 = 402.12 (16)2

    4

    1)Positive moment @ Midspan, Max Mu = 26.65 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 26.65 x 106

    0.90 (150)(300)2

    Ru = 2.423 MPa

    b) solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.423) ] = 0.0062414 0.85(28)

  • 8/10/2019 Design of Beam-USD

    21/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    min < < max ok ( singly Reinforced design )

    c) compute steel area requirement ; use 16 mm. Dia. Rebars

    As = bd

    = 0.0062 (150)(300) = 279 mm2

    No. of Bars = As / Ab

    = 279 = 1.39 pcs.

    (16)2

    4

    say ; 2 pcs16 mm Dia.RSB

    Actual As = A's = (2) (16)2 = 402.124

    d) Check for web ReinforcementVu = VmaxWu (d)37.9 - 12.8(0.30) = 34.06 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (150)(300)

    = 39.69 kN

    Vc = 0.85 ( 39.69) = 16.87 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 34.06 - 39.69

    0.85= 0.38 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    0.38(1000)

    = 34,209.5 mm.Therefore Max Spacing = d/2

    = 300 = 150 mm.2

    S = 10 mm. Dia. RSB @ 150 mm. o.c. Ok...

    FOR BEAM , B5

  • 8/10/2019 Design of Beam-USD

    22/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    a) slab loading

    Ws-1 DL = 4.47(1.5) [ 3(0.3)2 ] = 3.25 kN/m3 2

    Ws-1 LL = 4.8 (1.5) [ 3(0.3)2] = 3.492 kN/m3 2

    b) factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu = 1.4 (3.25) + 1.7 (3.492) = 10.49 kN/m

    c) Compute beam weight, Consider 1 meter strip

    Use d = 300 mm.

    B = 150 mm.

    H = 300 + 40 + 10 + 10 = 360 mm.Wb = (0.150)(0.36)(23.544) = 1.27 kN/m

    dead loads = steel studs = 0.38 kN/m

    1.65 kN/m

    Factored Load = 1.4 (1.65) = 2.31 kN/m

    Total Factored Load ;

    = 2.31 + 10.49 = 12.8 kN/m

    d) Compute for moment and Reaction ( see Table 5 )

    e) Shear and moment diagram (see figure 5 )

    f) Design the beam

    1) Negative moment @ support ; Max Mu = 34.2 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 34.2 x 106

    0.90 (150)(300)2

    Ru = 2.815 MPab) solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.815) ] = 0.0073414 0.85(28)

    min < < max ok ( singly Reinforced design )

  • 8/10/2019 Design of Beam-USD

    23/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    c) Compute steel area requirement; use 16 mm. Dia. Rebars

    As = bd

    = 0.0073(150)(300) = 328.5 mm2

    No. of Bars = As / Ab

    = 328.5 = 1.63 pcs. (16)2

    4

    say ; 2 pcs16 mm Dia.RSB

    Actual As = A's = (2) 279 = 402.12

    (16)2

    4

    1) Positive moment @ Midspan, Max Mu = 24.81 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 24.81 x 106

    0.90 (150)(300)2

    Ru = 2.042 MPa

    b) solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.042) ] = 0.0052414 0.85(28)

    min < < max ok

    c) compute steel area requirement ; use 16 mm. Dia. Rebars

    As = bd

    = 0.0052 (150)(300) = 234 mm2

    No. of Bars = As / Ab

    = 234 = 1.2 pcs.say ; 2 pcs16 mm Dia.RSB

    Actual As = A's = (2) 279 = 402.12 (16)2

    4

    d) Check for web Reinforcement

    Vu = VmaxWu (d)

  • 8/10/2019 Design of Beam-USD

    24/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    38.8 - 12.8(0.30) = 34.96 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (150)(300)

    = 39.69 kN

    Vc = 0.85 ( 39.69) = 16.87 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 34.96 - 39.69

    0.85

    = 1.44 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    1.44(1000)

    = 9,027.5 mm.

    Therefore Max Spacing = d/2

    = 300 = 150 mm.

    2

    S = 10 mm. Dia. RSB @ 150 mm. o.c. Ok...

    FOR BEAM , B6A

    a) Slab loading

    Ws-a DL = 3.9542(1) [ 3(0.5)2 ] = 1.81 kN/m3 2

    Ws- LL = 4.8 (1) [ 3(0.5)2] = 2.2 kN/m3 2

    b) Factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu = 1.4 (1.81) + 1.7 (2.2) = 6.274 kN/m

    c) Compute beam weight, Consider 1 meter strip

    Use d = 200 mm.

    B = 150 mm.

    H = 200 + 40 + 10 + 10 = 260 mm.

  • 8/10/2019 Design of Beam-USD

    25/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Wb = (0.150)(0.26)(23.544) = 0.92 kN/m

    dead loads = 100mm CHB both = 1.76 kN/m

    face pastered 2.68 kN/m

    Factored Load = 1.4 (2.68) = 3.8 kN/mTotal Factored Load ;

    = 3.8 + 6.274 = 10.10 kN/m

    d) Compute for moment and Reaction ( see Table 6a )

    e) Shear and moment diagram ( see figure 6a )

    f) Design the beam

    1) Negative moment @ support ; Max Mu = 6.33 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 6.33 x 106

    0.90 (150)(200)2

    Ru = 1.172 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(1.172) ] = 0.0029414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) compute steel area requirement ; use 16 mm. Dia. Rebars

    As = bd

    = 0.0057(2000)(300) = 342 mm2

    No. of Bars = As / Ab

    = 342 = 1.7 pcs.

    say ; 2 pcs16 mm Dia.RSB

    Actual As = A's = (16)2 = 201.06mm24

    d) Check for web Reinforcement

    Vu = WuL - Wud

    2

  • 8/10/2019 Design of Beam-USD

    26/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Vu = 10.10 (4) - 10.10( 0.30)

    2

    Vu = 9.30 kN.

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(150)

    = 26.46 kN

    Vc = 0.85 ( 26.46) = 11.25 kN > Vu ( no web reinforcements need )2 2

    Check Min. area of web reinforcement.

    Min. Av = b S / 3 fy

    As = 78.54

    Av = 2As = 2 (78.54) = 157.10 mm2

    S = 157.10(3)(276) = 867.192 mm150

    S = 10 mm. Dia. RSB @ 800 mm. o.c. Ok...

    FOR BEAM , B6B

    a) Slab loading

    Ws-11 DL = 4.47(1) [ 3(0.375)2 ] = 3.20 kN/m

    3 2Ws-11 LL = 4.8 (1) [ 3(0.375)2] = 3.43 kN/m

    3 2

    b) Factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu = 1.4 (3.20) + 1.7 (3.43) = 10.311 kN/m

    c) Compute beam weight, Consider 1 meter strip

    Use b = 200 mm.

    d = 3000 mm.

    H = 300 + 40 + 10 + 10 = 360 mm.

    Wb = (0.20)(0.36)(23.544) = 1.7 kN/m

    dead loads = 100mm CHB both = 1.76 kN/m

    face pastered 3.46 kN/m

    Factored Load = 1.4 (3.46) = 4.84 kN/m

    Total Factored Load ;

  • 8/10/2019 Design of Beam-USD

    27/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    = 4.84 + 10.31 = 15.16 kN/m

    d) Compute for moment and Reaction ( see Table 6b)

    e) Shear and moment diagram ( see figure 6b )

    f) Design the beam1) Negative moment @ support ; Max Mu = 36.24 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 36.24 x 106

    0.90 (200)(300)2

    Ru = 2.237 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.237) ] = 0.0057414 0.85(28)

    min > use minc) compute steel area requirement ; use 16 mm. Dia. Rebars

    As = bd

    = 0.0034(150)(200) = 102 mm2

    No. of Bars = As / Ab

    = 102 = 0.51 pcs. (16)2

    4

    say ; 1 pcs16 mm Dia.RSB

    Actual As = A's = (16)2 = 201.1 mm2

    4

    d) Check for web Reinforcement

    Vu = WuL - Wud

    2

    Vu = 18 (4) - 18( 0.30)

    2

    Vu = 30.6 kN.

