199
12/12/2012 FINAL-REPORT SHIP DESIGN PROJECT 115000 DWT AFRAMAX CRUDE CARRIER PROJECT GUIDE: Ms. REVATHI (SCIENTIST C- SMDR) BY: ROY THOMAS 1012009021 ASHWIN A. GADGIL 1012009022 THIS DOCUMENT CONSISTS OF: 1. PRELIMINAY DATA 2.LINES PLAN 3. GENERAL ARRANGEMENT 4. POWER ESTIMATION 5. TANK CALCULATIONS 6.HYDROSTATICS & STABILITY BOOKLET 7. PROPELLER SELECTION 8. RUDDER DESIGN

Design of 115000 DWT Tanker

Embed Size (px)

DESCRIPTION

Final design report of 115000 dwt crude carrier. This was a final year project done with Ashwin A Gadgil

Citation preview

Page 1: Design of 115000 DWT Tanker

115000 DWT AFRAMAX CRUDE CARRIER

PROJECT GUIDE:Ms. REVATHI (SCIENTIST C-SMDR)BY:ROY THOMAS 1012009021ASHWIN A. GADGIL 1012009022

THIS DOCUMENT CONSISTS OF:1. PRELIMINAY DATA2. LINES PLAN3. GENERAL ARRANGEMENT4. POWER ESTIMATION5. TANK CALCULATIONS6. HYDROSTATICS & STABILITY

BOOKLET7. PROPELLER SELECTION8. RUDDER DESIGN

Page 2: Design of 115000 DWT Tanker

THE OWNER’S REQUIREMENT:

1. 115000 DWT CRUDE CARRIER2. SPEED: 14 KNOTS3. DISTANCE:12000 nm

PORT OF ORIGIN:

Puerto José is a sea port in northeastern Venezuela, on the Caribbean Sea, in the state of Anzoátegui[1], about 10km west of Barcelona. Position: 10°06' N / 64°52'W. It is home to an important oil tanker loading complex, the Complejo criogenico de Oriente José, created in 1985[2] and now more often referred to by its original name, the Cryogenic Complex of Oriente, San Joaquin Plant. The complex is used to load several of Venezuela's petroleum products onto oil tankers, including Ameriven-Hamaca, Cerro Negro, Sincor, and Zuata Sweet.

The José industrial zone comprises one part of the Eastern Cryogenic Complex (ACCRO), which includes refineries, petrochemical plants, and gas compression plants[3]. The complex consists of several separate terminals on the South side of Bahía de Barcelona. The port exports refined petroleum products, crude oil and containers. About 180 ships with a total of 30 million tons deadweight (tdwt) are using the port every year.

The deepest and longest berth is the Petroterminal José (TAECJ Terminal). Ships up to 300,000 tdwt can berth at the Bitor Single Point Mooring buoy (SPM, 10°09'N / 64°50'W). The complex consists further of a cryogenic jetty terminal (10°05.08'N / 64°51.5'W), two petrochemical docks (Petrozuata and SINCOR), an offshore platform terminal, and two SPM's. The offshore terminal and the SPM are connected to the shore by submarine pipelines.

2

Page 3: Design of 115000 DWT Tanker

PORT OF DESTINATION:Vadinar is small coastal town located in Jamnagar district of the state of Gujarat, India. The offshore oil terminal of the Kandla Port Trust (K. P. T.) is located in Vadinar and contributes in a large way to the total earnings of this major port. Vadinar is now notable due to the presence of two refineries which are close by - one promoted by Reliance Industries and the other by Essar Oil Ltd. A salt production unit is located in Vadinar. The famous Narara Island, which is part of Marine National Park, is situated 7 kilometers away from town. You can also find the Jelly Fish, Star Fish, Crabs, Sea Turtle and many endangered species over there. Two single-buoy moorings (SBM) of the Kandla Port Trust offshore oil terminal of the Indian Oil Corporation are located at this port along with a similar buoy of the Essar refinery. The nearest airport is at Jamnagar 47 km away.

3

Page 4: Design of 115000 DWT Tanker

CARGO TO BE CARRIED:Heavy crude oil or extra heavy crude oil is any type of crude oil which does not flow easily. It is referred to as "heavy" because its density or specific gravity is higher than that of light crude oil. Heavy crude oil has been defined as any liquid petroleum with an API gravity less than 20°.[1]

Physical properties that differ between heavy crudes lighter grades include higher viscosity and specific gravity, as well as heavier molecular composition. Extra heavy oil is defined with a gravity of less than 10° API (i.e. with density greater than 1000 kg/m3 or, equivalently, a specific gravity greater than 1) and a reservoir viscosity of no more than 10,000 centipoises.[2][3] With a specific gravity of greater than 1, extra heavy crude is present as a dense non-aqueous phase liquid in ambient conditions.Heavy crude oil is closely related to natural bitumen from oil sands. Some petroleum geologists categorize bitumen from oil sands as extra heavy crude oil due to the density of less than 10 °API. Other classifications label this as bitumen differing it from extra-heavy oil. They differ in the degree by which they have been degraded from the original crude oil by bacteria and erosion. Often, bitumen is present as a solid and does not flow at ambient conditions.The largest reserves of heavy crude oil in the world are located north of the Orinoco river in Venezuela,[4] the same amount as the conventional oil reserves of Saudi Arabia,[5] but 30 or more countries are known to have reserves.Production, transportation, and refining of heavy crude oil present special challenges compared to light crude oil. Generally, a diluent is added at regular distances in pipeline carrying heavy crude to facilitate its flow.Heavy oil is asphaltic and contains asphaltenes and resins. It is "heavy" (dense and viscous) due to the high ratio of aromatics and naphthenes to paraffins (linear

4

Page 5: Design of 115000 DWT Tanker

alkanes) and high amounts of NSO's (nitrogen, sulfur, oxygen and heavy metals). Heavy oil has a higher percentage of compounds with over 60 carbon atoms and hence a high boiling point and molecular weight. For example, the viscosity of Venezuela's Orinoco extra-heavy crude oil lies in the range 1000–5000 cP (1–5 Pa·s), while Canadian extra-heavy crude has a viscosity in the range 5000–10,000 cP (5–10 Pa·s), about the same as molasses, and higher (up to 100,000 cP or 100 Pa·s for the most viscous commercially exploitable deposits).[1] A definition from the Chevron Phillips Chemical company is as follows:The "heaviness" of heavy oil is primarily the result of a relatively high proportion of a mixed bag of complex, high molecular weight, non-paraffinic compounds and a low proportion of volatile, low molecular weight compounds. Heavy oils typically contain very little paraffin and may or may not contain high levels of asphaltenes.[13]

There are two main types of heavy crude oil:1. Those that have over 1% sulfur (high sulfur crude oils), with aromatics and

asphaltenes, and these are mostly found in North America (Canada (Alberta, Saskatchewan), United States (California), Mexico), South America (Venezuela, Colombia and Ecuador) and the Middle East (Kuwait, Saudi Arabia).

2. Those that have less than 1% sulfur (low sulfur crude oils), with aromatics, naphthenes and resins, and these are mostly found in Western Africa (Chad), Central Africa (Angola) and East Africa (Madagascar).

5

Page 6: Design of 115000 DWT Tanker

DESIGN PROCEDURE:INDEX

6

Page 7: Design of 115000 DWT Tanker

Sr. No. Title Page No.1 Basic Ship data

collection8

2 Determining basic dimensions

3 Lines Plan4 Hull resonance

diagram5 Bonjeans6 Hydrostatics7 Selection of main

engine and equipment

8 Capacity calculations

9 General Arrangement

10 Scantling calculations

11 Midship Section Modulus

12 Weight estimation13 Intact Stability

calculations14 Resistance

estimation15 Propeller design16 Rudder calculations

7

Page 8: Design of 115000 DWT Tanker

BASIC SHIP DATA COLLECTION:

No. Name L B T D Displ Cb DWT Speed engine Froude No.1 MT Atlantic Spirit 240 44 14.9 21 134015 0.835598 114000 7.716 B&W 7S60MC-C7, 15820 KW @ 105 RPM 0.159020133 MT Opal Queen 235 42 14.8 21.3 117446.5 0.80401 107181 8.2304 B&W 7S60MC, 13129 KW @ 102 RPM 0.171416454 Pacific Sky 239 44 14.9 21 127029.4 0.810714 115395 8.17896 ManB&W 6s60MC-C 0.16891365 Pantelis 239 43.8 13.6 21.3 132155.1 0.928267 114500 7.15016 HSD ManB&W 7s60MC 0.147666616 Paramount Hamilton 239 44 14.8 21 153146 0.983996 114022 6.73864 Man Diesel Turbo 7S60MC-C 0.139167817 Pattani Spirit 234 42.67 14.6 21.52 133084.1 0.912924 106671 7.2016 Man Diesel Turbo 7S60MC-C 0.150309558 Phoenix Concord 244 42 14 21 123143 0.858307 105525 7.92176 Man Diesel Turbo 7S60MC-C 0.16191693

10 Power 239 43.8 15 21 168837.9 1.075243 116087 6.1728 Man Diesel Turbo 6S60MC-C 0.1274819711 Primorsky Prospect 239 44 13.6 21 151110.4 1.056586 113860 6.27568 Man Diesel Turbo 6S60MC-C 0.1296066712 PVT Athena 234 42 14.92 22 139300.1 0.949986 105177 6.9444 Man B&W Diesel A/S 7S60MC-C 0.1449413513 Dayytona 249 44 12 21 845365 1.061987 115896 6.43 Man Diesel Turbo 6S60MC-C 0.1300998514 Hanne Knutsen 256.5 42.5 15.6 22 177469.6 1.043574 123581 6.73864 Man B&W Diesel A/S 7S50MC-C 0.1343365115 Hellespont Tatina 229 42 14.85 21.3 128830.2 0.902 105535 7.2016 1DU Sulzar 6RTA58T 0.1519416216 Helga Spirit 239 43.8 14.9 21.3 153629.6 0.984956 115514 6.73864 Man B&W 7S60MC 0.1391678117 HS Carmen 239 44 14.6 21 130204 0.848049 113033 7.81888 Man B&W Diesel 7S60MC 0.1614771618 HS Tosca 239 43.8 14.9 21.3 159726 1.024041 115630 6.48144 Man B&W Diesel A/S 6S60MC-C 0.1338560619 Knock Allan 267 44.4 15.6 24.1 178977.8 0.967788 135000 7.40736 Man B&W 6S70MC 0.1447349220 Landsort 264 48 15.2 23 177992.5 0.924087 141844 7.56168 Man B&W 6S70MC 0.1485873521 Kronviken 239 43.8 13.6 21 128964.4 0.883762 114500 7.51024 Man B&W 7S60MC 0.1551030622 Eton 270 50 15 23 178771 0.88282 143400 7.9732 Man B&W 7S70ME-C 0.1549231323 Metemi 264 50 16 23.1 185895.9 0.880189 151506 7.87032 Man B&W 6S70MC-C 0.1546521424 Prometheus 239 44 15.4 22.7 137100 0.888989 117050 7.4588 Man B&W 7S60MC-C 0.15404071

Page 9: Design of 115000 DWT Tanker

An Aframax ship is an oil tanker smaller than 120,000 metric tonnes and with a breadth above 32.31 m.[1] The term is based on the Average Freight Rate Assessment tanker rate system. Due to their favorable size, Aframax tankers can serve most ports in the world. These vessels serve regions which do not have very large ports or offshore oil terminals to accommodate very large crude carriers and ultra large crude carriers. Aframax tankers are just perfect for short to medium haul crude oil transportation. Aframax class tankers are largely used in the basins of the Black Sea, the North Sea, the Caribbean Sea, the South and East China Seas, and the Mediterranean. Non-OPEC exporting countries may require the use of tankers because the harbors and canals through which these countries export their oil are too small to accommodate very-large crude carriers and ultra-large crude carriers.

PRELIMINARY ESTIMATION OF MAIN PARTICULARS:

DISPLACEMENT ESTIMATED: 134226 TONS by empirical formulae

Length estimated:228m

Page 10: Design of 115000 DWT Tanker

Breadth Estimation: 41.24 m.

Depth Estimation: 21.592m

Draught Estimation:16.736

10

ESTIMATED Cb: 0.811

Page 11: Design of 115000 DWT Tanker

11

Page 12: Design of 115000 DWT Tanker

12

Page 13: Design of 115000 DWT Tanker

BASIC SHIP SELECTED:

NAME: KRONVIKEN

FLAG: RUSSIA

LBP: 239M

BREADTH: 43.8M

DEPTH: 21M

DRAUGHT: 13M

FINAL DIMENSIONS OF NEW DESIGN:

Displacement :134188 tons

LOA: 238M

LBP: 228M

B: 41.25M

D: 21.6M

T: 16.736M

V: 14KNOTS

A Type FreeboardBasic Freeboard 2.857M

.85D 18.3549MCb at .85D 0.817

Cb Correction 3.144801MDepth Correction 1.5985M

Deck Line Correction 0

Mim Bow Ht. 6.310138M

Superstructure Correction 0

Total FB Req. 4.743301M

13

Page 14: Design of 115000 DWT Tanker

BASIC SHIP APPROACH:The following lines plan of the new AFRAMAX has been generated by the use of the basic ship and the form parameter approach combined. We proceed in the following manner. 1. After finalizing the basic parameters (L,B,T,D,Disp.) we find out the length of entrance and run for the said ship using the empirical formulae. 2. Once the LOR, LOE are fixed we proceed to draw the sectional area curve using the trapezoidal method. 3. By an iterative process we arrive at a sectional area curve which matches with our desired disp. as well as its LCB matches the estimated value of LCB. 4. Than the stern and stem profiles are generated after considering all the clearances required to generate them and taking reference from the basic ship. 5. Then the draught waterline is generated after finding out the angle of entrance using the empirical formulae and matching the area with Awp calculated using the empirical formulas. 6. Now sections are drawn such that they match with the areas represented in the corresponding sections on the sectional area curve. 7. Once the body plan is completed we draw the half breadth plan by taking the offset from the body plan.

