39
Design of a tabletop Design of a tabletop atto atto - - second second coherent X coherent X - - ray source ray source T. Plettner, R.L. Byer Stanford University FRISNO 9, Les Houches, France, 2/12-2/16 2007

Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Design of a tabletop Design of a tabletop attoatto--second second coherent Xcoherent X--ray sourceray source

T. Plettner, R.L. ByerStanford University

FRISNO 9, Les Houches, France, 2/12-2/16 2007

Page 2: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Conventional coherent XConventional coherent X--ray ray facilitiesfacilities

undulator

3 km

120 m

accelerator

Experiment lines

LCLSinjector

• km-size facility• microwave accelerator• λRF ~ 10 cm• MW electr. power• 4-14 GeV e-beam

• 120 m undulator• 23 cm period• 15-1.5 A radiation• 0.8-8 keV photons• 1014 photons/sec• ~77 fsec

• separate user lines• 120 Hz pulse train

LCLS propertiesLCLS properties

TTF: Tesla Test Facility; fsec EUV SASE FEL facilityXFEL: Proposed future coherent X-ray source in Europe…TTF: Tesla Test Facility; fsec EUV SASE FEL facilityXFEL: Proposed future coherent X-ray source in Europe…

Page 3: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Our dreamOur dream

xyz

laserbeam

cylindrical lensvacuum

channel

electron beam

cylindrical lens

top view

λ/2

λ

xyz

laserbeam

cylindrical lensvacuum

channel

electron beam

cylindrical lens

top view

λ/2

λ

top view

λ/2

λ

• solid-state laser technology• MEMs nanofabrication technology

Apply laser-accelerator technology to miniaturize accelerators and FELs

example of an accelerator microstructure

Page 4: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Laser-driven electron injector

Laser-driven particle accelerator

Laser-driven dielectric undulator

The envisioned XThe envisioned X--ray sourceray source

~ 1 m

x-rays

Solid state lasersSolid state lasers

λ ~ 1 μm

• < kW of electrical power• no radiation or electrical hazards• MHz to GHz repetition rates

Page 5: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

The envisioned XThe envisioned X--ray sourceray sourceElectron pulse structure of a linear particle accelerator

m 1~IR μλ

attosec 10~bτ

EMλ

cm 1~RFλ

psec 1~bτ

RF acceleratorlaser

accelerator

Page 6: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Our researchOur research

RF photocathodeelectron injector

RF - microwave metal structure

particle acceleratorPermanent magnet

undulator

Laser-driven electron injector

Laser-driven particle accelerator

Laser-driven dielectric undulator

Apply solid-state laser and optics technology on particle acceleration

Page 7: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Conventional electron injectorConventional electron injector

The klystron• ~2 m tall• 1/3 MV• high power• water cooling• X-ray radiation• 10 Hz rep. rate

Conventional electron injector

Temporary solution

RF cathode

Page 8: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

LaserLaser--driven injectordriven injectorP. Hommelhoff et al, Kasevich group

Laser

field emitter tip

Field emission tip properties

1. laser-assisted tunneling of the electrons from the atom to free space

2. Highly nonlinear3. Potential for sub-optical cycle

electron emission

metal vacuum

e

Page 9: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Laser

field emitter tip

Electrostatic lens

GND

Accelerator cell

grid

MCP

10 fsec

LowLow--energy laserenergy laser--particle acceleratorparticle accelerator

1. multiple-electron emission2. focusing with electrostatic lens3. verify ultra-low emittance4. verify ~700 attosec bunch5. modulate energy

objectives

Page 10: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Our researchOur research

RF photocathodeelectron injector

RF - microwave metal structure

particle acceleratorPermanent magnet

undulator

Laser-driven electron injector

Laser-driven particle accelerator

Laser-driven dielectric undulator

Apply solid-state laser and optics technology on particle acceleration

Page 11: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Idea of laserIdea of laser--driven particle driven particle accelerationacceleration

First publications date back to 1970

W.D. Kymura et al, Phys. Rev. Lett. 74, 546–549 (1995)J. A. Edighoffer et al, Phys. Rev. A 23, 1848 (1981).