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(300)

    = 52.91 kN

    Vc = 0.85 ( 52.91) = 22.49 kN < Vu ( need web reinforcements )

  • 8/10/2019 Design of Beam-USD

    28/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    2 2

    Vs = Vu - Vc ; 30.6 - 52.91

    0.85

    = - 16.91 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 179.91 kN > Vs

    Therefore Max Spacing = d/2

    = 300 = 150 mm.

    2

    S = 10 mm. Dia. RSB @ 150 mm. o.c. Ok...

    FOR BEAM , B7

    a) Slab loading

    Bleacher slab DL = 6.85(4) [ 3(0.8)2 ] = 10.78kN/m3 2

    Bleacher slab LL = 4.8(3) [ 3(0.8 )2 ] = 7.552 kN/m3 2

    b) Factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu = 1.4 (10.78) + 1.7 (7.552) = 27.93 kN/m

    c) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

    B = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    DL = steel studs = 2.4 kN/m

    Wb = (0.20)(.40)(23.544) = 1.88 kN/m

    Factored Load = 1.4 (2.26) = 3.164 kN/m

    Total Factored Load ;

    = 3.164 + 27.93 = Ru = 36.24 x 106

    0.90 (200)(300)2

    31.1 kN/m

  • 8/10/2019 Design of Beam-USD

    29/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    d) Compute for moment and Reaction ( see Table 7 )

    e) Shear and moment diagram (see figure 7)

    f) Design the beam1) Negative moment @ support ; Max Mu = - 83.56kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 83.56 x 106

    0.90 (200)(340)2

    Ru = 4.016 MPa

    d) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]

    fy 0.85f'c = 0.85(28) [ 1 - 1 2(4.016) ] = 0.0107

    414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0107 (200)(340) = 727.6 mm2

    No. of Bars = As / Ab

    = 727.6 = 2.31 pcs. (20)2

    4A16 = 201.1 (1) = 201.1 mm

    2

    A20 = 314.16 (2) = 628.32 mm2

    829.42 mm2

    > 727.6

    say ; 2 pcs20 mm Dia.RSB and 1pcs16 mm Dia. RSB

    Actual As = A's 829.42 mm

    2

    1) Positive moment @ Midspan, Max Mu = 67.88 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 67.88 x 106

    0.90 (200)(340)2

    Ru = 3.262 MPa

  • 8/10/2019 Design of Beam-USD

    30/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    d) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(3.262) ] = 0.0085414 0.85(28)

    min < < max ok

    c) Compute steel area requirement; use 16 mm. Dia. Rebars

    As = bd

    = 0.0085 (200)(340) = 578 mm2

    No. of Bars = As / Ab

    = 578 = 2.87 pcs.

    (20)2

    4

    say ; 3 pcs16 mm Dia.RSB

    Actual As = A's = (3) (16)2 = 603.2 mm2

    4

    g) Check for web Reinforcement

    Vu = VmaxWu (d)

    Vu = 126.99 - 37.73(0.34)

    Vu = 114.2 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 114.2 - 59.97

    0.85

    = 74.38 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d

    Vs Av = (10)2 = 157 mm2

    4

    S = 157(276)(340)

    74.38(1000)

    = 198.1 mm.

  • 8/10/2019 Design of Beam-USD

    31/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

    = 340 = 170 mm.

    2S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B8

    a) Slab loading

    Ws-10 DL = 3.9542(2.5) [ 3(0.5)2 ] = 4.531 kN/m3 2

    Ws-10 LL = 4.8 (2.5) [ 3(0.5)2] = 5.50 kN/m3 2

    Ws-11 DL = 4.47(1.5) 2 = 2.235 kN/m

    3

    Ws-11 LL = 4.8 (1.5) 2 = 2.4 kN/m

    3

    b) Factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu1= 1.4 (4.531) + 1.7 (5.50) = 15.70 kN/m

    Wu2 = 1.4 (2.235) + 1.7 (2.4) = 7.21 kN/m

    c) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/mDead load = 100mm CHB interior wall = 1.76 kN/m

    3.64 kN/m

    Factored Load = 1.4 (3.64) = 5.10 kN/m

    Total Factored Load ;

    Wu1 = 15.7 kN/m + 5.1kN/m = 20.8 kN/m

    Wu2 = 7.21 kN/m + 5.1 kN/m = 28.0 kN/m

  • 8/10/2019 Design of Beam-USD

    32/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    d) Compute for moment and Reaction ( see Table 8 )

    e) Shear and moment diagram ( see figure 8 )

    f) Design the beam

    1) Negative moment @ support ; Max Mu = 99.03 kN.m.a) Compute for Ru ( Ultimate Reaction )

    Ru = 99.03 x 106

    0.90 (200)(340)2

    Ru = 4.760 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(4.760) ] = 0.0130414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0130 (200)(340) = 884 mm2

    No. of Bars = As / Ab

    = 884 = 2.81 pcs. (20)2

    4

    say ; 3 pcs20 mm Dia.RSB

    Actual As = A's = (3) (20)2 = 942.48 mm2

    4

    1)Positive moment @ Midspan, Max Mu = 56.0 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 41.44 x 10

    6

    0.90 (200)(340)2

    Ru = 1.992 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 12 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(1.992) ] = 0.005

  • 8/10/2019 Design of Beam-USD

    33/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    414 0.85(28)

    min < < max ok

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.005 (200)(340) = 340 mm2

    No. of Bars = As / Ab

    = 340 = 1.7 pcs.

    (16)2

    4

    say ; 2 pcs16 mm Dia.RSB

    Actual As = A's = (2) (16) = 402.124

    d) Check for web Reinforcement

    Vu = VmaxWu (d)

    114.15 - 38 (0.34) = 101.23 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )

    2 2Vs = Vu - Vc ; 84.03 - 59.97

    0.85

    = 59.12 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    59.12(1000)

    = 249.2 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

  • 8/10/2019 Design of Beam-USD

    34/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Therefore Max Spacing = d/2

    = 340 = 170 mm.2

    S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B9

    a) Slab loading

    Ws-9,10 DL = 3.9542(4) [ 3(0.5)2 ](2) = 9.06 kN/m3 2

    Ws-9,10 LL = 4.8 (4) [ 3(0.5)2](2) = 11.0 kN/m3 2

    b) Factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu1= 1.4 (9.06) + 1.7 (11.0) = 31.384 kN/m

    c) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    Dead load = steel studs = 0.38 kN/m

    2.26 kN/m

    Factored Load = 1.4 (2.26) = 3.164 kN/m

    Total Factored Load ;

    Wu1 = 31.384 kN/m + 3.164 kN/m = 41.62kN/m

    d) Compute for moment and Reaction ( see Table 9 )

    e) Shear and moment diagram ( see figure 9 )

    f) Design the beam

    1) Negative moment @ support ; Max Mu = 108 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

  • 8/10/2019 Design of Beam-USD

    35/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Ru = 108 x 106

    0.90 (200)(340)2

    Ru = 5.190 MPa

    b) Solve for actual steel ratio , = 0.85 f'c [ 1 - 1 2 Ru ]

    fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(5.190) ] = 0.0143414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0143 (200)(340) = 972.4 mm2

    No. of Bars = As / Ab

    = (2) (20)2 = 628.32 mm2

    4

    = (2) (16)2 = 402.12 mm2

    4 1030.44 mm2 > 972.4

    say ; 2 pcs20 mm and 2-16mm. Dia.RSB

    Actual As = A's 1030.44 mm2

    1)Positive moment @ Midspan, Max Mu = 48.37 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 48.37 x 106

    0.90 (200)(340)2

    Ru = 0.006 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.691) ] = 0.006414 0.85(28)

    min < < max ok

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

  • 8/10/2019 Design of Beam-USD

    36/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    As = bd

    = 0.006 (200)(340) = 408 mm2

    No. of Bars = As / Ab

    = 469.2 = 2.1 pcs. (16)2

    4

    say ; 3 pcs16 mm Dia.RSB

    Actual As = A's = (2) (16)2 = 402.124

    \d) Check for web Reinforcement

    Vu = VmaxWu (d)

    95.37 - 34.55 (0.34) = 83.62 kNVc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 83.62 - 59.97

    0.85

    = 38.41 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    38.89(1000)

    = 378.33 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

  • 8/10/2019 Design of Beam-USD

    37/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    = 340 = 170 mm.