8. Using both of the previously generated plans we now generate the buttock plan of the ship. 9. The fairness of a ship’s hull is determined by the smoothness of its buttocks. 10. The rough un-faired offset table is thus obtained from the body plan. 11. These drawings can later be faired using softwares like Maxsurf etc. in which the offset is taken as the input. 12. The faired offset table and lines plan is thus generated.

14

Page 15: Design of 115000 DWT Tanker

THE LINES PLAN

Page 16: Design of 115000 DWT Tanker

HULL RESONANCE DIAGRAM:

Page 17: Design of 115000 DWT Tanker

VERTICAL VIB

RANGE

N2v 61.22106 64.28211

58.16001

N3v 140.6491 147.6815

133.6166

N4v 228.7949 240.2346

217.3552

N5v 323.1267 339.283 306.9704HORIZONTAL VIB

RANGE 0

N2h 91.83159 96.42317

87.24001

N3h 183.6632 192.8463

174.48

N4h 275.4948 289.2695

261.72

17

Page 18: Design of 115000 DWT Tanker

BONJEAN CURVES:

In cases where vessels have unusually large appendages, it may be desirable to construct the curve of transverse section area with the inclusion of the shell thickness, corrected for the obliquity of the vessel's form, together with the cross sectional area of other appendages such as bilge keels. A longitudinal integration of such total cross section areas, together with the volume of appendages not intersected by the sections, would give the total displacement of the ship, but the calculation of the curves of cross sectional area would be too laborious for general use. The curves of cross sectional area for all body plan stations are collectively called Bonjean Curves. One of the principal uses of Bonjean Curves is determining volume of displacement of the ship at any level or trimmed waterline.

Bonjean Curves may be plotted in either of two ways. The curves for the ship are plotted against a common scale of draft, with the cross sectional areas for stations in the fore body and amidships plotted to the right of the vertical axis and those for the after body plotted to the left. The draft scale may represent keel drafts, or molded drafts, but the distance from the molded baseline to the bottom of keel should be shown. Such a presentation has the advantage of compactness, and uses one scale of cross sectional area. It is convenient to show a contracted profile of the ship adjoining the curves. An alternative plot is that in which a separate horizontal scale of cross sectional area is provided for each curve, and the curves are superposed on a contracted profile of the ship; in the latter case, the vertical axes coincide with the associated station lines in the profile. This arrangement is convenient for placing and locating trim lines on the profile, but has the disadvantage that the horizontal area scales for each station may be difficult to distinguish, one from the other, at areas of overlap. Draft scales corresponding to those on the ship should be shown at the appropriate locations on the profile.

A standard method of calculating volume of displacement and LCB is by integrating transverse sectional areas. If the waterline at which the ship is floating is not for the even keel condition, BonjeanCurves are particularly useful. In the case of a trimmed waterline, the trim line may be drawn on the profile of the ship and drafts read at which the Bonjean Curves are to be entered. By drawing a straight line across the contracted profile, the drafts at which the curves are to be read appear directly at each station. In as much as the curves of form are constructed for the ship in the even keel condition and most ships are not wall-sided, accurate hydrostatic characteristics for cases with a significant degree of trim are not in general obtainable from the curves of form and one must perform a complete longitudinal integration at the trimmed waterline (trim line) under consideration. The Bonjean Curves provide the basic input for such calculations.

18

Page 19: Design of 115000 DWT Tanker

0 100 200 300 400 500 600 700 800 900 10000

5

10

15

20

25

areas00.250.50.7511.52345678999.259.7510

AREA sq.m.

waterline

-12000 -10000 -8000 -6000 -4000 -2000 00

5

10

15

20

25

moments

0 0.250.5 0.751 1.56 78 99.25 9.510 23 45

MOMENTS

moments

19

Page 20: Design of 115000 DWT Tanker

Hydrostatics - DICTATORHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Damage Case - Intact

Fixed Trim = 0 m (+ve by stern)

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Draft Amidships m 9.000 10.289 11.579 12.868 14.157 15.447 16.736

Displacement t 67239 78008 88992 100159 111447 122796 134180

Heel deg 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Draft at FP m 9.000 10.289 11.579 12.868 14.157 15.447 16.736

Draft at AP m 9.000 10.289 11.579 12.868 14.157 15.447 16.736

Draft at LCF m 9.000 10.289 11.579 12.868 14.157 15.447 16.736

Trim (+ve by stern) m 0.000 0.000 0.000 0.000 0.000 0.000 0.000

WL Length m 228.297 231.958 234.380 234.435 233.401 231.705 231.663

Beam max extents on WL m 41.249 41.247 41.246 41.246 41.246 41.246 41.246

Wetted Area m^2 10863.229 11531.673 12218.403 12884.393 13529.048 14157.128 14759.217

Waterpl. Area m^2 8064.647 8230.127 8387.572 8502.640 8566.832 8596.523 8646.744

Prismatic coeff. (Cp) 0.777 0.788 0.799 0.809 0.818 0.826 0.833

Block coeff. (Cb) 0.774 0.786 0.797 0.807 0.816 0.824 0.831

Max Sect. area coeff. (Cm) 0.996 0.997 0.997 0.998 0.998 0.998 0.998

Waterpl. area coeff. (Cwp) 0.858 0.875 0.892 0.904 0.911 0.914 0.919

LCB from zero pt. (+ve fwd) m 117.876 117.298 116.654 115.986 115.344 114.753 114.245

LCF from zero pt. (+ve fwd) m 114.484 112.901 111.310 110.113 109.295 108.753 108.721

KB m 4.722 5.402 6.085 6.769 7.452 8.132 8.807

KG m 11.433 11.433 11.433 11.433 11.433 11.433 11.433

BMt m 15.288 13.549 12.183 11.062 10.112 9.286 8.581

BML m 415.636 378.516 349.410 321.504 293.578 267.702 248.670

20

Page 21: Design of 115000 DWT Tanker

GMt m 8.577 7.518 6.835 6.399 6.131 5.984 5.955

GML m 408.925 372.484 344.062 316.840 289.597 264.401 246.044

KMt m 20.010 18.951 18.268 17.832 17.564 17.417 17.388

KML m 420.358 383.917 355.495 328.273 301.030 275.834 257.477

Immersion (TPc) tonne/cm 82.663 84.359 85.973 87.152 87.810 88.114 88.629

MTc tonne.m 1205.959 1274.419 1342.921 1391.866 1415.557 1424.004 1447.987

RM at 1deg = GMt.Disp.sin(1) tonne.m 10064.705 10234.625 10615.278 11185.314 11925.302 12824.613 13945.365

Max deck inclination deg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Trim angle (+ve by stern) deg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21

9

10

11

12

13

14

15

16

17

0.76 0.8 0.84 0.88 0.92 0.96 1

Prismatic coeff. (Cp)

Block coeff. (Cb)

Max Sect. area coeff. (Cm)

Waterpl. area coeff. (Cw p)

Coeff icient

Dra

ft

m

Page 22: Design of 115000 DWT Tanker

22

9

10

11

12

13

14

15

16

17

40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000

108 109 110 111 112 113 114 115 116 117 118

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 20.5

150 180 210 240 270 300 330 360 390 420 450

79 80 81 82 83 84 85 86 87 88 89

1080 1120 1160 1200 1240 1280 1320 1360 1400 1440 1480

Displacement

Max sect. area

Sect. area amidships

Wetted Area

Waterpl. Area

LCB

LCF

KB

KMt

KML

Immersion (TPc)

MTc

Displacement t

Dra

ft

m

Area m^2

Long. centre from zero pt. (+ve fw d) m

KB m

KM trans. m

KM long. m

Immersion tonne/cm

Moment to trim tonne.m

Page 23: Design of 115000 DWT Tanker

Hydrostatics - DICTATORHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Damage Case - Intact

Fixed Trim = -0.5 m (+ve by stern)

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Draft Amidships m 9.000 10.289 11.579 12.868 14.157 15.447 16.736

Displacement t 67251 77990 88944 100086 111356 122694 134078

Heel deg 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Draft at FP m 9.250 10.539 11.829 13.118 14.407 15.697 16.986

Draft at AP m 8.750 10.039 11.329 12.618 13.907 15.197 16.486

Draft at LCF m 9.002 10.288 11.573 12.860 14.147 15.435 16.725

Trim (+ve by stern) m -0.500 -0.500 -0.500 -0.500 -0.500 -0.500 -0.500

WL Length m 227.593 231.269 234.252 234.098 232.854 231.402 231.566

Beam max extents on WL m 41.249 41.247 41.246 41.246 41.246 41.246 41.246

Wetted Area m^2 10844.658 11520.312 12206.594 12878.542 13527.209 14155.348 14757.183

Waterpl. Area m^2 8041.386 8206.740 8365.106 8487.365 8556.417 8592.992 8649.256

Prismatic coeff. (Cp) 0.770 0.782 0.793 0.803 0.813 0.821 0.828

Block coeff. (Cb) 0.757 0.770 0.782 0.794 0.804 0.813 0.821

Max Sect. area coeff. (Cm) 0.996 0.997 0.997 0.997 0.997 0.998 0.998

Waterpl. area coeff. (Cwp) 0.855 0.873 0.890 0.903 0.910 0.914 0.920

LCB from zero pt. (+ve fwd) m 118.783 118.126 117.420 116.693 115.992 115.345 114.795

LCF from zero pt. (+ve fwd) m 114.830 113.231 111.609 110.276 109.364 108.821 108.846

KB m 4.724 5.401 6.083 6.766 7.448 8.126 8.802

KG m 11.433 11.433 11.433 11.433 11.433 11.433 11.433

BMt m 15.243 13.517 12.159 11.051 10.111 9.292 8.590

BML m 411.963 375.323 346.748 319.965 292.678 267.557 249.078

23

Page 24: Design of 115000 DWT Tanker

GMt m 8.523 7.477 6.801 6.378 6.121 5.982 5.957

GML m 405.243 369.283 341.390 315.292 288.688 264.248 246.445

KMt m 19.966 18.919 18.242 17.817 17.558 17.418 17.392

KML m 416.685 380.724 352.829 326.730 300.125 275.683 257.879

Immersion (TPc) tonne/cm 82.424 84.119 85.742 86.995 87.703 88.078 88.655

MTc tonne.m 1195.305 1263.173 1331.775 1384.052 1409.963 1421.999 1449.249

RM at 1deg = GMt.Disp.sin(1) tonne.m 10003.041 10176.429 10557.158 11140.701 11895.614 12810.012 13939.554

Max deck inclination deg 0.1256 0.1256 0.1256 0.1256 0.1256 0.1256 0.1256

Trim angle (+ve by stern) deg -0.1256 -0.1256 -0.1256 -0.1256 -0.1256 -0.1256 -0.1256

24

Page 25: Design of 115000 DWT Tanker

25

9

10

11

12

13

14

15

16

17

0.72 0.76 0.8 0.84 0.88 0.92 0.96 1

Prismatic coeff. (Cp)

Block coeff. (Cb)

Max Sect. area coeff. (Cm)

Waterpl. area coeff. (Cw p)

Coeff icient

Dra

ft

m

9

10

11

12

13

14

15

16

17

30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000 27500

108 109 110 111 112 113 114 115 116 117 118 119

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20

90 120 150 180 210 240 270 300 330 360 390 420

78 79 80 81 82 83 84 85 86 87 88 89

900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450

Displacement

Max sect. area

Sect. area amidships

Wetted Area

Waterpl. Area

LCB

LCF

KB

KMt

KML

Immersion (TPc)

MTc

Displacement t

Dra

ft

m

Area m^2

Long. centre from zero pt. (+ve fw d) m

KB m

KM trans. m

KM long. m

Immersion tonne/cm

Moment to trim tonne.m

Page 26: Design of 115000 DWT Tanker

Hydrostatics - DICTATORHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Damage Case - Intact

Fixed Trim = -1 m (+ve by stern)

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Draft Amidships m 9.000 10.289 11.579 12.868 14.157 15.447 16.736

Displacement t 67269 77979 88902 100017 111267 122594 133989

Heel deg 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Draft at FP m 9.500 10.789 12.079 13.368 14.657 15.947 17.236

Draft at AP m 8.500 9.789 11.079 12.368 13.657 14.947 16.236

Draft at LCF m 9.005 10.287 11.569 12.852 14.137 15.424 16.714

Trim (+ve by stern) m -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

WL Length m 226.963 230.675 233.981 233.752 232.299 231.100 231.470

Beam max extents on WL m 41.249 41.247 41.246 41.246 41.246 41.246 41.246

Wetted Area m^2 10832.765 11509.012 12194.786 12871.784 13524.434 14152.945 14765.121