I. Wernick and T. C. Marshall, Phys. Rev. A 46, 3566 (1992).

W.D. Kymura et al, Phys. Rev. ST AB 4, 101301 (2001)

Inverse FEL accelerators (IFEL)Inverse Cerenkov accelerators (ICA)

gradient ||E∝

2.2 atm. H2

gradient ⊥∝ Evacuum

Page 12: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

DielectricDielectric--structure based structure based vacuum laser acceleratorsvacuum laser accelerators

Vacuum channel

Dielectric structure

Laser in

Main concept ||Eq

Synchronous accelerating force in the vacuum channel

Page 13: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

DielectricDielectric--structure based structure based vacuum laser deflectorsvacuum laser deflectors

Vacuum channel

Dielectric structure

Laser in

Main concept ⊥Eq

Synchronous deflection force in the

vacuum channel

Page 14: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

ProofProof--ofof--principle experimentprinciple experiment

electronbeam

materialboundary

θ

Ez

8 μm Kapton1 μm Au

laserbeam

T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J. E. Spencer, R.H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum”, Phys. Rev. Lett. 95, 134801 (2005)

T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J. E. Spencer, R.H. Siemann, “Proof-of-principle experiment for laser-driven acceleration of relativistic electrons in a semi-infinite vacuum”, Phys. Rev. ST Accel. Beams 8, 121301 (2005)

FWH

M e

nerg

y sp

read

(keV

)

laser timing (psec)

FWH

M e

nerg

y sp

read

(keV

)

laser timing (psec)

laser on

laser off

gradient ||E∝Linear Linear accelerationacceleration synchronicity

vacuum

Page 15: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

ProofProof--ofof--principle experimentprinciple experiment

laser off

laser on

-3 -2 -1 0 1 2 3-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

optical phase

elec

tron

ener

gy (

a.u.

)

A

D

electronbeam

Proof-of-principle setup• single laser-electron interaction• crossed laser beams• vacuum space• dielectric cell

laser beam

Relativistic electrons30 MeV

energy spectrometer

Page 16: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

ProofProof--ofof--principle experimentprinciple experiment

Cerenkov cell lens

IFEL

ITR

Cerenkov cell

Motor 1

Motor 2

upstream

downstream

Laser beam

electron beame-beam

steppermotor

steppermotor

Au coatedKapton

laser beam

T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J. E. Spencer, R.H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum”, Phys. Rev. Lett. 95, 134801 (2005)

T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J. E. Spencer, R.H. Siemann, “Proof-of-principle experiment for laser-driven acceleration of relativistic electrons in a semi-infinite vacuum”, Phys. Rev. ST Accel. Beams 8, 121301 (2005)

Page 17: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

ProofProof--ofof--principle experimentprinciple experiment

z

boundary

α zα

E dzz−∞∫ >0

0 E dzz−∞

∫ = 0

T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J. E. Spencer, R.H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum”, Phys. Rev. Lett. 95, 134801 (2005)

T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J. E. Spencer, R.H. Siemann, “Proof-of-principle experiment for laser-driven acceleration of relativistic electrons in a semi-infinite vacuum”, Phys. Rev. ST Accel. Beams 8, 121301 (2005)

Page 18: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

ProofProof--ofof--principle experimentprinciple experiment

T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J. E. Spencer, R.H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum”, Phys. Rev. Lett. 95, 134801 (2005)

T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J. E. Spencer, R.H. Siemann, “Proof-of-principle experiment for laser-driven acceleration of relativistic electrons in a semi-infinite vacuum”, Phys. Rev. ST Accel. Beams 8, 121301 (2005)

laserEU ∝

Peak Longitudinal Electric Field Ez (MV/m)

0.1 0.2 0.3 0.4Laser Pulse Energy (mJ/pulse)

0.05

Ave

rage

Ene

rgy

Mod

ulat

ion

⟨M⟩(

keV

)

( ) ( )25.035.0017.0349.0 ±−⋅±= zEM

Average FWHM energy broadening

laserEU ∝

Peak Longitudinal Electric Field Ez (MV/m)

0.1 0.2 0.3 0.4Laser Pulse Energy (mJ/pulse)

0.05

Ave

rage

Ene

rgy

Mod

ulat

ion

⟨M⟩(

keV

)

( ) ( )25.035.0017.0349.0 ±−⋅±= zEM

Average FWHM energy broadening

Page 19: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

ProofProof--ofof--principle experimentprinciple experiment

T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J. E. Spencer, R.H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum”, Phys. Rev. Lett. 95, 134801 (2005)

T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J. E. Spencer, R.H. Siemann, “Proof-of-principle experiment for laser-driven acceleration of relativistic electrons in a semi-infinite vacuum”, Phys. Rev. ST Accel. Beams 8, 121301 (2005)

φcos∝U

Laser Polarization Angle (degrees)

Average FWHM energy broadening

Ave

rage

Ene

rgy

Mod

ulat

ion

⟨M⟩(

keV

)φcos∝U

Laser Polarization Angle (degrees)

Average FWHM energy broadening

Ave

rage

Ene

rgy

Mod

ulat

ion

⟨M⟩(

keV

)