    2S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B10

    a) Slab loading

    Ws-10 DL = 3.9542( 2.5) [ 3(0.5)2 ] = 4.53 kN/m3 2

    Ws-10 LL = 4.8 (2.5) [ 3(0.5)2] = 5.5 kN/m3 2

    factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu1= 1.4 (4.53) + 1.7 (5.5) = 15.7 kN/m

    Ws-3 DL = 3.9542( 3) [ 3(0.75)2 ] = 4.82 kN/m3 2

    Ws-3 LL = 4.8 (3) [ 3(0.75)2] = 5.85 kN/m3 2

    factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu1= 1.4 (4.82) + 1.7 (5.85) = 16.7 kN/mWs-7 DL = 3.9542( 2) = 2.64 kN/m

    3

    Ws-7 LL = 4.8 (2) = 3.2 kN/m

    3

    factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu1= 1.4 (2.64) + 1.7 (3.2) = 9.14 kN/m

    b) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    Dead load = 150mm exterior wall = 2.4 kN/m= window glass frame and sash = 0.38 kN.m

    4.66 kN/m

  • 8/10/2019 Design of Beam-USD

    38/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Factored Load = 1.4 (4.66) = 6.524 kN/m

    Total Factored Load ;

    Wu1 = 15.7 kN/m + 6.524 kN/m = 22.22 kN/m

    Wu2 = 16.7 kN/m + 6.524 kN/m = 23.22 kN/m

    Wu3 = 9.14 kN/m + 6.524 kN/m = 15.66 kN/m

    d) Compute for moment and Reaction ( see Table 10 )

    d) Shear and moment diagram ( see figure 10 )

    e) Design the beam

    1) Negative moment @ support ; Max Mu = 62.3 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 62.3 x 106

    0.90 (200)(340)2

    Ru = 2.994 MPa

    b) solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.994) ] = 0.0078414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0078 (200)(340) = 530.4 mm2

    No. of Bars = As / Ab

    = 530.4 = 1.67 pcs.

    (20)2

    4

    say ; 2 pcs20 mm and 2-16mm. Dia.RSB

    Actual As = A's = (2) (20)2 = 628.32 mm2

    4

    1)Positive moment @ Midspan, Max Mu = 49.28 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

  • 8/10/2019 Design of Beam-USD

    39/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Ru = 49.28 x 106

    0.90 (200)(340)2

    Ru = 2.368 MPa

    b) Solve for actual steel ratio , = 0.85 f'c [ 1 - 1 2 Ru ]

    fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.368) ] = 0.006414 0.85(28)

    min < < max ok

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.006 (200)(340) = 408 mm2

    No. of Bars = As / Ab

    = 469.2 = 1.3 pcs.

    (20)2

    4

    say ; 2pcs20mm Dia.RSB

    Actual As = A's = (2) (16)2 = 402.12 mm2

    4

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    68.39 - 22.22 (0.34) = 60.84 kNVc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 60.84 - 59.97

    0.85

    = 11.61 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

  • 8/10/2019 Design of Beam-USD

    40/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    S = 157(276)(300)

    38.89(1000)

    = 378.33 mm.

    Check Max Spacing.1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

    = 340 = 170 mm.

    2

    S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B11

    a) Slab loading

    Ws-3 DL = 3.9542( 4) [ 3(1)2 ] = 10.54 kN/m3 2

    Ws-3 LL = 4.8 (4) [ 3(1)2] = 12.8 kN/m3 2

    Factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu1= 1.4 (10.54) + 1.7 (12.8) = 36.52 kN/m

    Ws-11 DL = 3.6484( 1.5) = 1.82 kN/m

    3

    Ws-4 DL = 3.9542 (4) = 5.27 kN/m

    3

    Ws-11 LL = 4.8( 1.5) = 2.4 kN/m

    3

    Ws-4 LL = 4.8 (4) = 6.4 kN/m

    3

    factored load, Wu = 1.4(DL) + 1.7(LL)

    Wu1= 1.4 (7.09) + 1.7 (8.8) = 24.9 kN/m

    b) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

  • 8/10/2019 Design of Beam-USD

    41/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    Dead load = 100mm exterior wall = 2.4 kN/m3.64 kN/m

    Factored Load = 1.4 (3.64) = 5.10 kN/m

    Total Factored Load ;

    Wu1 = 36.52 kN/m + 5.10 kN/m = 41.62 kN/m

    Wu2 = 24.9 kN/m + 5.10 kN/m = 28.10 kN/m

    d) Compute for moment and Reaction ( see Table 11 )

    d) Shear and moment diagram ( see figure 11 )

    e) Design the beam

    1) Negative moment @ support ; Max Mu = - 82.0 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 82.0x 106

    0.90 (200)(340)2

    Ru = 3.941 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(3.941) ] = 0.0105414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0105 (200)(340) = 714.0 mm2

    No. of Bars = As / Ab

    = 714.0 = 2.27 pcs. (20)2

    4

    A16 = 201.1 (1) = 201.1 mm2

    A20 = 314.16 (2) = 628.32 mm2

    829.42 mm2

    > 714.0 mm2

  • 8/10/2019 Design of Beam-USD

    42/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    say use; 2 pcs20 mm and 1-16mm. Dia.RSB

    Actual As = A's = (2) (20)2 = 829.42 mm2

    4

    1)Positive moment @ Midspan, Max Mu = 63.82 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 63.82 x 106

    0.90 (200)(340)2

    Ru = 3.067 MPa

    b) solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]

    fy 0.85f'c = 0.85(28) [ 1 - 1 2(3.067) ] = 0.008

    414 0.85(28)

    min < < max ok

    c) compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.008 (200)(340) = 544 mm2

    No. of Bars = As / Ab

    = 469.2 = 2.71 pcs. (16)2

    4

    say ; 3 pcs16 mm Dia.RSB

    Actual As = A's = (2) (16)2 = 402.12 mm2

    4

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    100.79 - 41.62 (0.34) = 86.64 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 686.64 - 59.97

  • 8/10/2019 Design of Beam-USD

    43/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    0.85

    = 41.96 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2

    = 157 mm2

    Vs 4

    S = 157(276)(300)

    41.96(1000)

    = 378.33 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

    = 340 = 170 mm.

    2

    S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B12A

    a) Slab loading

    Ws-4,3 DL = 3.9542(4) [ 3(1)2 ](2) = 10.545 kN/m3 2

    Ws-4,3 LL = 4.8 (4) [ 3(1)2](2) = 12.8 kN/m3 2

    Factored load, Wu

    Wu1= 1.4 (10.545) + 1.7 (12.8) = 36.523 kN/m

    Ws-11 DL = 3.6484(4) (2) = 3.6484 kN/m3

    Ws-11 LL = 4.8 (4) (2) = 4.8 kN/m

    3

    Factored load, Wu

    Wu2= 1.4 (3.6484) + 1.7 (4.8) = 13.27 kN/m

    b) Compute beam weight, Consider 1 meter strip

  • 8/10/2019 Design of Beam-USD

    44/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Use d = 340 mm.