Waterpl. Area m^2 8018.504 8183.381 8342.216 8469.854 8544.458 8590.366 8650.780

Prismatic coeff. (Cp) 0.763 0.775 0.786 0.797 0.807 0.815 0.823

Block coeff. (Cb) 0.740 0.754 0.768 0.780 0.791 0.801 0.810

Max Sect. area coeff. (Cm) 0.996 0.997 0.997 0.997 0.998 0.998 0.998

Waterpl. area coeff. (Cwp) 0.853 0.870 0.887 0.901 0.909 0.913 0.920

LCB from zero pt. (+ve fwd) m 119.681 118.946 118.180 117.398 116.639 115.938 115.337

LCF from zero pt. (+ve fwd) m 115.165 113.559 111.908 110.454 109.446 108.908 108.986

KB m 4.728 5.403 6.083 6.764 7.444 8.122 8.798

KG m 11.433 11.433 11.433 11.433 11.433 11.433 11.433

BMt m 15.195 13.484 12.135 11.038 10.108 9.298 8.598

BML m 408.342 372.129 344.002 318.140 291.613 267.514 249.365

26

Page 27: Design of 115000 DWT Tanker

GMt m 8.465 7.432 6.766 6.354 6.108 5.979 5.957

GML m 401.612 366.078 338.633 313.456 287.613 264.194 246.724

KMt m 19.922 18.887 18.217 17.802 17.552 17.420 17.396

KML m 413.066 377.529 350.081 324.901 299.055 275.633 258.161

Immersion (TPc) tonne/cm 82.190 83.880 85.508 86.816 87.581 88.051 88.670

MTc tonne.m 1184.906 1252.027 1320.396 1375.038 1403.586 1420.548 1449.929

RM at 1deg = GMt.Disp.sin(1) tonne.m 9937.332 10114.935 10497.924 11090.744 11860.178 12792.196 13930.153

Max deck inclination deg 0.2513 0.2513 0.2513 0.2513 0.2513 0.2513 0.2513

Trim angle (+ve by stern) deg -0.2513 -0.2513 -0.2513 -0.2513 -0.2513 -0.2513 -0.2513

27

Page 28: Design of 115000 DWT Tanker

28

8

9

10

11

12

13

14

15

16

17

50000 60000 70000 80000 90000 100000 110000 120000 130000 140000

0 2500 5000 7500 10000 12500 15000 17500 20000 22500

102 104 106 108 110 112 114 116 118 120

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

15.5 16 16.5 17 17.5 18 18.5 19 19.5 20

150 180 210 240 270 300 330 360 390 420

80 81 82 83 84 85 86 87 88 89

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450

Displacement

Max sect. area

Sect. area amidships

Wetted Area

Waterpl. Area

LCB

LCF

KB

KMt

KML

Immersion (TPc)

MTc

Displacement t

Dra

ft

m

Area m^2

Long. centre from zero pt. (+ve fw d) m

KB m

KM trans. m

KM long. m

Immersion tonne/cm

Moment to trim tonne.m

Page 29: Design of 115000 DWT Tanker

29

8

9

10

11

12

13

14

15

16

17

0.7 0.75 0.8 0.85 0.9 0.95 1

Prismatic coeff. (Cp)

Block coeff. (Cb)

Max Sect. area coeff. (Cm)

Waterpl. area coeff. (Cw p)

Coeff icient

Dra

ft

m

Page 30: Design of 115000 DWT Tanker

Hydrostatics - dictator-prodnHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Damage Case - Intact

Fixed Trim = 0.5 m (+ve by stern)

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Draft Amidships m 9.000 10.289 11.579 12.868 14.157 15.447 16.736

Displacement t 67234 78032 89045 100236 111539 122899 134284

Heel deg 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Draft at FP m 8.750 10.039 11.329 12.618 13.907 15.197 16.486

Draft at AP m 9.250 10.539 11.829 13.118 14.407 15.697 16.986

Draft at LCF m 9.000 10.292 11.585 12.877 14.168 15.458 16.748

Trim (+ve by stern) m 0.500 0.500 0.500 0.500 0.500 0.500 0.500

WL Length m 229.083 232.650 234.494 234.723 233.916 232.090 231.761

Beam max extents on WL m 41.249 41.247 41.246 41.246 41.246 41.246 41.246

Wetted Area m^2 10877.162 11544.271 12227.883 12889.643 13529.773 14157.721 14761.501

Waterpl. Area m^2 8085.096 8252.994 8406.930 8516.255 8576.899 8602.641 8644.556

Prismatic coeff. (Cp) 0.776 0.788 0.799 0.809 0.818 0.826 0.833

Block coeff. (Cb) 0.758 0.772 0.784 0.796 0.806 0.815 0.823

Max Sect. area coeff. (Cm) 0.996 0.997 0.997 0.998 0.998 0.998 0.998

Waterpl. area coeff. (Cwp) 0.860 0.878 0.894 0.906 0.912 0.915 0.919

LCB from zero pt. (+ve fwd) m 116.961 116.462 115.883 115.275 114.693 114.160 113.696

LCF from zero pt. (+ve fwd) m 114.173 112.574 111.046 109.959 109.241 108.720 108.599

KB m 4.722 5.404 6.089 6.775 7.459 8.138 8.814

KG m 11.433 11.433 11.433 11.433 11.433 11.433 11.433

BMt m 15.332 13.580 12.205 11.072 10.112 9.280 8.572

BML m 418.777 381.598 351.632 322.826 294.457 268.127 248.284

30

Page 31: Design of 115000 DWT Tanker

GMt m 8.628 7.557 6.865 6.417 6.139 5.985 5.952

GML m 412.073 375.575 346.292 318.170 290.484 264.833 245.664

KMt m 20.054 18.985 18.293 17.847 17.570 17.418 17.386

KML m 423.499 387.001 357.720 329.600 301.915 276.265 257.097

Immersion (TPc) tonne/cm 82.872 84.593 86.171 87.292 87.913 88.177 88.607

MTc tonne.m 1215.144 1285.391 1352.441 1398.775 1421.068 1427.527 1446.874

RM at 1deg = GMt.Disp.sin(1) tonne.m 10123.792 10291.485 10667.839 11225.206 11950.306 12837.740 13949.536

Max deck inclination deg 0.1256 0.1256 0.1256 0.1256 0.1256 0.1256 0.1256

Trim angle (+ve by stern) deg 0.1256 0.1256 0.1256 0.1256 0.1256 0.1256 0.1256

31

Page 32: Design of 115000 DWT Tanker

32

9

10

11

12

13

14

15

16

17

50000 60000 70000 80000 90000 100000 110000 120000 130000 140000

0 2500 5000 7500 10000 12500 15000 17500 20000 22500

108 109 110 111 112 113 114 115 116 117

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

16 16.5 17 17.5 18 18.5 19 19.5 20 20.5

180 210 240 270 300 330 360 390 420 450

80 81 82 83 84 85 86 87 88 89

1120 1160 1200 1240 1280 1320 1360 1400 1440 1480

Displacement

Max sect. area

Sect. area amidships

Wetted Area

Waterpl. Area

LCB

LCF

KB

KMt

KML

Immersion (TPc)

MTc

Displacement t

Dra

ft

m

Area m^2

Long. centre from zero pt. (+ve fw d) m

KB m

KM trans. m

KM long. m

Immersion tonne/cm

Moment to trim tonne.m

Page 33: Design of 115000 DWT Tanker

33

9

10

11

12

13

14

15

16

17

0.72 0.76 0.8 0.84 0.88 0.92 0.96 1

Prismatic coeff. (Cp)

Block coeff. (Cb)

Max Sect. area coeff. (Cm)

Waterpl. area coeff. (Cw p)

Coeff icient

Dra

ft

m

Page 34: Design of 115000 DWT Tanker

Hydrostatics - dictator-prodnHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Damage Case - Intact

Fixed Trim = 1 m (+ve by stern)

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Draft Amidships m 9.000 10.289 11.579 12.868 14.157 15.447 16.736

Displacement t 67234 78062 89104 100315 111633 123002 134390

Heel deg 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Draft at FP m 8.500 9.789 11.079 12.368 13.657 14.947 16.236

Draft at AP m 9.500 10.789 12.079 13.368 14.657 15.947 17.236

Draft at LCF m 9.001 10.297 11.593 12.886 14.178 15.470 16.760

Trim (+ve by stern) m 1.000 1.000 1.000 1.000 1.000 1.000 1.000

WL Length m 229.810 233.314 234.600 234.956 234.364 232.703 231.861

Beam max extents on WL m 41.249 41.247 41.246 41.246 41.246 41.246 41.246

Wetted Area m^2 10871.197 11557.338 12235.003 12894.440 13530.538 14156.791 14764.010

Waterpl. Area m^2 8104.980 8276.689 8423.975 8528.721 8585.322 8610.307 8642.874

Prismatic coeff. (Cp) 0.774 0.786 0.797 0.808 0.817 0.825 0.832

Block coeff. (Cb) 0.742 0.758 0.772 0.784 0.796 0.805 0.814

Max Sect. area coeff. (Cm) 0.992 0.993 0.994 0.994 0.995 0.995 0.996

Waterpl. area coeff. (Cwp) 0.862 0.880 0.896 0.907 0.913 0.916 0.919

LCB from zero pt. (+ve fwd) m 116.040 115.621 115.106 114.561 114.042 113.566 113.148

LCF from zero pt. (+ve fwd) m 113.868 112.231 110.811 109.811 109.189 108.708 108.491

KB m 4.726 5.409 6.095 6.782 7.466 8.146 8.822

KG m 11.433 11.433 11.433 11.433 11.433 11.433 11.433

BMt m 15.374 13.611 12.225 11.080 10.110 9.274 8.563

BML m 421.806 384.798 353.514 323.999 295.145 268.743 247.952

34

Page 35: Design of 115000 DWT Tanker

GMt m 8.675 7.594 6.892 6.432 6.144 5.985 5.948

GML m 415.108 378.781 348.181 319.351 291.179 265.455 245.337

KMt m 20.099 19.020 18.320 17.862 17.577 17.420 17.385

KML m 426.528 390.203 359.606 330.778 302.609 276.887 256.771

Immersion (TPc) tonne/cm 83.076 84.836 86.346 87.419 88.000 88.256 88.589

MTc tonne.m 1224.096 1296.859 1360.719 1405.078 1425.664 1432.085 1446.089

RM at 1deg = GMt.Disp.sin(1) tonne.m 10179.498 10346.263 10716.975 11260.662 11970.065 12848.023 13950.419

Max deck inclination deg 0.2513 0.2513 0.2513 0.2513 0.2513 0.2513 0.2513

Trim angle (+ve by stern) deg 0.2513 0.2513 0.2513 0.2513 0.2513 0.2513 0.2513

35

Page 36: Design of 115000 DWT Tanker

36

8

9

10

11

12

13

14

15

16

17

50000 60000 70000 80000 90000 100000 110000 120000 130000 140000

0 2500 5000 7500 10000 12500 15000 17500 20000 22500

108 109 110 111 112 113 114 115 116 117

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

16 16.5 17 17.5 18 18.5 19 19.5 20 20.5

180 210 240 270 300 330 360 390 420 450

80 81 82 83 84 85 86 87 88 89

1120 1160 1200 1240 1280 1320 1360 1400 1440 1480

Displacement

Max sect. area

Sect. area amidships

Wetted Area

Waterpl. Area

LCB

LCF

KB

KMt

KML

Immersion (TPc)

MTc

Displacement t

Dra

ft

m

Area m^2

Long. centre from zero pt. (+ve fw d) m

KB m

KM trans. m

KM long. m

Immersion tonne/cm

Moment to trim tonne.m

Page 37: Design of 115000 DWT Tanker

37

8

9

10

11

12

13

14

15

16

17

0.7 0.75 0.8 0.85 0.9 0.95 1

Prismatic coeff. (Cp)

Block coeff. (Cb)

Max Sect. area coeff. (Cm)

Waterpl. area coeff. (Cw p)

Coeff icient

Dra

ft

m

Page 38: Design of 115000 DWT Tanker

Stability Calculation - DICTATORHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn - with tilts (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Loadcase – FULL CARGO NO BALLAST; FULLTANKS

Damage Case - Intact

Fixed Trim = 0 m (+ve by stern)

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Fluid analysis method: Use corrected VCG

Item Name Quantity

Unit Mass tonne

Total Mass tonne

Unit Volume m^3

Total Volume m^3

Long. Arm m

Trans. Arm m

Vert. Arm m

Total FSM tonne.m

FSM Type

Lightship 1 14000.000

14000.000 113.000 0.000 8.000 0.000 User Specified

BS DB 0% 6032.542 0.000 5885.407 0.000 129.597 -8.454 0.000 0.000 Maximum

BP DB 0% 6032.542 0.000 5885.407 0.000 129.597 8.454 0.000 0.000 Maximum

BP1 0% 2253.998 0.000 2199.022 0.000 51.123 15.373 2.000 0.000 Maximum

slop tk-P 85% 1113.085 946.122 1091.259 927.570 35.541 -5.576 10.324 590.823 Maximum

slop tk-S 85% 1113.085 946.122 1091.259 927.570 35.541 5.576 10.324 590.823 Maximum