Page 20: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Many possible architecturesMany possible architectures

Hollow core PBG fibers 3-D photonic bandgap structures

B. M. Cowan, Phys. Rev. ST Accel. Beams , 6, 101301 (2003).X.E. Lin, Phys. Rev. ST Accel. Beams 4, 051301 (2001)

Y.C. Huang, et al, Appl. Phys. Lett. 68 (6) (1996) 753.

laser beams

l1 l2

xyz

laserbeam

cylindrical lensvacuum

channel

electron beam

cylindrical lens

top view

λ/2

λ

xyz

laserbeam

cylindrical lensvacuum

channel

electron beam

cylindrical lens

top view

λ/2

λ

top view

λ/2

λ

Semi-open structures Periodic phase modulation structures

T. Plettner et al, Phys. Rev. ST Accel. Beams 4, 051301 (2006)

Page 21: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Grating based geometryGrating based geometry

λ vacuum channel

Page 22: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

λperiodic boundary

periodic boundary

absorbing boundary

scatter region

E yiHz

i

E y

Hz

Ex

source waveE y

iHzi

Grating based geometryGrating based geometry

Finite timeFinite time--domain field calculationdomain field calculation

Page 23: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Grating based geometryGrating based geometryFinite timeFinite time--domain field calculationdomain field calculation

||E⊥E

ADD A

( ) ( )∫ ⊥⊥ ×+=λ

λ 0

1 dzzBvEG

( )∫=λ

λ 0||||

1 dzzEG

Avg. acceleration

Avg. deflection

accel.phase

defl.phase

A:

D:

0

max ||

=⊥G

G

0

max

|| =

G

G

Page 24: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Grating based geometryGrating based geometryE-beam lithography + DRIE

1 cm long interactionGradient ~ 0.7 GeV/menergy gain: 7 MeV

Aperture ~ ½ λGradient ~ 2.5 GeV/mStructure impedance ~ 40 Ω

10 fsec,λ = 1μm

200 fsec,λ = 800 nm

Page 25: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Electron temporal pulse Electron temporal pulse structurestructure

cm 1~RFλ

psec 1~bτ

m 1~IR μλ

attosec 10~bτ

RF accelerator

laser accelerator

Page 26: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Optical bunchingOptical bunching

optical buncher

opticalaccelerator

compressor chicane

laser

IFEL

(compressor)

laser accelerator

-8 -6 -4 -2 0 2 4 60

20

40

60

80

100

120

140

160

P has e

His togram In P has e

Analytic (1-D)S imulation

0 1 2 3 4 5 6-40

-30

-20

-10

0

10

20

30

40

Phase

Mea

n En

ergy

Shi

ft (k

eV)

Net Acceleration

Fit Amp=17 keV

mea

n en

ergy

shi

ft (

keV

)

phase

Net acceleration

mea

n en

ergy

shi

ft (

keV

)

phase

Net accelerationExpected bunching Expected energy gain

• IFEL modulates energy spread• electron drift creates optical bunches• second accelerator net acceleration

Experiment features

Page 27: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

RF photocathodeelectron injector

RF - microwave metal structure

particle acceleratorPermanent magnet

undulator

Laser-driven electron injector

Laser-driven particle accelerator

Laser-driven dielectric undulator

Apply solid-state laser and optics technology on particle acceleration

Our researchOur research

Page 28: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

electron bunch travels slower than photons

FreeFree--electron radiationelectron radiation

Lu > 10 m

SASE FEL X-ray

sub psec

Concept of an Concept of an undulatorundulatorelectron bunch

(sub-psec)

permanent magnets λu > 1 cm T 1≤B

22~

γλλ u

center wavelength

Free-electron laser amplification

local micro-bunching

coherent radiation

Page 29: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

FEL equationsFEL equationsEvolution of the transverse optical field due to the electron’s Evolution of the transverse optical field due to the electron’s motionmotion

⎥⎦⎤

⎢⎣⎡

∂∂

+∂

∂−=

⎥⎥⎦

⎢⎢⎣

⎡∇−⎟

⎠⎞

⎜⎝⎛

∂∂

+⎟⎠⎞

⎜⎝⎛

∂∂

⊥ xc

tJ

cE

ztcex

ε2

20

222 11

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−=′

∂∂

ΔΔ∈

−∑ vetzEt j

i jψχ2,~γε

βχ0

2 2Kqc

=R. Bonifacio, C. Pellegrini, L.M. Narducci, “Collective Instabilities and high-gain regime in a free electron laser”, Opt. Comm. 50, 373-378 (1984)

Slow envelope approximationSpeed-of-light frame

growth rate of the field γ

λ 313132eu nB

Steady state growth solution

Page 30: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Conventional Conventional undulatorsundulatorsTTF TTF UndulatorUndulator at DESYat DESYPermanent magnets

T ~ mm, 27~ 21Buλ

Electron beam

Gain lengthm 6.0~GL

Undulator lengthm 27~UL

~ ½ GeV

km 41

FEL wavelength(VUV) nm 30~Rλ

TESLA Test Facility FEL

Phase II

~1 GeV, ~1mmicro-

undulator < 1m

?