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/mDead load = 100 mm. CHB = 1.76 kN/m

    3.64 kN/m

    Factored Load = 1.4 (3.64) = 5.10 kN/m

    Total Factored Load ;

    Wu1 = 36.523 kN/m + 5.10 kN/m = 41.62 kN/m

    Wu2 = 13.27 kN/m + 5.10 kN/m = 18.37kN/m

    c) Compute for moment and Reaction ( see Table 12A )d) Shear and moment diagram ( see figure 12A )

    e) Design the beam

    1) Negative moment @ support ; Max Mu = 94.0 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 94.0 x 106

    0.90 (200)(340)2

    Ru = 4.517 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(4.517) ] = 0.0122414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd= 0.0122 (200)(340) = 829.6 mm

    2

    No. of Bars = As / Ab

    = 829.6 = 2.64 pcs. (20)2

    4

    say ; 3 pcs20 mm Dia.RSB

  • 8/10/2019 Design of Beam-USD

    45/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Actual As = A's = (3) (20)2 = 942.48 mm2

    4

    1)Positive moment @ Midspan, Max Mu = 56.0 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 56.0 x 106

    0.90 (200)(340)2

    Ru = 2.691 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]

    fy 0.85f'c = 0.85(28) [ 1 - 1 2(2.691) ] = 0.0069

    414 0.85(28)

    min < < max ok

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0069 (200)(340) = 469.2 mm2

    No. of Bars = As / Ab

    = 469.2 = 1.49 pcs. (20)2

    4

    say ; 2 pcs20 mm Dia.RSB

    Actual As = A's = (2) (16)2 = 402.12 mm2

    4

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    98.18 - 41.62 (0.34) = 84.03 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

  • 8/10/2019 Design of Beam-USD

    46/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Vs = Vu - Vc ; 84.03 - 59.97

    0.85

    = 38.89 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    38.89(1000)

    = 378.33 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

    = 340 = 170 mm.

    2

    S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B12B (FB3)

    a) Slab loading

    Ws-4,3 DL = 3.9542(4) [ 3(1)2 ](2) = 10.545 kN/m3 2

    Ws-4,3 LL = 4.8 (4) [ 3(1)2](2) = 12.8 kN/m3 2

    factored load, Wu

    Wu1= 1.4 (10.545) + 1.7 (12.8) = 36.523 kN/m

    Ws-11 DL = 3.6484(4) (2) = 3.6484 kN/m3

    Ws-11 LL = 4.8 (4) (2) = 4.8 kN/m

    3

    factored load, Wu

    Wu1= 1.4 (3.6484) + 1.7 (4.8) = 13.27 kN/m

    b) Compute beam weight, Consider 1 meter strip

  • 8/10/2019 Design of Beam-USD

    47/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Use d = 340 mm.

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/mFactored Load = 1.4 (1.88) = 2.632 kN/m

    Total Factored Load ;

    Wu1 = 36.523 kN/m + 2.632 kN/m = 39.15 kN/m

    Wu2 = 13.27 kN/m + 2.632 kN/m = 15.90 kN/m

    55.05 kN-m

    c) Max Ultimate Moment , Mu = 0.10wL2

    = 0.1(55.05)(4)(4) = 88.08 kN-m

    e) Design the beam

    1) Negative moment @ support ; Max Mu = 88.08 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 88.08 x 106

    0.90 (200)(340)2

    Ru = 4.233 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(4.233) ] = 0.0113414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0113 (200)(340) = 771.38 mm2

    No. of Bars = As / Ab

    = 771.38 = 2.455 pcs say 3.

    (20)2

    4

    A20 = 314.16 (3) = 942.48 mm2

    > 771.38 mm2

    say use; 3 pcs20 mm. Dia.RSB

  • 8/10/2019 Design of Beam-USD

    48/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Actual As = A's = 942.48 mm2

    1) Positive moment @ Midspan, Mu = 0.08wL2 = 0.08(55.05)(4)4

    Max Mu = 70.464 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 70.464 x 106

    0.90 (200)(340)2

    Ru = 3.386 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(3.386) ] = 0.00886414 0.85(28)

    min < < max ok

    c) compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.00886 (200)(340) = 602.48

    mm

    2

    No. of Bars = As / Ab

    = 602.48 = 1.918 pcs. (20)2

    4

    say ; 3 pcs20 mm Dia.RSB

    f) Check for web Reinforcement Vmax = 0.60wL = 0.6(55.05)(4) = 132.12

    Vu = VmaxWu (d)

    132.12 - 55.05 (0.34) = 113.403 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 113.403 - 59.97

  • 8/10/2019 Design of Beam-USD

    49/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    0.85

    = 73.445 kN

    Compute Spacing of web reinforcements / stirrups ; use 8mm. Dia. Bars

    S = Av fy d Av = (8)2

    = 50.265 mm2

    Vs 4

    S = 50.265(276)(340)

    73.445(1000)

    = 64.223 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

    = 340 = 170 mm.2

    S = 8 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B13

    a) Slab loading

    Ws-2 DL = 3.9542(4) [ 3(1)2 ] = 5.27 kN/m3 2

    Ws-2 LL = 4.8 (4) [ 3(1)2] = 6.4 kN/m3 2

    factored load, Wu

    Wu1= 1.4 (5.27) + 1.7 (6.4) = 18.258 kN/m

    Ws-3 DL = 3.9542 (4) [ 3(1)2] = 5.27 kN/m3 2

    Ws-6 DL = 3.9542 (4) [ 3(1)2] = 3.62 kN/m3 2 8.89 kN/m

    Ws-3 LL = 4.8 (4) [ 3(1)2] = 6.4 kN/m3 2

  • 8/10/2019 Design of Beam-USD

    50/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Ws-6 LL = 4.8 (4) [ 3(0.5)2] = 4.4 kN/m3 2 10.8 kN/m

    Factored load, Wu

    Wu2= 1.4 (8.89) + 1.7 (10.8) = 30.81 kN/m

    Ws-4 DL = 3.9542 (4) [ 3(1)2] = 5.27 kN/m3 2

    Ws-6 DL = 3.9542 (4) (2) = 5.27 kN/m

    3 10.54 kN/m

    Ws-4 LL = 4.8 (4) [ 3(1)2] = 6.4 kN/m3 2

    Ws-6 LL = 4.8 (2) = 6.4 kN/m

    3 12.8 kN/m

    Factored load, WuWu2= 1.4 (10.54) + 1.7 (12.8) = 36.51 kN/m

    Ws-5 DL = 3.9542 (4) [ 3(0.8)2] = 6.22 kN/m3 2

    Ws-1 DL = 4.47 (1.5) [ 3(0.3)2] = 3.25 kN/m3 2 9.47 kN/m

    Ws-5 LL = 4.8 (4) [ 3(0.8)2] = 7.55 kN/m3 2

    Ws-1 LL = 4.8 (1.5) [ 3(0.3)2] = 3.492 kN/m3 2 11.0 kN/m

    factored load, Wu

    Wu2= 1.4 (9.47) + 1.7 (11.0) = 31.96 kN/m

    b) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    DL = 150mm CHB = 2.40 kN/m

    4.28 kN/m

    Factored Load = 1.4 (4.28) = 6.0 kN/m

    Total Factored Load ;

    Wu1 = 18.258 kN/m + 6.0 kN/m = 24.26 kN/m

  • 8/10/2019 Design of Beam-USD

    51/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Wu2 = 30.81 kN/m + 6.0 kN/m = 36.81 kN/m

    Wu3 = 36.51 kN/m = 36.51 kN/m

    Wu4 = 31.96 kN/m = 31.96 kN/m

    c) Compute for moment and Reaction ( see Table 13 )d) Shear and moment diagram ( see figure 13 )

    e) Design the beam

    1) Negative moment @ support ; Max Mu = 96.8 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 96.8 x 106

    0.90 (200)(340)2

    Ru = 4.652 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(4.652) ] = 0.0126414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd= 0.0126 (200)(340) = 856.8 mm

    2

    No. of Bars = As / Ab

    = 856.8 = 2.73 pcs. (20)2

    4

    say use; 3pcs20 mm. Dia.RSB

    Actual As = A's = (3) (20)2 = 942.48 mm2

    4

    1)Positive moment @ Midspan, Max Mu = 57.55 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 57.55 x 106

    0.90 (200)(340)2

    Ru = 2.766 MPa

    b) Solve for actual steel ratio ,

  • 8/10/2019 Design of Beam-USD

    52/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.766) ] = 0.0071414 0.85(28)

    min < < max ok

    c) Compute steel area requirement ; use 16 mm. Dia. Rebars

    As = bd

    = 0.0071 (200)(340) = 482.8 mm2

    No. of Bars = As / Ab

    = 482.8 = 2.4 pcs.