CP6 98% 4033.111 3952.449 3954.031 3874.950 204.806 -4.194 11.600 0.000 Maximum

CP5 98% 10631.018

10418.397 10422.567 10214.115 176.824 -8.485 11.585 0.000 Maximum

CP4 98% 11868.145

11630.782 11635.436 11402.727 146.000 -9.313 11.566 0.000 Maximum

CP3 98% 11869.195

11631.811 11636.466 11403.736 113.999 -9.313 11.567 0.000 Maximum

CP2 98% 10386.465

10178.735 10182.809 9979.151 84.000 -9.313 11.568 0.000 Maximum

CP1 98% 9642.226 9449.382 9453.163 9264.100 55.148 -7.690 11.581 0.000 Maximum

CS6 98% 4033.111 3952.449 3954.031 3874.950 204.806 4.194 11.600 0.000 Maximum

CS5 98% 10631.018

10418.397 10422.567 10214.115 176.824 8.485 11.585 0.000 Maximum

38

Page 39: Design of 115000 DWT Tanker

CS4 98% 11868.145

11630.782 11635.436 11402.727 146.000 9.313 11.566 0.000 Maximum

CS3 98% 11869.195

11631.811 11636.466 11403.736 113.999 9.313 11.567 0.000 Maximum

CS2 98% 10386.465

10178.735 10182.809 9979.151 84.000 9.313 11.568 0.000 Maximum

CS1 98% 9642.226 9449.382 9453.163 9264.100 55.148 7.690 11.581 0.000 Maximum

BS 1 0% 4179.296 0.000 4077.362 0.000 126.020 19.565 2.000 0.000 Maximum

BS 3 0% 2711.122 0.000 2644.997 0.000 208.661 8.136 2.000 0.000 Maximum

BP DB 0% 2253.998 0.000 2199.022 0.000 51.123 -15.373 2.000 0.000 Maximum

BP2 0% 4179.296 0.000 4077.362 0.000 126.020 -19.565 2.000 0.000 Maximum

BP4 0% 2711.122 0.000 2644.997 0.000 208.661 -8.136 2.000 0.000 Maximum

FS1 100% 1503.110 1503.110 1591.772 1591.772 21.683 14.533 17.659 0.000 Maximum

FP1 100% 1503.110 1503.110 1591.772 1591.772 21.683 -14.533 17.659 0.000 Maximum

sett. tk-P 100% 82.050 82.050 86.890 86.890 31.045 -6.261 11.046 0.000 Maximum

serv tk-P 100% 40.284 40.284 42.660 42.660 31.045 -6.261 7.250 0.000 Maximum

LO tk-P 100% 54.946 54.946 59.724 59.724 31.045 -6.261 4.250 0.000 Maximum

settl. tk-S 100% 82.050 82.050 86.890 86.890 31.045 6.261 11.046 0.000 Maximum

serv tk-S 100% 40.284 40.284 42.660 42.660 31.045 6.261 7.250 0.000 Maximum

LO tk-S 100% 54.946 54.946 59.724 59.724 31.045 6.261 4.250 0.000 Maximum

FW-P 100% 213.663 213.663 213.663 213.663 4.797 -12.316 17.758 0.000 Maximum

FW-S 100% 213.662 213.662 213.662 213.662 4.797 12.316 17.758 0.000 Maximum

Total Loadcase

134203.460

150354.457

118122.117 117.966 0.000 11.331 1181.647

FS correction 0.009

VCG fluid 11.340

39

Heel to Port deg

0.0 5.0 10.0

15.0

20.0 25.0

30.0

35.0

40.0 45.0

50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0

GZ m

0.000

0.529

1.070

1.617

1.962

2.137

2.209

2.214

2.173

2.099

1.984

1.820

1.613

1.373 1.108

0.824 0.526 0.221

Area under GZ curve from zero heel m.deg

0.0000

1.3240

5.3073

12.0684

21.1094

31.4098

42.3070

53.3877

64.3720

75.0659

85.2906

94.8199

103.4186

110.8964

117.1080

121.9434

125.3228

127.1918

Displacement t

134204

134203

134203

134203

134194

134203

134202

134202

134202

134202

134203

134203

134203

134203

134203

134203 134203 134193

Draft at FP m

16.687

16.683

16.672

16.665

16.847

17.249

17.850

18.660

19.713

21.064

22.768

24.915

27.703

31.511

37.102

46.259 64.334 118.050

Draft at AP m

16.687

16.683

16.672

16.665

16.847

17.249

17.850

18.660

19.713

21.064

22.768

24.915

27.703

31.511

37.102

46.259 64.334 118.050

WL Length m

231.641

231.896

232.146

232.396

232.720

233.121

233.744

234.263

234.948

236.016

237.728

237.463

235.807

234.154

232.353

229.804 227.222 224.828

Beam max extents on WL m

41.282

41.440

41.919

40.404

35.840

33.055

31.324

30.317

29.876

29.555

28.173

26.390

24.962

23.853

23.005

22.380 21.950 21.699

Wetted Area m^2

14779.105

14779.648

14784.406

15096.205

15860.177

16367.807

16727.369

16981.660

17157.859

17305.405

17442.357

17526.225

17586.918

17631.290

17668.492

17696.461

17720.580

17742.551

Waterpl. Area m^2

8654.268

8683.129

8771.247

8511.235

7569.449

6910.839

6447.901

6117.875

5888.663

5691.393

5425.900

5137.717

4904.313

4722.014

4583.897

4483.020

4416.438

4386.794

Prismatic coeff. (Cp)

0.834

0.834

0.835

0.836

0.839

0.842

0.846

0.850

0.855

0.861

0.866

0.871

0.874

0.877 0.880

0.882 0.884 0.886

Page 40: Design of 115000 DWT Tanker

Key point Type Immersion angle deg

Emergence angle deg

Margin Line (immersion pos = 232.858 m) 0 n/a

Deck Edge (immersion pos = 232.858 m) 0 n/a

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80

Max GZ = 2.219 m at 32.7 deg.

3.1.2.4: Initial GMt GM at 0.0 deg = 6.044 m

3.1.2.6: Turn: angle of equilibrium

2a: Initial GMo GM at 0.0 deg = 6.044 m2b iv: Initial GMo GM at 0.0 deg = 6.044 m27.1.1 Initial GMo in port GM at 0.0 deg = 6.044 m27.1.2.4 Initial GMo at sea GM at 0.0 deg = 6.044 m

Heel to Port deg.

GZ

m

Code Criteria Value Units Actual Status Margin %

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 42.3070 Pass +1242.52

40

Page 41: Design of 115000 DWT Tanker

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 5.1566 m.deg 64.3720 Pass +1148.34

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 22.0650 Pass +1183.67

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.2: Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 32.7 deg 32.7

shall not be less than (>=) 0.200 m 2.219 Pass +1009.50

Intermediate values

angle at which this GZ occurs deg 32.7

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.3: Angle of maximum GZ Pass

41

Page 42: Design of 115000 DWT Tanker

shall not be less than (>=) 25.0 deg 32.7 Pass +30.91

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.4: Initial GMt Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.044 Pass +3929.33

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.6: Turn: angle of equilibrium Pass

Turn arm: a v^2 / (R g) h cos^n(phi)

constant: a = 0.9996

vessel speed: v = 0.000 kts

turn radius, R, as percentage of Lwl 510.00 %

h = KG - mean draft / 2 2.988 m

cosine power: n = 0

shall not be greater than (<=) 10.0 deg 0.0 Pass +100.00

Intermediate values

Heel arm amplitude m 0.000

Regulation 25A 2a 2a: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.044 Pass +3929.33

Regulation 25A 2b 2b i: Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 42.3070 Pass +1242.52

42

Page 43: Design of 115000 DWT Tanker

Regulation 25A 2b 2b i: Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 5.1566 m.deg 64.3720 Pass +1148.34

Regulation 25A 2b 2b i: Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 22.0650 Pass +1183.67

Regulation 25A 2b 2b ii: Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 32.7 deg 32.7

shall not be less than (>=) 0.200 m 2.219 Pass +1009.50

Intermediate values

angle at which this GZ occurs deg 32.7

Regulation 25A 2b 2b iii: Angle of maximum GZ Pass

43

Page 44: Design of 115000 DWT Tanker

shall not be less than (>=) 25.0 deg 32.7 Pass +30.91

Regulation 25A 2b 2b iv: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.044 Pass +3929.33

Regulation 27 - Intact stability 27.1.1 Initial GMo in port Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.044 Pass +3929.33

Regulation 27 - Intact stability 27.1.2.1 Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 42.3070 Pass +1242.52

Regulation 27 - Intact stability 27.1.2.1 Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 5.1566 m.deg 64.3720 Pass +1148.34

Regulation 27 - Intact stability 27.1.2.1 Area 30 to 40 Pass

from the greater of

44

Page 45: Design of 115000 DWT Tanker

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 22.0650 Pass +1183.67

Regulation 27 - Intact stability 27.1.2.2 Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 32.7 deg 32.7

shall not be less than (>=) 0.200 m 2.219 Pass +1009.50

Intermediate values

angle at which this GZ occurs deg 32.7

Regulation 27 - Intact stability 27.1.2.3 Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 32.7 Pass +30.91

Regulation 27 - Intact stability 27.1.2.4 Initial GMo at sea Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.044 Pass +3929.33

Stability Calculation - DICTATORHydromax 16.04, build: 32046

45

Page 46: Design of 115000 DWT Tanker

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn - with tilts (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Loadcase – FULL CARGO NO BALLAST; 50%TANKS

Damage Case - Intact

Fixed Trim = 0 m (+ve by stern)

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Fluid analysis method: Use corrected VCG

Item Name Quantity

Unit Mass tonne

Total Mass tonne

Unit Volume m^3

Total Volume m^3

Long. Arm m

Trans. Arm m

Vert. Arm m

Total FSM tonne.m

FSM Type

Lightship 1 14000.000

14000.000 113.000 0.000 8.000 0.000 User Specified

BS DB 0% 6032.542 0.000 5885.407 0.000 129.597 -8.454 0.000 0.000 Maximum

BP DB 0% 6032.542 0.000 5885.407 0.000 129.597 8.454 0.000 0.000 Maximum

BP1 0% 2253.998 0.000 2199.022 0.000 51.123 15.373 2.000 0.000 Maximum

slop tk-P 85% 1113.085 946.122 1091.259 927.570 35.541 -5.576 10.324 590.823 Maximum

slop tk-S 85% 1113.085 946.122 1091.259 927.570 35.541 5.576 10.324 590.823 Maximum

CP6 98% 4033.111 3952.449 3954.031 3874.950 204.806 -4.194 11.600 0.000 Maximum

CP5 98% 10631.018

10418.397 10422.567 10214.115 176.824 -8.485 11.585 0.000 Maximum

CP4 98% 11868.145

11630.782 11635.436 11402.727 146.000 -9.313 11.566 0.000 Maximum

CP3 98% 11869.195

11631.811 11636.466 11403.736 113.999 -9.313 11.567 0.000 Maximum

CP2 98% 10386.465

10178.735 10182.809 9979.151 84.000 -9.313 11.568 0.000 Maximum

CP1 98% 9642.226 9449.382 9453.163 9264.100 55.148 -7.690 11.581 0.000 Maximum

CS6 98% 4033.111 3952.449 3954.031 3874.950 204.806 4.194 11.600 0.000 Maximum

CS5 98% 10631.018

10418.397 10422.567 10214.115 176.824 8.485 11.585 0.000 Maximum

CS4 98% 11868.145

11630.782 11635.436 11402.727 146.000 9.313 11.566 0.000 Maximum

46

Page 47: Design of 115000 DWT Tanker

CS3 98% 11869.195

11631.811 11636.466 11403.736 113.999 9.313 11.567 0.000 Maximum

CS2 98% 10386.465

10178.735 10182.809 9979.151 84.000 9.313 11.568 0.000 Maximum

CS1 98% 9642.226 9449.382 9453.163 9264.100 55.148 7.690 11.581 0.000 Maximum

BS 1 0% 4179.296 0.000 4077.362 0.000 126.020 19.565 2.000 0.000 Maximum

BS 3 0% 2711.122 0.000 2644.997 0.000 208.661 8.136 2.000 0.000 Maximum

BP DB 0% 2253.998 0.000 2199.022 0.000 51.123 -15.373 2.000 0.000 Maximum

BP2 0% 4179.296 0.000 4077.362 0.000 126.020 -19.565 2.000 0.000 Maximum

BP4 0% 2711.122 0.000 2644.997 0.000 208.661 -8.136 2.000 0.000 Maximum

FS1 50% 1503.110 751.555 1591.772 795.886 21.703 14.437 15.669 1272.970 Maximum

FP1 50% 1503.110 751.555 1591.772 795.886 21.703 -14.437 15.669 1272.969 Maximum

sett. tk-P 100% 82.050 82.050 86.890 86.890 31.045 -6.261 11.046 0.000 Maximum

serv tk-P 100% 40.284 40.284 42.660 42.660 31.045 -6.261 7.250 0.000 Maximum

LO tk-P 50% 54.946 27.473 59.724 29.862 31.045 -6.261 3.375 24.032 Maximum

settl. tk-S 100% 82.050 82.050 86.890 86.890 31.045 6.261 11.046 0.000 Maximum

serv tk-S 100% 40.284 40.284 42.660 42.660 31.045 6.261 7.250 0.000 Maximum

LO tk-S 50% 54.946 27.473 59.724 29.862 31.045 6.261 3.375 24.032 Maximum

FW-P 50% 213.663 106.831 213.663 106.831 4.880 -12.254 15.786 48.326 Maximum

FW-S 50% 213.662 106.831 213.662 106.831 4.880 12.254 15.786 48.321 Maximum

Total Loadcase

132431.741

150354.457

116256.959 119.277 0.000 11.226 3872.296

FS correction 0.029

VCG fluid 11.255

47

Page 48: Design of 115000 DWT Tanker

Heel to Port deg

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0

GZ m 0.000 0.537 1.085 1.650 2.033 2.236 2.329 2.352 2.324 2.258 2.145 1.977 1.764 1.516 1.241 0.946 0.637 0.319

Area under GZ curve from zero heel m.deg

0.0000

1.3427

5.3796

12.2488

21.5453

32.2768

43.7251

55.4521

67.1582

78.6312

89.6601

99.9847

109.3532

117.5655

124.4680

129.9436

133.9067

136.2975

Displacement t

132433

132432

132432

132432

132425

132431

132431

132430

132430

132431

132431

132431

132432

132432

132432

132432

132432

132422

48

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80

Max GZ = 2.352 m at 34.5 deg.