Page 31: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Permanent magnet Permanent magnet undulatorundulator

growth rate of the field γ

λ 313132eu nB

Limited by the beam emittanceRF accelerator: ε ~ 10-6 m-radLaser accelerator ε ~ 10-10 m-rad

Compact 1m accelerator 1-2 GeV maximum

X-rays

T 21=B

~200 μm

~50 μm

~ 40 cm

~200 μm

~50 μm

~ 40 cm

mm ~ 21

?~uL

~Rλ 0.2 Å

~1 GeV, ~1m

injector laser acceleratorundulator

High strength Nd:Femicromagnets

Page 32: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

FELFEL--growth numerical modelgrowth numerical model

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−=′

∂∂

ΔΔ∈

−∑ vetzEt j

i jψχ2,~

ηψuk

dtd 2=

ψχη sin01Edtd

−=

Electron pendulum equationsElectron pendulum equations

Optical field growthOptical field growth

FEL physics model computer models

• Analytical 1-D, steady state× No space charge× No slippage× No velocity spread× No diffraction

• 1-D, time dependentslippageenergy spreadtemporal structure

× no lateral velocity× no diffraction

• 3-D, time dependentlateral velocity (emittance)space chargediffraction

Electron space chargeElectron space charge

( ) ( ) ernrF e=⋅∇ sp

GENESISGENESIS

Page 33: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

GENESISGENESIS• FORTRAN based code• runs in batch mode• developed at DESY by Swen Reiche• designed to handle nC charges macro-particles• can turn space charge on and off

• include focusing elements into the modelinclude focusing elements into the model•• widely tested (TTF, LCLS, Brookhaven,widely tested (TTF, LCLS, Brookhaven,……))

properties

Guess •Spot size•focusing

GENESISLsat

scan•spot size•focusing

optimum•spot size•focusing

spot size

focusingelements

Page 34: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

Permanent magnet Permanent magnet undulatorundulator

0 0.5 1 1.5 2 2.50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

position in the undulator (m)

peak

pow

er (T

W)

1.8 m

~200 μm

~50 μm

~ 40 cm

~200 μm

~50 μm

~ 40 cm

m 2~uL

Electron beam

Energy: 2 GeVEnergy spread: 0.5%Spot size: 89 nmEmittance: 10-10 m-radBunch charge: 1 pCBunch length: 10 attosec

Undulator

FODO lattice 50 periodsFocusing 19 T/mm

Page 35: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

LaserLaser--driven driven undulatorundulator

Laser plane wave

0 0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

1.2

1.4

position in the undulator (m)

peak

pow

er (T

W)

permanent magnet

undulator

laser-driven

undulator

GeV/m 1~⊥G

T 3~0B

cm 10~SATL

~ 10 cm

Page 36: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

LaserLaser--driven driven undulatorundulator

0 5 10 15 20 250

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (attosec)

pow

er (T

W)

~ 5 attosec

~1 GeV, ~1m

~Rλ 0.2 Å

injector laser accelerator undulator

~ 10 cm

0 0.05 0.1 0.15 0.20

2

4

6

8

10

12

14x 10

11

position in undulator (m)

optic

al p

ower

(W)

space charge on

space charge off

X-ray pulse

FEL amplitude growth X-ray output pulse

Page 37: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

LaserLaser--driven deflector driven deflector experimentexperiment

screen

First near-term future experiment

Page 38: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

SummarySummary1. Structure loaded vacuum laser acceleration

• Similar to RF, but λ ~ 1μm solid-state lasers• Possibility for attosecond electron bunches• Proof-of principle demonstration• Staged acceleration optical bunches• Future near-term MEMS structures• Utilization of attosec electron bunches

for light sources

2. Laser-driven unduator• Advantage over permanent magnet devices

• Monolythic• Stronger deflection

3. Eventual objective• tabletop all-laser injector, accelerator and

undulator

Page 39: Design of a tabletop atto-second coherent X-ray source · XFEL: Proposed future coherent X-ray source in Europe ... Apply solid-state laser and optics technology on particle acceleration

AckowledgementsAckowledgements

1. Northrop Grumman Corp.

2. E. Colby

3. R. Ischebeck