    (16)2

    4

    say ; 3 pcs16 mm Dia.RSB

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    111.49 - 36.51 (0.34) = 99.10 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)= 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )

    2 2Vs = Vu - Vc ; 99.10 - 59.97

    0.85

    = 56.62 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    56.62(1000)= 260.61 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

  • 8/10/2019 Design of Beam-USD

    53/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    = 340 = 170 mm.

    2S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B14

    a) Slab loading

    Ws-3 DL = 3.9542(4) [ 3(1)2 ](2) = 10.545 kN/m3 2

    Ws-3 LL = 4.8 (4) [ 3(1)2](2) = 12.8 kN/m3 2

    factored load, Wu

    Wu1= 1.4 (10.545) + 1.7 (12.8) = 36.523 kN/m

    Ws-3 DL = 3.9542 (4) [ 3(1)2] = 5.27 kN/m3 2

    Ws-6 DL = 3.9542 (2) = 2.64 kN/m

    3 7.91 kN/m

    Ws-3 LL = 4.8 (4) [ 3(1)2] = 6.4 kN/m3 2

    Ws-6 LL = 4.8 (2) = 3.2 kN/m3 9.6 kN/m

    factored load, Wu

    Wu2= 1.4 (7.91) + 1.7 (9.6) = 25.63 kN/m

    Ws-5 DL = 3.9542 (4) [ 3(0.8)2](2) = 12.44 kN/m3 2

    Ws-5 LL = 4.8 (4) [ 3(0.8)2](2) = 15.104 kN/m3 2

    factored load, Wu

    Wu3= 1.4 (12.44) + 1.7 (15.104) = 43.10 kN/m

    Ws-5 DL = 3.9542 (4) [ 3(0.8)2] = 6.22 kN/m3 2

    Ws-1 DL = 4.47 (1.5) [ 3(0.3)2] = 3.25 kN/m3 2 9.47 kN/m

    Ws-5 LL = 4.8 (4) [ 3(0.8)2] = 7.522 kN/m3 2

  • 8/10/2019 Design of Beam-USD

    54/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Ws-1 LL = 4.8 (1.5) [ 3(0.3)2] = 3.492 kN/m3 2 11.094 kN/m

    Factored load, Wu

    Wu4= 1.4 (9.47) + 1.7 (11.094) = 32.03 kN/m

    b) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    DL = steel studs, gypsum board each side = 0.38kN/m

    2.26 kN/m

    Factored Load = 1.4 (2.26) = 3.164 kN/mTotal Factored Load ;

    Wu1 = 36.523 kN/m + 3.164 kN/m = 39.7 kN/m

    Wu2 = 25.63 kN/m + 3.164 kN/m = 28.8 kN/m

    Wu3 = 43.10 kN/m + 3.164 kN/m = 46.3 kN/m

    Wu4 = 32.03 kN/m + 3.164 kN/m = 35.2 kN/m

    c) Compute for moment and Reaction ( see Table 14 )

    d) Shear and moment diagram ( see figure 14 )

    e) Design the beam

    1) Negative moment @ support ; Max Mu = 88.6 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 88.6 x 106

    0.90 (200)(340)2

    Ru = 4.258 MPa

    b) solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(4.258) ] = 0.01142414 0.85(28)

    min < < max ok ( singly Reinforced design )

  • 8/10/2019 Design of Beam-USD

    55/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    c) compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.01142 (200)(340) = 776.56 mm2

    No. of Bars = As / Ab= 776.56 = 2.47 pcs.

    (20)2

    4

    say use; 3pcs20 mm. Dia.RSB

    Actual As = A's = (3) (20)2 = 942.48 mm2

    4

    1) Positive moment @ Midspan, Max Mu = 85.74 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 85.74 x 106

    0.90 (200)(340)2

    Ru = 4.121 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(4.121) ] = 0.0110414 0.85(28)

    min < < max ok

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0110 (200)(340) = 748 mm2

    No. of Bars = As / Ab

    = 748 = 2.4 pcs. (20)2

    4

    say ; 3 pcs20 mm Dia.RSB

    Actual As = A's = (3) (20)2 = 942.48 mm2

    4

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    116.31 - 46.3. (0.34) = 100.57 kN

  • 8/10/2019 Design of Beam-USD

    56/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)= 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 100.57 - 59.97 0.85

    = 58.35 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    58.35(1000)

    = 252.51 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

    = 340 = 170 mm.

    2

    S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B15

    a) Slab loading

    Ws-2 DL = 3.9542(4) [ 3(1)2 ] = 5.27 kN/m3 2

    Ws-2 LL = 4.8 (4) [ 3(1)2] = 6.4 kN/m

    3 2

    factored load, Wu

    Wu1= 1.4 (5.27) + 1.7 (6.4) = 18.258 kN/m

    Ws-5 DL = 3.9542 (4) [ 3(1)2] = 5.27 kN/m3 2

    Ws-1 DL = 4.47 (1.5) [ 3(0.3)2] = 3.252 kN/m3 2 8.522 kN/m

  • 8/10/2019 Design of Beam-USD

    57/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Ws-5 LL = 4.8 (4) [ 3(1)2] = 6.4 kN/m3 2

    Ws-1 LL = 4.8 (1.5) [ 3(0.3)2] = 3.492 kN/m3 2 9.892 kN/m

    Factored load, Wu

    Wu2= 1.4 (8.522) + 1.7 (9.892) = 28.75 kN/m

    b) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    DL = 150 mm CHB = 2.4 kN/m4.28 kN/m

    Factored Load = 1.4 (4.28) = 5.992 kN/m

    Total Factored Load ;

    Wu1 = 18.258 kN/m + 5.992 kN/m = 24.25 kN/m

    Wu2 = 28.75 kN/m + 1.4(1.88) kN/m = 31.38 kN/m

    c) Compute for moment and Reaction ( see Table 15 )

    d) Shear and moment diagram ( see figure 15 )

    e) Design the beam

    1) Negative moment @ support ; Max Mu = 69.8 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 69.8 x 106

    0.90 (200)(340)2

    Ru = 3.354 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(3.354) ] = 0.0088414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

  • 8/10/2019 Design of Beam-USD

    58/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    = 0.0088 (200)(340) = 598.4 mm2

    No. of Bars = As / Ab

    = 598.4 = 1.90 pcs. (20)2

    4

    say use; 2 pcs20 mm. Dia.RSB

    Actual As = A's = (2) (20)2 = 628.32 mm2

    4

    1) Positive moment @ Midspan, Max Mu = 39.15 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 39.15 x 106

    0.90 (200)(340)2

    Ru = 1.881 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(1.881) ] = 0.0047414 0.85(28)

    min < < max ok

    c) Compute steel area requirement ; use 16 mm. Dia. Rebars

    As = bd

    = 0.0047(200)(340) = 319.6 mm2

    No. of Bars = As / Ab

    = 319.6 = 1.6 pcs. (16)2

    4

    say ; 2 pcs16 mm Dia.RSB

    Actual As = A's = (2) (16)2 = 402.12 mm2

    4

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    82.6 - 31.38. (0.34) = 71.93 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

  • 8/10/2019 Design of Beam-USD

    59/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 71.93 - 59.97

    0.85

    = 24.65 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    24.65(1000)

    = 597.7 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

    = 340 = 170 mm.2

    S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR BEAM , B16

    a) Slab loading

    Ws-1 DL = 4.47(1.5) [ 3(0.3)2 ] = 3.252 kN/m3 2

    Ws-1 LL = 4.8 (1.5) [ 3(0.3)2] = 3.492 kN/m3 2

    Factored load, Wu

    Wu1= 1.4 (3.252) + 1.7 (3.492) = 10.49 kN/m

    b) Compute beam weight, Consider 1 meter strip

    Use d = 300 mm.

    b = 150 mm.

    H = 300 + 40 + 10 + 10 = 360 mm.