3.1.2.4: Initial GMt GM at 0.0 deg = 6.128 m

3.1.2.6: Turn: angle of equilibrium

2a: Initial GMo GM at 0.0 deg = 6.128 m2b iv: Initial GMo GM at 0.0 deg = 6.128 m27.1.1 Initial GMo in port GM at 0.0 deg = 6.128 m27.1.2.4 Initial GMo at sea GM at 0.0 deg = 6.128 m

Heel to Port deg.

GZ

m

Page 49: Design of 115000 DWT Tanker

Draft at FP m

16.487

16.483

16.472

16.457

16.607

16.975

17.543

18.319

19.334

20.637

22.275

24.331

27.000

30.647

36.003

44.775

62.087

113.544

Draft at AP m

16.487

16.483

16.472

16.457

16.607

16.975

17.543

18.319

19.334

20.637

22.275

24.331

27.000

30.647

36.003

44.775

62.087

113.544

WL Length m

231.552

231.808

232.059

232.308

232.622

233.017

233.490

234.094

234.648

235.679

237.261

237.924

236.289

234.719

232.942

230.839

228.227

225.805

Beam max extents on WL m

41.282

41.440

41.919

41.210

36.543

33.702

31.938

30.913

30.467

29.885

28.199

26.390

24.962

23.853

23.005

22.380

21.950

21.699

Wetted Area m^2

14684.500

14683.402

14689.005

14892.461

15655.467

16168.078

16528.116

16790.900

16970.104

17129.977

17257.247

17338.047

17399.531

17444.125

17479.210

17508.102

17531.429

17550.824

Waterpl. Area m^2

8646.546

8674.064

8761.799

8648.482

7706.608

7039.360

6568.354

6231.198

5994.387

5769.585

5470.265

5175.247

4937.338

4753.318

4614.283

4512.668

4445.437

4411.959

Prismatic coeff. (Cp)

0.833 0.833 0.834 0.835 0.838 0.841 0.845 0.850 0.855 0.861 0.867 0.871 0.875 0.878 0.880 0.882 0.884 0.886

Block coeff. (Cb)

0.831 0.756 0.692 0.660 0.699 0.713 0.712 0.699 0.678 0.664 0.682 0.710 0.737 0.763 0.788 0.812 0.837 0.861

LCB from zero pt. (+ve fwd) m

114.339

114.342

114.346

114.345

114.309

114.265

114.214

114.153

114.077

113.989

113.900

113.821

113.747

113.676

113.607

113.539

113.473

113.407

LCF from zero pt. (+ve fwd) m

108.627

108.709

108.882

109.100

109.533

110.230

110.892

111.507

112.072

112.400

112.282

111.929

111.607

111.376

111.203

111.110

111.101

111.144

Max deck inclination deg

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

45.0000

50.0000

55.0000

60.0000

65.0000

70.0000

75.0000

80.0000

85.0000

Trim 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

49

Page 50: Design of 115000 DWT Tanker

angle (+ve by stern) deg

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Key point Type Immersion angle deg

Emergence angle deg

Margin Line (immersion pos = 232.858 m) 0 n/a

Deck Edge (immersion pos = 232.858 m) 0 n/a

Code Criteria Value Units Actual Status Margin %

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 43.7251 Pass +1287.52

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

50

Page 51: Design of 115000 DWT Tanker

shall not be less than (>=) 5.1566 m.deg 67.1582 Pass +1202.37

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 23.4331 Pass +1263.26

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.2: Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 34.5 deg 34.5

shall not be less than (>=) 0.200 m 2.352 Pass +1076.00

Intermediate values

angle at which this GZ occurs deg 34.5

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.3: Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 34.5 Pass +38.18

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.4: Initial GMt Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.128 Pass +3985.33

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.6: Turn: angle of equilibrium Pass

51

Page 52: Design of 115000 DWT Tanker

Turn arm: a v^2 / (R g) h cos^n(phi)

constant: a = 0.9996

vessel speed: v = 0.000 kts

turn radius, R, as percentage of Lwl 510.00 %

h = KG - mean draft / 2 2.982 m

cosine power: n = 0

shall not be greater than (<=) 10.0 deg 0.0 Pass +100.00

Intermediate values

Heel arm amplitude m 0.000

Regulation 25A 2a 2a: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.128 Pass +3985.33

Regulation 25A 2b 2b i: Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 43.7251 Pass +1287.52

Regulation 25A 2b 2b i: Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

52

Page 53: Design of 115000 DWT Tanker

shall not be less than (>=) 5.1566 m.deg 67.1582 Pass +1202.37

Regulation 25A 2b 2b i: Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 23.4331 Pass +1263.26

Regulation 25A 2b 2b ii: Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 34.5 deg 34.5

shall not be less than (>=) 0.200 m 2.352 Pass +1076.00

Intermediate values

angle at which this GZ occurs deg 34.5

Regulation 25A 2b 2b iii: Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 34.5 Pass +38.18

Regulation 25A 2b 2b iv: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.128 Pass +3985.33

Regulation 27 - Intact stability 27.1.1 Initial GMo in port Pass

53

Page 54: Design of 115000 DWT Tanker

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.128 Pass +3985.33

Regulation 27 - Intact stability 27.1.2.1 Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 43.7251 Pass +1287.52

Regulation 27 - Intact stability 27.1.2.1 Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 5.1566 m.deg 67.1582 Pass +1202.37

Regulation 27 - Intact stability 27.1.2.1 Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 23.4331 Pass +1263.26

54

Page 55: Design of 115000 DWT Tanker

Regulation 27 - Intact stability 27.1.2.2 Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 34.5 deg 34.5

shall not be less than (>=) 0.200 m 2.352 Pass +1076.00

Intermediate values

angle at which this GZ occurs deg 34.5

Regulation 27 - Intact stability 27.1.2.3 Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 34.5 Pass +38.18

Regulation 27 - Intact stability 27.1.2.4 Initial GMo at sea Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.128 Pass +3985.33

Stability Calculation - DictatorHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn - with tilts (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Loadcase – FULL CARGO NO BALLAST; 10%TANKS

Damage Case - Intact

Fixed Trim = 0 m (+ve by stern)

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Fluid analysis method: Use corrected VCG

55

Page 56: Design of 115000 DWT Tanker

Item Name Quantity

Unit Mass tonne

Total Mass tonne

Unit Volume m^3

Total Volume m^3

Long. Arm m

Trans. Arm m

Vert. Arm m

Total FSM tonne.m

FSM Type

Lightship 1 14000.000

14000.000 113.000 0.000 8.000 0.000 User Specified

BS DB 0% 6032.542 0.000 5885.407 0.000 129.597 -8.454 0.000 0.000 Maximum

BP DB 0% 6032.542 0.000 5885.407 0.000 129.597 8.454 0.000 0.000 Maximum

BP1 0% 2253.998 0.000 2199.022 0.000 51.123 15.373 2.000 0.000 Maximum

slop tk-P 85% 1113.085 946.122 1091.259 927.570 35.541 -5.576 10.324 590.823 Maximum

slop tk-S 85% 1113.085 946.122 1091.259 927.570 35.541 5.576 10.324 590.823 Maximum

CP6 98% 4033.111 3952.449 3954.031 3874.950 204.806 -4.194 11.600 0.000 Maximum

CP5 98% 10631.018

10418.397 10422.567 10214.115 176.824 -8.485 11.585 0.000 Maximum

CP4 98% 11868.145

11630.782 11635.436 11402.727 146.000 -9.313 11.566 0.000 Maximum

CP3 98% 11869.195

11631.811 11636.466 11403.736 113.999 -9.313 11.567 0.000 Maximum

CP2 98% 10386.465

10178.735 10182.809 9979.151 84.000 -9.313 11.568 0.000 Maximum

CP1 98% 9642.226 9449.382 9453.163 9264.100 55.148 -7.690 11.581 0.000 Maximum

CS6 98% 4033.111 3952.449 3954.031 3874.950 204.806 4.194 11.600 0.000 Maximum

CS5 98% 10631.018

10418.397 10422.567 10214.115 176.824 8.485 11.585 0.000 Maximum

CS4 98% 11868.145

11630.782 11635.436 11402.727 146.000 9.313 11.566 0.000 Maximum

CS3 98% 11869.195

11631.811 11636.466 11403.736 113.999 9.313 11.567 0.000 Maximum

CS2 98% 10386.465

10178.735 10182.809 9979.151 84.000 9.313 11.568 0.000 Maximum

CS1 98% 9642.226 9449.382 9453.163 9264.100 55.148 7.690 11.581 0.000 Maximum

BS 1 0% 4179.296 0.000 4077.362 0.000 126.020 19.565 2.000 0.000 Maximum

BS 3 0% 2711.122 0.000 2644.997 0.000 208.661 8.136 2.000 0.000 Maximum

BP DB 0% 2253.998 0.000 2199.022 0.000 51.123 -15.373 2.000 0.000 Maximum

BP2 0% 4179.296 0.000 4077.362 0.000 126.020 -19.565 2.000 0.000 Maximum

56

Page 57: Design of 115000 DWT Tanker

BP4 0% 2711.122 0.000 2644.997 0.000 208.661 -8.136 2.000 0.000 Maximum

FS1 10% 1503.110 150.311 1591.772 159.177 21.738 14.295 14.019 1272.970 Maximum

FP1 10% 1503.110 150.311 1591.772 159.177 21.738 -14.295 14.019 1272.969 Maximum

sett. tk-P 100% 82.050 82.050 86.890 86.890 31.045 -6.261 11.046 0.000 Maximum

serv tk-P 100% 40.284 40.284 42.660 42.660 31.045 -6.261 7.250 0.000 Maximum

LO tk-P 10% 54.946 5.495 59.724 5.972 31.045 -6.261 2.675 24.032 Maximum

settl. tk-S 100% 82.050 82.050 86.890 86.890 31.045 6.261 11.046 0.000 Maximum

serv tk-S 100% 40.284 40.284 42.660 42.660 31.045 6.261 7.250 0.000 Maximum

LO tk-S 10% 54.946 5.495 59.724 5.972 31.045 6.261 2.675 24.032 Maximum

FW-P 10% 213.663 21.366 213.663 21.366 5.097 -12.171 14.082 48.326 Maximum

FW-S 10% 213.662 21.366 213.662 21.366 5.097 12.171 14.082 48.321 Maximum

Total Loadcase

131014.366

150354.457

114764.832 120.352 0.000 11.177 3872.296

FS correction 0.030

VCG fluid 11.207

57

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80

Max GZ = 2.451 m at 35.5 deg.

3.1.2.4: Initial GMt GM at 0.0 deg = 6.177 m

3.1.2.6: Turn: angle of equilibrium

2a: Initial GMo GM at 0.0 deg = 6.177 m2b iv: Initial GMo GM at 0.0 deg = 6.177 m27.1.1 Initial GMo in port GM at 0.0 deg = 6.177 m27.1.2.4 Initial GMo at sea GM at 0.0 deg = 6.177 m

Heel to Port deg.

GZ

m

Page 58: Design of 115000 DWT Tanker

Heel to Port deg

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0

GZ m 0.000 0.541 1.093 1.668 2.082 2.306 2.416 2.450 2.433 2.372 2.258 2.086 1.867 1.612 1.329 1.025 0.706 0.377

Area under GZ curve from zero heel m.deg

0.0000 1.3533

5.4225

12.3507

21.8096

32.8418

44.6822

56.8733

69.0996

81.1323

92.7320

103.6133

113.5132

122.2247

129.5882

135.4815

139.8150

142.5257

Displacement t

131018

131014

131014

131014

131010

131014

131014

131013

131013

131014

131014

131014

131014

131014

131014

131014

131014

131003

Draft at FP m

16.327 16.323

16.312

16.292

16.417

16.760

17.302

18.050

19.035

20.300

21.883

23.866

26.442

29.961

35.129

43.594

60.301

109.954

Draft at AP m

16.327 16.323

16.312

16.292

16.417

16.760

17.302

18.050

19.035

20.300

21.883

23.866

26.442

29.961

35.129

43.594

60.301

109.954

WL Length m

231.481

231.737

231.990

232.238

232.544

232.935

233.378

233.961

234.449

235.412

236.891

238.291

236.654

235.099

233.411

231.661

229.027

226.585

Beam max extents on WL m

41.282 41.440

41.919

41.845

37.097

34.212

32.421

31.383

30.920

30.084

28.214

26.390

24.962

23.853

23.005

22.380

21.950

21.699

Wetted Area m^2

14608.804

14606.457

14612.542

14732.954

15495.772

16011.564

16371.291

16640.387

16823.987

16990.882

17110.234

17188.167

17249.575

17294.789

17329.077

17357.295

17380.716

17399.753

Waterpl. Area m^2

8640.702

8666.788

8754.446

8754.504

7811.040

7139.797

6662.881

6320.449

6075.602

5825.276

5504.454

5204.428

4963.776

4777.192

4637.189

4536.128

4467.297

4432.580

Prismatic coeff.