  • 8/10/2019 Design of Beam-USD

    60/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Wb = (0.150)(0.360)(23.544) = 1.27 kN/m

    DL = 150 mm CHB = 2.4 kN/m

    3.67 kN/m

    Factored Load = 1.4 (3.67) = 5.138 kN/m

    Total Factored Load ;

    Wu1 = 10.49 kN/m + 5.138 kN/m = 15.63 kN/m

    c) Compute for moment and Reaction ( see Table 16 )

    d) Shear and moment diagram ( see figure 16 )

    e) Design the beam

    1) Negative moment @ support ; Max Mu = 41.31 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 41.31 x 106

    0.90 (200)(340)2

    Ru = 3.40 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(3.40) ] = 0.0089414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement; use 16 mm. Dia. Rebars

    As = bd

    = 0.0089 (150)(300) = 400.5 mm2

    No. of Bars = As / Ab

    = 400.5 = 1.99 pcs. (16)2

    4

    say use; 2 pcs16 mm. Dia.RSB

    Actual As = A's = (2) (16)2 = 402.12 mm2

    4

    1) Positive moment @ Midspan, Max Mu = 30.38 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 30.38 x 106

  • 8/10/2019 Design of Beam-USD

    61/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    0.90 (200)(340)2

    Ru = 2.50 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.50) ] = 0.0064414 0.85(28)

    min < < max ok

    c) Compute steel area requirement ; use 16 mm. Dia. Rebars

    As = bd

    = 0.0064(150)(300) = 288 mm2

    No. of Bars = As / Ab

    = 288m = 1.4 pcs.

    (16)2

    4

    say ; 2 pcs16 mm Dia.RSB

    Actual As = A's = (2) (16)2 = 402.12 mm2

    4

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    47.31 - 15.63. (0.34) = 42.62 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 42.62 - 59.97

    0.85

    = 10.45 kN

    Compute Spacing of web reinforcements / stirrups; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    10.45(1000)

  • 8/10/2019 Design of Beam-USD

    62/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    = 1243.98 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (150)(300)

    = 79.4 kN > VsTherefore Max Spacing = d/2

    = 300 = 150 mm.

    2S = 10 mm. Dia. RSB @ 150 mm. o.c. Ok...

    FOR GIRDER/ BEAM along A and M

    a) slab loading

    Ws-3,2 DL = 3.9542(4) [ 3(1)2 ] = 5.27 kN/m3 2

    Ws-3,2 LL = 4.8 (4) [ 3(1)2] = 6.4 kN/m3 2

    factored load, Wu

    Wu1= 1.4 (5.27) + 1.7 (6.4) = 18.258 kN/m

    b) Compute beam weight, Consider 1 meter stripUse d = 340 mm.

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    DL = 150 mm CHB = 2.4 kN/m

    Windows glass frames and sash = 0.38 kN/m

    4.66 kN/m

    Factored Load = 1.4 (4.66) = 6.524 kN/mTotal Factored Load ;

    Wu1 = 18.258 kN/m + 6.524 kN/m = 24.8 kN/m

    c) Compute for moment and Reaction ( see Table A and M )

    d) Shear and moment diagram ( see figure A and M )

    e) Design the beam

  • 8/10/2019 Design of Beam-USD

    63/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    1) Negative moment @ support ; Max Mu = 42.0 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 42.0 x 106

    0.90 (200)(340)2

    Ru = 2.018 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.018) ] = 0.0051414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use16 mm. Dia. Rebars

    As = bd

    = 0.0051 (200)(340) = 346.8 mm2

    No. of Bars = As / Ab

    = 346.8 = 1.25 pcs.

    (16)2

    4

    say use; 2 pcs16 mm. Dia.RSB

    Actual As = A's = (2) (16)2 = 402.12 mm2

    4

    1) Positive moment @ Midspan, Max Mu = 39.15 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 39.15 x 106

    0.90 (200)(340)2

    Ru = 1.485 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(1.485) ] = 0.0037414 0.85(28)

    min < < max ok

  • 8/10/2019 Design of Beam-USD

    64/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    c) Compute steel area requirement ; use 16 mm. Dia. Rebars

    As = bd

    = 0.0037(200)(340) = 251.6 mm2

    No. of Bars = As / Ab= 251.6 = 1.25 pcs.

    (16)2

    4

    say ; 2 pcs16 mm Dia.RSB

    Actual As = A's = (2) (16)2 = 402.12 mm2

    4

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    60.1 - 24.8 (0.34) = 51.67 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 51.67 - 59.97

    0.85

    = 0.82 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    0.82(1000)

    = 17,966.9 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

    = 340 = 170 mm.

    2

    S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

  • 8/10/2019 Design of Beam-USD

    65/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    FOR GIRDER/ BEAM along B and L

    a) Slab loading

    Ws-3,2 DL = 3.9542(4) [ 3(1)2 ] = 5.27 kN/m3 2

    Ws-3,2 LL = 4.8 (4) [ 3(1)2] = 6.4 kN/m3 2

    factored load, Wu

    Wu1= 1.4 (5.27) + 1.7 (6.4) = 18.258 kN/m

    Ws-4DL = 3.9542 (4) [ 3(1)2 ](2) = 10.54 kN/m3 2

    Ws-4 LL = 4.8 (4) [ 3(1)2](2) = 12.8 kN/m3 2

    factored load, Wu

    Wu1= 1.4 (10.54) + 1.7 (12.8) = 36.516 kN/m

    b) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    DL = 150 mm CHB = 2.4 kN/mWindows glass frames and sash = 0.38 kN/m

    4.66 kN/m

    Factored Load = 1.4 (4.66) = 6.524 kN/m

    Total Factored Load ;

    Wu1 = 18.258 kN/m + 6.524 kN/m = 24.78 kN/m

    Wu2 = 36.516 kN/m + 6.524 kN/m = 43.04 kN/mWu3 = 36.516 kN/m + 1.4(1.88) = 39.15 kN/m

    Wu3 = 1.4 (1.88) = 6.52 kN/m

    c) Compute for moment and Reaction ( see Table B and L)

    d) Shear and moment diagram ( see figure Band L )

  • 8/10/2019 Design of Beam-USD

    66/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    e) Design the beam

    1) Negative moment @ support ; Max Mu = -76.73 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 76.73 x 106

    0.90 (200)(340)2

    Ru = 3.668 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(3.668) ] = 0.0097414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use16 mm. Dia. Rebars

    As = bd

    = 0.0097 (200)(340) = 659.6 mm2

    No. of Bars = As / Ab

    = 238.5 = 2.14 pcs.

    (20)2

    4

    A16 = 201.1 (2) = 402.12 mm

    2

    A20 = 314.16 (1) = 314.16 mm2

    716.28 mm2

    > 659.6 mm2

    say ; 1 pcs20 mm Dia.RSB and 2 pcs16 mm Dia. RSB

    Actual As = A's 716.28 mm2

    1)Positive moment @ Midspan, Max Mu = 75.57 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 75.57 x 106

    0.90 (200)(340)2

    Ru = 3.632 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(3.632) ] = 0.0096414 0.85(28)

  • 8/10/2019 Design of Beam-USD

    67/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    min < < max ok

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0096(200)(340) = 652.8 mm2

    No. of Bars = As / Ab

    = 652.8 = 2.1 pcs.

    (20)2

    4A16 = 201.1 (2) = 402.12 mm

    2

    A20 = 314.16 (1) = 314.16 mm2

    716.28 mm2

    > 659.8 mm2

    say ; 1 pcs20 mm Dia.RSB and 2 pcs16 mm Dia. RSB

    Actual As = A's 716.28 mm2

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    118.99 - 57.715 (0.34) = 99.37 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28(200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 99.37 - 59.97

    0.85

    = 56.94 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    56.94(1000)

    = 258.74 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

  • 8/10/2019 Design of Beam-USD

    68/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Therefore Max Spacing = d/2

    = 340 = 170 mm.

    2S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR GIRDER/ BEAM along C and K

    a) Slab loading

    Ws-7 DL = 3.9542(2) [ 3(0.67)2 ] = 3.363 kN/m3 2

    Ws-8 DL = 3.9542 (3) = 3.9542 kN/m3 7.32 kN/m

    Ws-7 LL = 4.8(2) [ 3(0.67)2 ] = 4.082 kN/m3 2

    Ws-8 LL = 4.8 (3) = 4.8 kN/m

    3 8.88 kN/m

    factored load, Wu

    Wu1= 1.4 (7.32) + 1.7 (8.88) = 23.34 kN/m

    Ws-4DL = 3.9542 (4) [ 3(1)2

    ](2) = 10.54 kN/m3 2

    Ws-4 LL = 4.8 (4) [ 3(1)2](2) = 12.8 kN/m3 2

    Factored load, Wu

    Wu2= 1.4 (10.54) + 1.7 (12.8) = 36.52 kN/m

    Ws-4DL = 3.9542 (4) [ 3(1)2 ] = 5.27 kN/m3 2

    Ws-11DL = 3.6484 (1.5) [ 3(0.375)2 ] = 2.61 kN/m

    3 2 7.88 kN/m

    Ws-4 LL = 4.8 (4) [ 3(1)2] = 6.4 kN/m3 2

    Ws-11 LL = 4.8 (4) [ 3(0.375)2] = 3.43 kN/m3 2 9.83 kN/m

    Factored load, Wu

    Wu3= 1.4 (7.88) + 1.7 (9.83) = 27.74 kN/m

  • 8/10/2019 Design of Beam-USD

    69/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Ws-6DL = 3.9542 (2) [ 3(0.5)2 ] = 3.625 kN/m3 2

    Ws-3DL = 4.8 (4) [ 3(1)2] = 5.27 kN/m

    3 2 8.90 kN/mWs-6LL = 4.8 (2) [ 3(0.5)2 ] = 4.40 kN/m

    3 2

    Ws-3LL = 4.8 (4) [ 3(1)2] = 6.40 kN/m3 2 10.8 kN/m

    factored load, Wu

    Wu4= 1.4 (8.90) + 1.7 (10.8) = 30.82 kN/m

    b) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    DL = 100 mm CHB = 1.76 kN/m

    Windows glass frames and sash = 0.38 kN/m

    4.02 kN/m

    Factored Load = 1.4 (4.02) = 5.63 kN/m

    Total Factored Load ;Wu1 = 23.34 kN/m + 1.4 (1.88) = 26.0 kN/m

    Wu2 = 36.52 kN/m + 1.4 (1.88) = 39.2 kN/m

    Wu3 = 27.74 kN/m + 5.63kN/m = 33.37 kN/m

    Wu3 = 3.82 kN/m + 5.63 kN/m = 36.45 kN/m

    c) Compute for moment and Reaction ( see Table C and K)

    d) Shear and moment diagram ( see figure C and K )

    e) Design the beam

    1) Negative moment @ support ; Max Mu = -63.5 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 63.5 x 106

    0.90 (200)(340)2

    Ru = 3.052 MPa

    b) Solve for actual steel ratio ,

  • 8/10/2019 Design of Beam-USD

    70/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(3.052) ] = 0.0080414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20mm. Dia. Rebars

    As = bd

    = 0.0080 (200)(340) = 544 mm2

    No. of Bars = As / Ab

    = 238.5 = 1.73 pcs.

    (20)2

    4

    say ; 2 pcs20 mm Dia. RSB.

    Actual As = A's = (2) (20)2 = 628.32 mm2

    4

    1) Positive moment @ Midspan, Max Mu = 62.52 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 62.52 x 106

    0.90 (200)(340)2

    Ru = 3.005 MPab) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(3.005) ] = 0.0078414 0.85(28)

    min < < max ok

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0078 (200)(340) = 530.4 mm2

    No. of Bars = As / Ab

    = 652.8 = 1.7 pcs. (20)2

    4

    say ; 2 pcs20 mm Dia. RSB.

  • 8/10/2019 Design of Beam-USD

    71/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Actual As = A's = (2) (20)2 = 628.32 mm2

    4

    f) Check for web ReinforcementVu = VmaxWu (d)

    96.38 - 48.08 (0.34) = 80.05 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 80.05 - 59.97

    0.85= 34.21 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    34.21(1000)

    = 430.66 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

    = 340 = 170 mm.

    2

    S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR GIRDER/ BEAM along D and J

    a) Slab loading

    Ws-1 DL = 4.47(1.5) = 2.235 kN/m

    3

  • 8/10/2019 Design of Beam-USD

    72/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Ws-1 LL = 4.8 (1.5) = 2.4 kN/m

    3

    Factored load, Wu

    Wu1= 1.4 (2.235) + 1.7 (2.4) = 7.21 kN/m

    Ws-3 DL = 3.9542(4) [ 3(1)2 ] = 5.27 kN/m3 2

    Ws-5 DL = 3.9542(4) = 5.27 kN/m

    3 10.54 kN/m

    Ws-3 LL = 4.8(4) [ 3(1)2 ] = 6.4 kN/m3 2

    Ws-5 LL = 4.8 (4) = 6.4 kN/m

    3 12.80 kN/m

    Factored load, WuWu2= 1.4 (10.54) + 1.7 (12.80) = 36.52 kN/m

    Ws-5DL = 3.9542 (4) = 5.27 kN/m

    3

    Ws-5 LL = 4.8 (4) = 6.4 kN/m

    3

    Factored load, Wu

    Wu3= 1.4 (5.27) + 1.7 (6.4) = 18.258 kN/m

    b) Compute beam weight, Consider 1 meter stripUse d = 340 mm.

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    DL = 100 mm CHB = 1.76 kN/m

    Windows glass frames and sash = 0.38 kN/m

    4.02 kN/m

    Factored Load = 1.4 (4.02) = 5.63 kN/mTotal Factored Load ;

    Wu1 = 7.21 kN/m + 1.4 (1.88 + 1.76) = 12.31 kN/m

    Wu2 = 36.52 kN/m + 1.4 (1.88 + 1.76) = 41.62 kN/m

    Wu3 = 27.74 kN/m + 1.4 (1.88 + 0.38) = 21.42 kN/m

    Wu3 = 3.82 kN/m + 1.4 (1.88) = 17.1 kN/m

  • 8/10/2019 Design of Beam-USD

    73/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    c) Compute for moment and Reaction ( see Table D and J)

    d) Shear and moment diagram ( see figure D and J )

    e) Design the beam

    1) Negative moment @ support ; Max Mu = -118.24 kN.m.a) Compute for Ru ( Ultimate Reaction )

    Ru = 118.24 x 106

    0.90 (200)(340)2

    Ru = 5.682 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(5.682) ] = 0.01593414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20mm. Dia. Rebars

    As = bd

    = 0.01593 (200)(340) = 1088 mm2

    No. of Bars = As / Ab

    = 1088 = 3.46 pcs. (20)2

    4

    A16 = 201.1 (1) = 201.1 mm2

    A20 = 314.16 (3) = 942.48 mm2

    1143.58 mm2

    > 1088 mm2

    say ; 3 pcs20 mm Dia.RSB and 1 pc.16 mm Dia. RSB

    Actual As = A's 1143.58 mm2

    1) Positive moment @ Midspan, Max Mu = 61.52 kN.m.a) Compute for Ru ( Ultimate Reaction )

    Ru = 61.52 x 106

    0.90 (200)(340)2

    Ru = 2.957 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]

  • 8/10/2019 Design of Beam-USD

    74/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.957) ] = 0.0077414 0.85(28)

    min < < max ok

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0077 (200)(340) = 523.6 mm2

    No. of Bars = As / Ab

    = 523.6 = 1.67 pcs.

    (20)2

    4

    say ; 2 pcs20 mm Dia. RSB.

    Actual As = A's = (2) (20)2 = 628.32 mm2

    4

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    91.65 - 61.1 (0.34) = 70.88 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 70.88 - 59.97

    0.85

    = 23.42 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)23.42(1000)

    = 629.10 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

  • 8/10/2019 Design of Beam-USD

    75/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    Therefore Max Spacing = d/2

    = 340 = 170 mm.