0.832 0.832 0.833 0.834 0.837 0.840 0.845 0.850 0.855 0.861 0.867 0.871 0.875 0.878 0.880 0.882 0.884 0.885

58

Page 59: Design of 115000 DWT Tanker

(Cp)

Block coeff. (Cb)

0.830 0.755 0.690 0.648 0.686 0.701 0.700 0.687 0.666 0.658 0.680 0.708 0.735 0.762 0.787 0.812 0.836 0.861

LCB from zero pt. (+ve fwd) m

114.401

114.403

114.406

114.401

114.360

114.308

114.250

114.181

114.098

114.005

113.917

113.841

113.769

113.700

113.632

113.565

113.498

113.431

LCF from zero pt. (+ve fwd) m

108.624

108.726

108.902

109.185

109.576

110.317

111.023

111.650

112.216

112.542

112.393

112.054

111.738

111.497

111.339

111.233

111.208

111.195

Max deck inclination deg

0.0000 5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

45.0000

50.0000

55.0000

60.0000

65.0000

70.0000

75.0000

80.0000

85.0000

Trim angle (+ve by stern) deg

0.0000 0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Key point Type Immersion angle deg

Emergence angle deg

Margin Line (immersion pos = 232.858 m) 0 n/a

Deck Edge (immersion pos = 232.858 m) 0 n/a

Code Criteria Value Units Actual Status Margin %

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 0 to 30 Pass

from the greater of

59

Page 60: Design of 115000 DWT Tanker

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 44.6822 Pass +1317.90

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 5.1566 m.deg 69.0996 Pass +1240.02

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 24.4173 Pass +1320.52

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.2: Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

60

Page 61: Design of 115000 DWT Tanker

spec. heel angle 90.0 deg

angle of max. GZ 35.5 deg 35.5

shall not be less than (>=) 0.200 m 2.451 Pass +1125.50

Intermediate values

angle at which this GZ occurs deg 35.5

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.3: Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 35.5 Pass +41.82

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.4: Initial GMt Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.177 Pass +4018.00

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.6: Turn: angle of equilibrium Pass

Turn arm: a v^2 / (R g) h cos^n(phi)

constant: a = 0.9996

vessel speed: v = 0.000 kts

turn radius, R, as percentage of Lwl 510.00 %

h = KG - mean draft / 2 3.014 m

cosine power: n = 0

shall not be greater than (<=) 10.0 deg 0.0 Pass +100.00

Intermediate values

Heel arm amplitude m 0.000

Regulation 25A 2a 2a: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.177 Pass +4018.00

Regulation 25A 2b 2b i: Area 0 to 30 Pass

61

Page 62: Design of 115000 DWT Tanker

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 44.6822 Pass +1317.90

Regulation 25A 2b 2b i: Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 5.1566 m.deg 69.0996 Pass +1240.02

Regulation 25A 2b 2b i: Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 24.4173 Pass +1320.52

Regulation 25A 2b 2b ii: Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

62

Page 63: Design of 115000 DWT Tanker

spec. heel angle 90.0 deg

angle of max. GZ 35.5 deg 35.5

shall not be less than (>=) 0.200 m 2.451 Pass +1125.50

Intermediate values

angle at which this GZ occurs deg 35.5

Regulation 25A 2b 2b iii: Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 35.5 Pass +41.82

Regulation 25A 2b 2b iv: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.177 Pass +4018.00

Regulation 27 - Intact stability 27.1.1 Initial GMo in port Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 6.177 Pass +4018.00

Regulation 27 - Intact stability 27.1.2.1 Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 44.6822 Pass +1317.90

Regulation 27 - Intact stability 27.1.2.1 Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

63

Page 64: Design of 115000 DWT Tanker

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 5.1566 m.deg 69.0996 Pass +1240.02

Regulation 27 - Intact stability 27.1.2.1 Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 24.4173 Pass +1320.52

Regulation 27 - Intact stability 27.1.2.2 Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 35.5 deg 35.5

shall not be less than (>=) 0.200 m 2.451 Pass +1125.50

Intermediate values

angle at which this GZ occurs deg 35.5

Regulation 27 - Intact stability 27.1.2.3 Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 35.5 Pass +41.82

Regulation 27 - Intact stability 27.1.2.4 Initial GMo at sea Pass

spec. heel angle 0.0 deg

64

Page 65: Design of 115000 DWT Tanker

shall not be less than (>=) 0.150 m 6.177 Pass +4018.00

Stability Calculation - DICTATORHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn - with tilts (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Loadcase – FULL BALLAST FULL TANKS; NO CARGO

Damage Case - Intact

Fixed Trim = 0 m (+ve by stern)

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Fluid analysis method: Use corrected VCG

Item Name Quantity

Unit Mass tonne

Total Mass tonne

Unit Volume m^3

Total Volume m^3

Long. Arm m

Trans. Arm m

Vert. Arm m

Total FSM tonne.m

FSM Type

Lightship 1 14000.000

14000.000 113.000 0.000 8.000 0.000 User Specified

CS4 0% 11868.145

0.000 11635.436 0.000 146.000 9.313 2.000 0.000 Maximum

CS3 98% 11869.195

11631.811 11636.466 11403.736 113.999 9.313 11.567 0.000 Maximum

CS2 0% 10386.465

0.000 10182.809 0.000 84.000 9.313 2.000 0.000 Maximum

65

Page 66: Design of 115000 DWT Tanker

CS1 0% 9642.226 0.000 9453.163 0.000 55.223 7.716 2.000 0.000 Maximum

CS6 0% 4033.111 0.000 3954.031 0.000 204.806 4.194 2.000 0.000 Maximum

CP1 0% 9642.226 0.000 9453.163 0.000 55.223 -7.716 2.000 0.000 Maximum

CP2 0% 10386.465

0.000 10182.809 0.000 84.000 -9.313 2.000 0.000 Maximum

CP3 98% 11869.195

11631.811 11636.466 11403.736 113.999 -9.313 11.567 0.000 Maximum

CP4 0% 11868.145

0.000 11635.436 0.000 146.000 -9.313 2.000 0.000 Maximum

CP5 0% 10631.018

0.000 10422.567 0.000 176.883 -8.489 2.000 0.000 Maximum

CP6 0% 4033.111 0.000 3954.031 0.000 204.806 -4.194 2.000 0.000 Maximum

slop tk-S 0% 1113.085 0.000 1091.259 0.000 35.541 5.576 2.000 0.000 Maximum

slop tk-P 0% 1113.085 0.000 1091.259 0.000 35.541 -5.576 2.000 0.000 Maximum

CS5 0% 10631.018

0.000 10422.567 0.000 176.883 8.489 2.000 0.000 Maximum

BP1 100% 2253.998 2253.998 2199.022 2199.022 51.864 17.671 13.273 0.000 Maximum

BP DB 100% 6032.542 6032.542 5885.407 5885.407 124.646 8.996 1.050 0.000 Maximum

BS DB 100% 6032.542 6032.542 5885.407 5885.407 124.646 -8.996 1.050 0.000 Maximum

BS 1 100% 4179.296 4179.296 4077.362 4077.362 123.130 19.614 11.882 0.000 Maximum

BS 3 100% 2711.122 2711.122 2644.997 2644.997 206.163 11.412 13.684 0.000 Maximum

BP DB 100% 2253.998 2253.998 2199.022 2199.022 51.864 -17.671 13.273 0.000 Maximum

BP2 100% 4179.296 4179.296 4077.362 4077.362 123.130 -19.614 11.882 0.000 Maximum

BP4 100% 2711.122 2711.122 2644.997 2644.997 206.163 -11.412 13.684 0.000 Maximum

FS1 100% 1503.110 1503.110 1591.772 1591.772 21.683 14.533 17.659 0.000 Maximum

FP1 100% 1503.110 1503.110 1591.772 1591.772 21.683 -14.533 17.659 0.000 Maximum

sett. tk-P 96% 82.050 78.768 86.890 83.414 31.045 -6.261 10.944 24.666 Maximum

serv tk-P 96% 40.284 38.672 42.660 40.954 31.045 -6.261 7.200 24.666 Maximum

LO tk-P 100% 54.946 54.946 59.724 59.724 31.045 -6.261 4.250 0.000 Maximum

settl. tk-S 96% 82.050 78.768 86.890 83.414 31.045 6.261 10.944 24.666 Maximum

serv tk-S 96% 40.284 38.672 42.660 40.954 31.045 6.261 7.200 24.666 Maximum

66

Page 67: Design of 115000 DWT Tanker

LO tk-S 100% 54.946 54.946 59.724 59.724 31.045 6.261 4.250 0.000 Maximum

FW-P 100% 213.663 213.663 213.663 213.663 4.797 -12.316 17.758 0.000 Maximum

FW-S 100% 213.662 213.662 213.662 213.662 4.797 12.316 17.758 0.000 Maximum

Total Loadcase

71395.859 150354.457

56400.104 114.807 0.000 9.672 98.666

FS correction 0.001

VCG fluid 9.673

Heel to Port deg

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0

GZ m 0.000 0.868 1.754 2.676 3.653 4.672 5.568 6.232 6.538 6.576 6.420 6.115 5.696 5.183 4.595 3.947 3.249 2.514

67

-1

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

Max GZ = 6.587 m at 43.2 deg.

3.1.2.4: Initial GMt GM at 0.0 deg = 9.921 m

3.1.2.6: Turn: angle of equilibrium

2a: Initial GMo GM at 0.0 deg = 9.921 m2b iv: Initial GMo GM at 0.0 deg = 9.921 m27.1.1 Initial GMo in port GM at 0.0 deg = 9.921 m27.1.2.4 Initial GMo at sea GM at 0.0 deg = 9.921 m

Heel to Port deg.

GZ

m

Page 68: Design of 115000 DWT Tanker

Area under GZ curve from zero heel m.deg

0.0000

2.1679

8.7129

19.7688

35.5622

56.3887

82.0631

111.6935

143.7572

176.6322

209.1907

240.5815

270.1534

297.3869

321.8606

343.2375

361.2447

375.6594

Displacement t

71396

71396

71396

71396

71397

71399

71397

71396

71396

71396

71396

71397

71396

71398

71399

71398

71400

71402

Draft at FP m

9.461 9.450 9.418 9.362 9.278 9.147 8.879 8.442 7.937 7.359 6.677 5.844 4.774 3.329 1.215 -2.249

-9.080

-29.400

Draft at AP m

9.461 9.450 9.418 9.362 9.278 9.147 8.879 8.442 7.937 7.359 6.677 5.844 4.774 3.329 1.215 -2.249

-9.080

-29.400

WL Length m

229.733

229.729

229.660

230.278

231.849

233.283

233.967

234.484

234.908

235.326

235.681

235.965

236.278

236.569

236.833

237.138

237.232

237.009

Beam max extents on WL m

41.284

41.443

41.923

42.745

43.932

44.211

41.644

37.688

33.629

30.568

28.215

26.384

24.955

24.967

22.997

22.373

21.944

21.694

Wetted Area m^2

11134.795

11138.044

11180.376

11179.362

11206.507

11226.852

11054.550

11036.053

11088.811

11130.743

11157.329

11177.800

11194.044

11211.417

11238.370

11245.390

11251.113

11258.975

Waterpl. Area m^2

8141.292

8164.411

8243.130

8369.799

8539.697

8592.072

8363.869

7814.784

7146.364

6607.868

6179.088

5837.937

5559.269

5332.418

5162.285

5023.247

4918.912

4852.504

Prismatic coeff. (Cp)

0.783 0.784 0.786 0.791 0.798 0.808 0.815 0.819 0.821 0.822 0.823 0.824 0.824 0.825 0.825 0.825 0.826 0.827

Block coeff. (Cb)

0.780 0.666 0.579 0.511 0.454 0.420 0.421 0.447 0.486 0.522 0.557 0.589 0.621 0.624 0.686 0.719 0.752 0.788

LCB from zero pt. (+ve

117.692

117.622

117.416

117.082

116.624

116.079

115.551

115.078

114.647

114.263

113.928

113.631

113.387

113.162

112.954

112.767

112.589

112.424

68

Page 69: Design of 115000 DWT Tanker

fwd) m

LCF from zero pt. (+ve fwd) m

113.926

113.965

113.931

113.950

113.965

114.081

113.740

113.608

113.734

113.924

114.040

114.301

114.371

114.361

114.736

114.961

115.011

115.086

Max deck inclination deg

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

45.0000

50.0000

55.0000

60.0000

65.0000

70.0000

75.0000

80.0000

85.0000

Trim angle (+ve by stern) deg

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Key point Type Immersion angle deg

Emergence angle deg

Margin Line (immersion pos = 232.858 m) 0 n/a

Deck Edge (immersion pos = 232.858 m) 0 n/a

Code Criteria Value Units Actual Status Margin %

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 82.0631 Pass +2504.10

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 0 to 40 Pass

69

Page 70: Design of 115000 DWT Tanker

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 5.1566 m.deg 143.7572 Pass +2687.83

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 61.6942 Pass +3489.17

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.2: Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 43.2 deg 43.2

shall not be less than (>=) 0.200 m 6.587 Pass +3193.50

Intermediate values

angle at which this GZ occurs deg 43.2

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.3: Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 43.2 Pass +72.73