    2S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR GIRDER/ BEAM along E and I

    a) Slab loading

    Ws-1 DL = 4.47(1.5) (2) = 4.47 kN/m3

    Ws-1 LL = 4.8 (1.5) (2) = 4.8 kN/m

    3

    Factored load, Wu

    Wu1= 1.4 (4.47) + 1.7 (4.8) = 14.418 kN/m

    Ws-5 DL = 3.9542(4) (2) = 10.54 kN/m

    3

    Ws-5 LL = 4.8 (4) (2) = 12.8 kN/m

    3

    Factored load, Wu

    Wu2= 1.4 (10.54) + 1.7 (12.80) = 36.52 kN/m

    Ws-5DL = 3.9542 (4) = 5.27 kN/m

    3

    Ws-1DL = 4.47 (1.5) = 2.235 kN/m

    3 7.505 kN/m

    Ws-5LL = 4.8 (4) = 6.4 kN/m

    3Ws-1LL = 4.8 (1.5) = 2.4 kN/m

    3 8.8

    Factored load, Wu

    Wu3= 1.4 (7.505) + 1.7 (8.8) = 25.47 kN/m

    b) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

  • 8/10/2019 Design of Beam-USD

    76/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.

    Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    DL = 100 mm CHB = 1.76 kN/mWindows glass frames and sash = 0.38 kN/m

    4.02 kN/m

    Factored Load = 1.4 (4.02) = 5.63 kN/m

    Total Factored Load ;

    Wu1 = 14.418 kN/m + 1.4 (1.88 + 1.76) = 19.51 kN/m

    Wu2 = 36.52 kN/m + 1.4 (1.88 + 1.76) = 41.62 kN/mWu3 = 25.47 kN/m + 1.4 (1.88 + 0.38) = 28.63 kN/m

    Wu4 = 14.418 kN/m + 1.4 (1.88) = 17.1 kN/m

    c) Compute for moment and Reaction ( see Table E and I)

    d) Shear and moment diagram ( see figure E and I )

    e) Design the beam

    1) Negative moment @ support ; Max Mu = -61.1 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 61.1 x 106

    0.90 (200)(340)2

    Ru = 2.936 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(2.936) ] = 0.0076414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0076 (200)(340) = 516.8 mm2

    No. of Bars = As / Ab

  • 8/10/2019 Design of Beam-USD

    77/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    = 516.8 = 1.65 pcs. (20)2

    4

    say ; 2 pcs20 mm Dia.RSB

    Actual As = A's = (2) (20)2 = 628.32 mm24

    1) Positive moment @ Midspan, Max Mu = 78.89 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 78.89 x 106

    0.90 (200)(340)2

    Ru = 3.791 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(3.791) ] = 0.010414 0.85(28)

    min < < max ok

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.010 (200)(340) = 680 mm2

    No. of Bars = As / Ab= 680 = 2.16 pcs.

    (20)2

    4

    A16 = 201.1 (1) = 201.1 mm2

    A20 = 314.16 (2) = 628.32 mm2

    829.24 mm2

    > 680 mm2

    say ; 2 pcs20 mm Dia.RSB and 1 pc.16 mm Dia. RSB

    Actual As = A's 829.42 mm2

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    92.54 - 41.62 (0.34) = 78.39 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)

    = 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )

  • 8/10/2019 Design of Beam-USD

    78/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    2 2

    Vs = Vu - Vc ; 78.39 - 59.97

    0.85

    = 32.25 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)2 = 157 mm2

    Vs 4

    S = 157(276)(300)

    32.25(1000)

    = 456.83 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)= 119.94 kN > Vs

    Therefore Max Spacing = d/2

    = 340 = 170 mm.

    2S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

    FOR GIRDER/ BEAM along F, G and H

    a) Slab loading

    Ws-1 DL = 4.47(1.5) (2) = 4.47 kN/m

    3

    Ws-1 LL = 4.8 (1.5) (2) = 4.8 kN/m

    3

    Factored load, Wu

    Wu1= 1.4 (4.47) + 1.7 (4.8) = 14.418 kN/mWs-5 DL = 3.9542(4) (2) = 10.54 kN/m

    3

    Ws-5 LL = 4.8 (4) (2) = 12.8 kN/m

    3

    Factored load, Wu

    Wu2= 1.4 (10.54) + 1.7 (12.80) = 36.52 kN/m

  • 8/10/2019 Design of Beam-USD

    79/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    b) Compute beam weight, Consider 1 meter strip

    Use d = 340 mm.

    b = 200 mm.

    H = 340 + 40 + 10 + 10 = 400 mm.Wb = (0.20)(0.40)(23.544) = 1.88 kN/m

    DL = 100 mm CHB interior wall = 1.76 kN/m

    3.64 kN/m

    Factored Load = 1.4 (3.64) = 5.10 kN/m

    Total Factored Load ;

    Wu1 = 14.418 kN/m + 5.10 kN/m = 19.52 kN/m

    Wu2 = 36.52 kN/m + 5.10 kN/m = 41.62 kN/mWu3 = 14.418 kN/m + 1.4 (1.88) = 17.10 kN/m

    c) Compute for moment and Reaction ( see Table F,G and H)

    d) Shear and moment diagram ( see figure F,G and H)

    e) Design the beam

    1) Negative moment @ support ; Max Mu = -141.41 kN.m.

    a) Compute for Ru ( Ultimate Reaction )

    Ru = 141.41 x 106

    0.90 (200)(340)2

    Ru = 6.796 MPa

    b) Solve for actual steel ratio ,

    = 0.85 f'c [ 1 - 1 2 Ru ]fy 0.85f'c

    = 0.85(28) [ 1 - 1 2(6.796) ] = 0.0198414 0.85(28)

    min < < max ok ( singly Reinforced design )

    c) Compute steel area requirement ; use 20 mm. Dia. Rebars

    As = bd

    = 0.0198 (200)(340) = 1346.4 mm2

    No. of Bars = As / Ab

  • 8/10/2019 Design of Beam-USD

    80/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    = 1346.4 = 4.28 pcs. (20)2

    4

    A16 = 201.1 (4) = 804.25 mm2

    A20 = 314.16 (2) = 628.32 mm2

    1432.57 mm2

    > 1346.4 mm2

    say ; 2 pcs20 mm Dia.RSB and 4 pcs.16 mm Dia. RSB

    Actual As = A's 1432.57 mm2

    f) Check for web Reinforcement

    Vu = VmaxWu (d)

    108.96 - 72.63 (0.34) = 84.27 kN

    Vc = 1/6 f'c (b)(d) = 1/6 28 (200)(340)= 59.97 kN

    Vc = 0.85 ( 59.97) = 25.49 kN < Vu ( need web reinforcements )2 2

    Vs = Vu - Vc ; 84.27 - 59.97

    0.85

    = 39.17 kN

    Compute Spacing of web reinforcements / stirrups ; use 10 mm. Dia. Bars

    S = Av fy d Av = (10)

    2

    = 157 mm

    2

    Vs 4

    S = 157(276)(300)

    39.17(1000)

    = 376.12 mm.

    Check Max Spacing.

    1/3 f'c (b)(d) = 1/3 28 (200)(340)

    = 119.94 kN > Vs

    Therefore Max Spacing = d/2

    = 340 = 170 mm.

    2S = 10 mm. Dia. RSB @ 170 mm. o.c. Ok...

  • 8/10/2019 Design of Beam-USD

    81/94

    COMPUT TION FOR BE M USING UNIVERS L STRENGTH DESIGN

    FOR GIRDER/ BEAM B-G2

    a) Slab loading

    Ws-9,10 DL = 3.9542(2.5) (2) = 6.59 kN/m3

    Ws-9,10 LL = 4.8 (2.5) (2) = 8.0 kN/m

    3

    factored load, Wu

    Wu1= 1.4 (6.59) + 1.7 (8.0) = 22.826 kN/m

    b) Compute beam weight, Consider 1 meter strip

    Use d = 400 mm.

    b = 200 mm.

    H = 400 + 40 + 10 + 10 = 460 mm.

    Wb = (0.20)(0.40)(23.544) = 2.17 kN/m

    Factored Load = 1.4 (2.17) = 3.125 kN/m

    Total Factored Load

    WuT = 22.826 + 3.125 = 25.95 kN/m

    c) Compute for moment and Reaction ( see Table G2)

    d) Shear and moment diagram ( see figure G2)e) Design the beam

    1) Negative moment @ support ; Max Mu = -334.0 kN.m.

    a) Compute for Ru ( Ulti