70

Page 71: Design of 115000 DWT Tanker

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.4: Initial GMt Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 9.921 Pass +6514.00

A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.6: Turn: angle of equilibrium Pass

Turn arm: a v^2 / (R g) h cos^n(phi)

constant: a = 0.9996

vessel speed: v = 0.000 kts

turn radius, R, as percentage of Lwl 510.00 %

h = KG - mean draft / 2 4.941 m

cosine power: n = 0

shall not be greater than (<=) 10.0 deg 0.0 Pass +100.00

Intermediate values

Heel arm amplitude m 0.000

Regulation 25A 2a 2a: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 9.921 Pass +6514.00

Regulation 25A 2b 2b i: Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 82.0631 Pass +2504.10

Regulation 25A 2b 2b i: Area 0 to 40 Pass

71

Page 72: Design of 115000 DWT Tanker

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 5.1566 m.deg 143.7572 Pass +2687.83

Regulation 25A 2b 2b i: Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 61.6942 Pass +3489.17

Regulation 25A 2b 2b ii: Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 43.2 deg 43.2

shall not be less than (>=) 0.200 m 6.587 Pass +3193.50

Intermediate values

angle at which this GZ occurs deg 43.2

Regulation 25A 2b 2b iii: Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 43.2 Pass +72.73

72

Page 73: Design of 115000 DWT Tanker

Regulation 25A 2b 2b iv: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 9.921 Pass +6514.00

Regulation 27 - Intact stability 27.1.1 Initial GMo in port Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 9.921 Pass +6514.00

Regulation 27 - Intact stability 27.1.2.1 Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 85.0 deg

shall not be less than (>=) 3.1513 m.deg 82.0631 Pass +2504.10

Regulation 27 - Intact stability 27.1.2.1 Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 5.1566 m.deg 143.7572 Pass +2687.83

Regulation 27 - Intact stability 27.1.2.1 Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

73

Page 74: Design of 115000 DWT Tanker

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 85.0 deg

shall not be less than (>=) 1.7189 m.deg 61.6942 Pass +3489.17

Regulation 27 - Intact stability 27.1.2.2 Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 43.2 deg 43.2

shall not be less than (>=) 0.200 m 6.587 Pass +3193.50

Intermediate values

angle at which this GZ occurs deg 43.2

Regulation 27 - Intact stability 27.1.2.3 Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 43.2 Pass +72.73

Regulation 27 - Intact stability 27.1.2.4 Initial GMo at sea Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 9.921 Pass +6514.00

Stability Calculation - DictatorHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn - with tilts (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

74

Page 75: Design of 115000 DWT Tanker

Loadcase - Ballast, 50%Consumables; NO cargo

Damage Case - Intact

Fixed Trim = 0 m (+ve by stern)

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Fluid analysis method: Use corrected VCG

Item Name Quantity

Unit Mass tonne

Total Mass tonne

Unit Volume m^3

Total Volume m^3

Long. Arm m

Trans. Arm m

Vert. Arm m

Total FSM tonne.m

FSM Type

Lightship 1 14000.000

14000.000 113.000 0.000 8.000 0.000 User Specified

CS4 0% 11868.145

0.000 11635.436 0.000 146.000 9.313 2.000 0.000 Maximum

CS3 98% 11869.195

11631.811 11636.466 11403.736 113.999 9.313 11.567 0.000 Maximum

CS2 0% 10386.465

0.000 10182.809 0.000 84.000 9.313 2.000 0.000 Maximum

CS1 0% 9642.226 0.000 9453.163 0.000 55.223 7.716 2.000 0.000 Maximum

CS6 0% 4033.111 0.000 3954.031 0.000 204.806 4.194 2.000 0.000 Maximum

CP1 0% 9642.226 0.000 9453.163 0.000 55.223 -7.716 2.000 0.000 Maximum

CP2 0% 10386.465

0.000 10182.809 0.000 84.000 -9.313 2.000 0.000 Maximum

CP3 98% 11869.195

11631.811 11636.466 11403.736 113.999 -9.313 11.567 0.000 Maximum

CP4 0% 11868.145

0.000 11635.436 0.000 146.000 -9.313 2.000 0.000 Maximum

CP5 0% 10631.018

0.000 10422.567 0.000 176.883 -8.489 2.000 0.000 Maximum

CP6 0% 4033.111 0.000 3954.031 0.000 204.806 -4.194 2.000 0.000 Maximum

slop tk-S 0% 1113.085 0.000 1091.259 0.000 35.541 5.576 2.000 0.000 Maximum

slop tk-P 0% 1113.085 0.000 1091.259 0.000 35.541 -5.576 2.000 0.000 Maximum

CS5 0% 10631.018

0.000 10422.567 0.000 176.883 8.489 2.000 0.000 Maximum

BP1 100% 2253.998 2253.998 2199.022 2199.022 51.864 17.671 13.273 0.000 Maximum

BP DB 100% 6032.542 6032.542 5885.407 5885.407 124.646 8.996 1.050 0.000 Maximum

75

Page 76: Design of 115000 DWT Tanker

BS DB 100% 6032.542 6032.542 5885.407 5885.407 124.646 -8.996 1.050 0.000 Maximum

BS 1 100% 4179.296 4179.296 4077.362 4077.362 123.130 19.614 11.882 0.000 Maximum

BS 3 100% 2711.122 2711.122 2644.997 2644.997 206.163 11.412 13.684 0.000 Maximum

BP DB 100% 2253.998 2253.998 2199.022 2199.022 51.864 -17.671 13.273 0.000 Maximum

BP2 100% 4179.296 4179.296 4077.362 4077.362 123.130 -19.614 11.882 0.000 Maximum

BP4 100% 2711.122 2711.122 2644.997 2644.997 206.163 -11.412 13.684 0.000 Maximum

FS1 50% 1503.110 751.555 1591.772 795.886 21.703 14.437 15.669 1272.970 Maximum

FP1 50% 1503.110 751.555 1591.772 795.886 21.703 -14.437 15.669 1272.969 Maximum

sett. tk-P 96% 82.050 78.768 86.890 83.414 31.045 -6.261 10.944 24.666 Maximum

serv tk-P 96% 40.284 38.672 42.660 40.954 31.045 -6.261 7.200 24.666 Maximum

LO tk-P 50% 54.946 27.473 59.724 29.862 31.045 -6.261 3.375 24.032 Maximum

settl. tk-S 96% 82.050 78.768 86.890 83.414 31.045 6.261 10.944 24.666 Maximum

serv tk-S 96% 40.284 38.672 42.660 40.954 31.045 6.261 7.200 24.666 Maximum

LO tk-S 50% 54.946 27.473 59.724 29.862 31.045 6.261 3.375 24.032 Maximum

FW-P 50% 213.663 106.831 213.663 106.831 4.880 -12.254 15.786 48.326 Maximum

FW-S 50% 213.662 106.831 213.662 106.831 4.880 12.254 15.786 48.321 Maximum

Total Loadcase

69624.140 150354.457

54534.946 117.221 0.000 9.429 2789.315

FS correction 0.040

VCG fluid 9.469

76

Page 77: Design of 115000 DWT Tanker

Heel to Port deg

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

GZ m 0.000 1.823 3.792 5.729 6.741 6.655 5.945 4.843 3.485 1.967

Area under GZ curve from zero heel m.deg

0.0000 9.0440 36.9692 84.9645 148.2913 215.9977 279.3798 333.5858 375.4006 402.7326

Displacement t

69624 69625 69628 69624 69624 69625 69626 69624 69624 69624

Draft at FP m 9.248 9.205 9.062 8.639 7.621 6.242 4.153 0.232 -11.111 n/a

Draft at AP m 9.248 9.205 9.062 8.639 7.621 6.242 4.153 0.232 -11.111 n/a

77

-2

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90

Max GZ = 6.815 m at 43.6 deg.

3.1.2.4: Initial GMt GM at 0.0 deg = 10.316 m

6.2 Offset load test - equilibrium w ith heel arm6.3.2 Rolling in beam w aves and w ind Wind Heeling6.4 Heel due to w ind action (Categories C and D only) Wind Heeling

6.6.6 Wind stif fness test (angle of equilbrium w ith heel arm less than specif ied value)7.6.6 Wind stif fness test (angle of equilbrium w ith heel arm less than specif ied value)

2a: Initial GMo GM at 0.0 deg = 10.316 m2b iv: Initial GMo GM at 0.0 deg = 10.316 m27.1.1 Initial GMo in port GM at 0.0 deg = 10.316 m27.1.2.4 Initial GMo at sea GM at 0.0 deg = 10.316 m

079-1-b(1)i Ratio of GZ:GZmax, general heeling arm079-1-b(1)ii Ratio of areas type 2 - general w ind heeling arm079-1-b(1)iii Lifting of heavy w eights079-1-b(1)iv Tow line pull for tugs079-1-b(1)v Personnel crow ding079-1-b(1)vi High speed turning079-1-b(2)iii Damaged value of max. GZ above heeling arm - general heeling arm

Heel to Port deg.

GZ

m

Page 78: Design of 115000 DWT Tanker

WL Length m 229.102 228.986 231.382 233.745 234.676 235.320 235.899 236.404 237.027 235.581

Beam max extents on WL m

41.284 41.924 43.920 41.164 33.628 28.215 24.955 22.997 21.945 21.613

Wetted Area m^2

11042.499

11067.316

11098.894

10917.293

10918.579

10983.114

11020.852

11052.329 11072.739

11079.806

Waterpl. Area m^2

8115.348 8214.504 8504.687 8277.781 7140.068 6177.060 5554.893 5143.113 4904.530 4796.638

Prismatic coeff. (Cp)

0.781 0.784 0.797 0.814 0.818 0.820 0.821 0.822 0.823 0.824

Block coeff. (Cb)

0.778 0.574 0.449 0.421 0.480 0.551 0.616 0.681 0.748 0.823

LCB from zero pt. (+ve fwd) m

117.785 117.502 116.688 115.596 114.670 113.926 113.363 112.911 112.529 112.202

LCF from zero pt. (+ve fwd) m

114.166 114.177 114.183 113.785 113.727 113.961 114.290 114.537 114.852 114.900

Max deck inclination deg

0.0000 10.0000 20.0000 30.0000 40.0000 50.0000 60.0000 70.0000 80.0000 90.0000

Trim angle (+ve by stern) deg

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.#IND

Key point Type Immersion angle deg

Emergence angle deg

Margin Line (immersion pos = 232.858 m) 0 n/a

Deck Edge (immersion pos = 232.858 m) 0 n/a

Code Criteria Value Units Actual Status Margin %

A.749(18) Ch3 - Design criteria applicable to all

3.1.2.1: Area 0 to 30 Pass

78

Page 79: Design of 115000 DWT Tanker

ships

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 90.0 deg

shall not be less than (>=) 3.1513 m.deg 84.9645 Pass +2596.17

A.749(18) Ch3 - Design criteria applicable to all ships

3.1.2.1: Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 90.0 deg

shall not be less than (>=) 5.1566 m.deg 148.2913 Pass +2775.76

A.749(18) Ch3 - Design criteria applicable to all ships

3.1.2.1: Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 90.0 deg

shall not be less than (>=) 1.7189 m.deg 63.3268 Pass +3584.15

79

Page 80: Design of 115000 DWT Tanker

A.749(18) Ch3 - Design criteria applicable to all ships

3.1.2.2: Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 43.6 deg 43.6

shall not be less than (>=) 0.200 m 6.815 Pass +3307.50

Intermediate values

angle at which this GZ occurs deg 43.6

A.749(18) Ch3 - Design criteria applicable to all ships

3.1.2.3: Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 43.6 Pass +74.54

A.749(18) Ch3 - Design criteria applicable to all ships

3.1.2.4: Initial GMt Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 10.316 Pass +6777.33

ISO 12217-1:2002(E)

6.1.3 Downflooding angle Immersion angle not valid.

shall not be less than (>=) 49.7 deg Immersion angle not valid.

ISO 12217-1:2002(E)

6.2 Offset load test - equilibrium with heel arm

Pass

Heeling arm = A cos^n(phi)

80

Page 81: Design of 115000 DWT Tanker

A = 0.300 m

n = 1

shall not be greater than (<=) 10.0 deg 1.7 Pass +83.30

ISO 12217-1:2002(E)

6.3.2 Rolling in beam waves and wind

Pass

Wind arm: a v^2 A (h - H) / (g disp.) cos^n(phi)

constant: a (0.5 rho_air Cd) = 0.0003 tonne/m^3

wind velocity: v = 54.428 kts

area centroid height (from zero point): h =

10.000 m

total area: A = 80.000 m^2

height of lateral resistance: H = 0.000 m

cosine power: n = 0

gust ratio 1

Area2 integrated to the lesser of

roll back angle from equilibrium (with heel arm)

30.0 deg

Area 1 upper integration range, to the lesser of:

spec. heel angle 50.0 deg

first downflooding angle deg

angle of vanishing stability (with heel arm)

deg

Angle for GZ(max) in GZ ratio, the lesser of:

spec. heel angle 50.0 deg 50.0

first downflooding angle n/a deg

Select required angle for angle of steady heel ratio:

DeckEdgeImmersionAngle

Criteria: Pass

81

Page 82: Design of 115000 DWT Tanker

Area1 / Area2 shall be greater than (>)

100.00 % Pass

Intermediate values

Heel arm amplitude m

Equilibrium angle with heel arm deg

Area1 (under GZ). m.deg

Area1 (under HA). m.deg

Area1. m.deg

Area2 (under GZ). m.deg

Area2 (under HA). m.deg

Area2. m.deg

ISO 12217-1:2002(E)

6.3.3 Resistance to waves (Value of RM)

Pass

heel angle at which required RM is constant

30.0 deg

required value of RM at this angle is

25000.000 N.m

limited by first downflooding angle

n/a deg

RM at 30.0 deg shall be greater than (>)

25000.000 N.m 3911980684.378

Pass +15647822.74

Intermediate values

angle at which max. GZ occurs deg 43.6

ISO 12217-1:2002(E)

6.3.3 Resistance to waves (Value of GZ)

Pass

heel angle at which required GZ is constant

30.0 deg

required value of GZ at this angle is

0.200 m

limited by first downflooding angle

n/a deg

GZ at 30.0 deg shall be greater than (>)

0.200 m 5.729 Pass +2764.50

82

Page 83: Design of 115000 DWT Tanker

Intermediate values

angle at which max. GZ occurs deg 43.6

ISO 12217-1:2002(E)

6.4 Heel due to wind action (Categories C and D only)

Pass

Wind arm: a v^2 A (h - H) / (g disp.) cos^n(phi)

constant: a (0.5 rho_air Cd) = 0.001 tonne/m^3

wind velocity: v = 33.045 kts

area centroid height (from zero point): h =

10.000 m

total area: A = 80.000 m^2

height of lateral resistance: H = 0.000 m

cosine power: n = 0

gust ratio 1

Area2 integrated to the lesser of

roll back angle from equilibrium (with heel arm)

25.0 deg

Area 1 upper integration range, to the lesser of:

angle of max. GZ deg

first downflooding angle deg

angle of vanishing stability (with heel arm)

deg

Angle for GZ(max) in GZ ratio, the lesser of:

angle of max. GZ 43.6 deg 43.6

Select required angle for angle of steady heel ratio:

DeckEdgeImmersionAngle

Criteria: Pass

83

Page 84: Design of 115000 DWT Tanker

Angle of steady heel shall be less than (<)

5.0 deg 0.0 Pass +99.96

Heel arm amplitude m 0.000

Equilibrium angle with heel arm deg

ISO 12217-2:2002(E)

6.2.3 Downflooding angle Immersion angle not valid.

shall be greater than (>) 40.0 deg Immersion angle not valid.

ISO 12217-2:2002(E)

6.4 STIX Pass

delta 0 See ISO 12217-2

AS, sail area ISO 8666 72.000 m^2

height of centroid of AS 9.180 m

LH, Hydromax calculated 238.513 m

BH, Hydromax calculated 41.261 m

LWL, Hydromax calculated 229.102 m

BWL, Hydromax calculated 41.284 m

height of immersed profile area centroid, Hydromax calculated

4.684 m

STIX value shall be greater than (>)

32.0 See ISO 12217-2

341.5 Pass +967.20

Intermediate values

m, mass of boat in current loading condition

tonne 69624.243

height of waterline in current loading condition

m 9.248

phiD, actual downflooding angle deg 90.0

PhiV, actual angle of vanishing stability

deg 90.0

84

Page 85: Design of 115000 DWT Tanker

AGZ, area under righting lever curve, from 0.0 to 90.0 deg.

m.deg 402.7326

GZ90, righting lever at 90 deg m 1.967

GZD, righting lever at downflooding angle

m 1.967

FR See ISO 12217-2

-14001980.001

LBS, weighted average length See ISO 12217-2

232.239

FL, length factor See ISO 12217-2

1.840

FB, beam factor See ISO 12217-2

1.065

VAW, steady apparent wind speed

m/s n/a

FDS, dynamic stability factor (1.649) See ISO 12217-2

1.500

FIR, inversion recovery factor (0.900) See ISO 12217-2

0.900

FKR, knockdown recovery factor (-4662658.840) See ISO 12217-2

0.500

FDL, displacement-length factor (0.707) See ISO 12217-2

0.750

FBD, beam-displacement factor (0.822) See ISO 12217-2

0.822

FWM, wind moment factor (1.000) See ISO 12217-2

1.000

FDF, downflooding factor (1.000) See ISO 12217-2

1.000

ISO 12217-2:2002(E)

6.6.6 Wind stiffness test (angle of equilbrium with heel arm less than specified value)

Pass

Heeling arm = A cos^n(phi)

A = 1.200 m

n = 1.3

85

Page 86: Design of 115000 DWT Tanker

shall be less than (<) 45.0 deg 6.6 Pass +85.37

Regulation 25A 2a

2a: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 10.316 Pass +6777.33

Regulation 25A 2b

2b i: Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 90.0 deg

shall not be less than (>=) 3.1513 m.deg 84.9645 Pass +2596.17

Regulation 25A 2b

2b i: Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 90.0 deg

shall not be less than (>=) 5.1566 m.deg 148.2913 Pass +2775.76

Regulation 25A 2b

2b i: Area 30 to 40 Pass

86

Page 87: Design of 115000 DWT Tanker

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 90.0 deg

shall not be less than (>=) 1.7189 m.deg 63.3268 Pass +3584.15

Regulation 25A 2b

2b ii: Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 43.6 deg 43.6

shall not be less than (>=) 0.200 m 6.815 Pass +3307.50

Intermediate values

angle at which this GZ occurs deg 43.6

Regulation 25A 2b

2b iii: Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 43.6 Pass +74.54

Regulation 25A 2b

2b iv: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 10.316 Pass +6777.33

Regulation 27 - Intact stability

27.1.1 Initial GMo in port Pass

spec. heel angle 0.0 deg

87

Page 88: Design of 115000 DWT Tanker

shall not be less than (>=) 0.150 m 10.316 Pass +6777.33

Regulation 27 - Intact stability

27.1.2.1 Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 90.0 deg

shall not be less than (>=) 3.1513 m.deg 84.9645 Pass +2596.17

Regulation 27 - Intact stability

27.1.2.1 Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 90.0 deg

shall not be less than (>=) 5.1566 m.deg 148.2913 Pass +2775.76

Regulation 27 - Intact stability

27.1.2.1 Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 90.0 deg

shall not be less than (>=) 1.7189 m.deg 63.3268 Pass +3584.15

88

Page 89: Design of 115000 DWT Tanker

Regulation 27 - Intact stability

27.1.2.2 Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 43.6 deg 43.6

shall not be less than (>=) 0.200 m 6.815 Pass +3307.50

Intermediate values

angle at which this GZ occurs deg 43.6

Regulation 27 - Intact stability

27.1.2.3 Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 43.6 Pass +74.54

Regulation 27 - Intact stability

27.1.2.4 Initial GMo at sea Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 10.316 Pass +6777.33

DDS 079-1-b(1) Intact stability

079-1-b(1)i Ratio of GZ:GZmax, general heeling arm

Pass

Heeling arm = A cos^n(phi)

A = 1.430 m

n = 1

Phi1, first heel angle, the lesser of...

angle of equilibrium (with heel arm)

7.8 deg 7.8

Phi2, second heel angle, the lesser of...

89

Page 90: Design of 115000 DWT Tanker

angle of max. GZ 43.6 deg 43.6

GZ(phi1) / GZ(phi2) shall be less than (<)

60.00 % 20.79 Pass +65.35

Intermediate values

GZ(phi1) m 1.417

GZ(phi2) m 6.815

DDS 079-1-b(1) Intact stability

079-1-b(1)ii Ratio of areas type 2 - general wind heeling arm

Pass

Heeling arm = A cos^n(phi)

A = 1.200 m

n = 2

gust ratio 1

Area1 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (with heel arm)

deg

to the lesser of

spec. heel angle 70.0 deg

angle of first GZ peak deg

angle of max. GZ deg

angle of max. GZ above heel arm deg

first downflooding angle deg

angle of vanishing stability (with heel arm)

deg

Area2 integrated to the lesser of

roll back angle from equilibrium (with heel arm)

25.0 deg

Area1 / Area2 shall not be less than (>=)

140.00 % Pass.

Intermediate values

90

Page 91: Design of 115000 DWT Tanker

Equilibrium angle with heel arm deg

Area1 (under GZ). m.deg

Area1 (under HA). m.deg

Area1. m.deg

Area2 (under GZ). m.deg

Area2 (under HA). m.deg

Area2. m.deg

DDS 079-1-b(1) Intact stability

079-1-b(1)iii Lifting of heavy weights

Pass

Lifting of mass arm = M (h cos(phi) + v sin(phi)) / disp.

mass being lifted: M = 0.100 tonne

vertical separation of suspension point from stowage position: v =

2.200 m

horizontal separation of suspension point from stowage position: h =

1.100 m

Area1 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (with heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 70.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (with heel arm)

90.0 deg

Area2 integrated from the greater of

91

Page 92: Design of 115000 DWT Tanker

spec. heel angle 0.0 deg

angle of equilibrium (ignoring heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 90.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (ignoring heel arm)

90.0 deg

Angle for GZ(max) in GZ ratio, the lesser of:

spec. heel angle 50.0 deg 50.0

Select required angle for angle of steady heel ratio:

MarginlineImmersionAngle

Criteria: Pass

Angle of steady heel shall be less than (<)

15.0 deg 0.0 Pass +100.00

Area1 / Area2 shall be greater than (>)

40.00 % 100.00 Pass +150.00

GZ(intersection) / GZ(max) shall be less than (<)

60.00 % 0.00 Pass +100.00

Intermediate values

Heel arm constant 0

amplitude of cos component m 1.100

amplitude of sin component m 2.200

Area1 (under GZ), from 0.0 to 43.6 deg.

m.deg 172.9799

Area1 (under HA), from 0.0 to 43.6 deg.

m.deg 0.0001

Area1, from 0.0 to 43.6 deg. m.deg 172.9798

Area2, from 0.0 to 43.6 deg. m.deg 172.9799

92

Page 93: Design of 115000 DWT Tanker

GZ(intersection) m 0.000

GZ(max) m 6.655

DDS 079-1-b(1) Intact stability

079-1-b(1)iv Towline pull for tugs Pass

Towline Pull arm = T (v cos^n(phi+tau) - h sin(phi+tau)) / (g disp.)

tension or thrust: T = 1200.00 N

vertical separation of propeller centre and tow attachment: v =

1.100 m

horizontal offset of tow attachment: h =

2.200 m

angle of tow above horizontal: tau =

33.3 deg

cosine power: n = 1

Area1 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (with heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 70.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (with heel arm)

90.0 deg

Area2 integrated from the greater of

spec. heel angle 0.0 deg

93

Page 94: Design of 115000 DWT Tanker

angle of equilibrium (ignoring heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 90.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (ignoring heel arm)

90.0 deg

Angle for GZ(max) in GZ ratio, the lesser of:

spec. heel angle 50.0 deg 50.0

Select required angle for angle of steady heel ratio:

MarginlineImmersionAngle

Criteria: Pass

Angle of steady heel shall be less than (<)

15.0 deg 0.0 Pass +100.00

Area1 / Area2 shall be greater than (>)

40.00 % 100.00 Pass +150.00

GZ(intersection) / GZ(max) shall be less than (<)

60.00 % 0.00 Pass +100.00

Intermediate values

Heel arm constant 0

amplitude of cos component m 1.100

amplitude of sin component m 2.200

Area1 (under GZ), from 0.0 to 43.6 deg.

m.deg 172.9799

Area1 (under HA), from 0.0 to 43.6 deg.

m.deg 0.0000

Area1, from 0.0 to 43.6 deg. m.deg 172.9799

Area2, from 0.0 to 43.6 deg. m.deg 172.9799

GZ(intersection) m 0.000

94

Page 95: Design of 115000 DWT Tanker

GZ(max) m 6.655

DDS 079-1-b(1) Intact stability

079-1-b(1)v Personnel crowding Pass

Pass. crowding arm = nPass M / disp. D cos^n(phi)

number of passengers: nPass = 50

passenger mass: M = 0.075 tonne

distance from centre line: D = 2.000 m

cosine power: n = 1

Area1 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (with heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 70.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (with heel arm)

90.0 deg

Area2 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (ignoring heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 90.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

95

Page 96: Design of 115000 DWT Tanker

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (ignoring heel arm)

90.0 deg

Angle for GZ(max) in GZ ratio, the lesser of:

spec. heel angle 50.0 deg 50.0

Select required angle for angle of steady heel ratio:

MarginlineImmersionAngle

Criteria: Pass

Angle of steady heel shall be less than (<)

15.0 deg 0.0 Pass +99.99

Area1 / Area2 shall be greater than (>)

40.00 % 100.00 Pass +150.00

GZ(intersection) / GZ(max) shall be less than (<)

60.00 % 0.00 Pass +100.00

Intermediate values

Heel arm amplitude m 0.000

Area1 (under GZ), from 0.0 to 43.6 deg.

m.deg 172.9799

Area1 (under HA), from 0.0 to 43.6 deg.

m.deg 0.0043

Area1, from 0.0 to 43.6 deg. m.deg 172.9756

Area2, from 0.0 to 43.6 deg. m.deg 172.9799

GZ(intersection) m 0.000

GZ(max) m 6.655

DDS 079-1-b(1) Intact stability

079-1-b(1)vi High speed turning Pass

Turn arm: a v^2 / (R g) h cos^n(phi)

constant: a = 1

vessel speed: v = 29.999 kts

96

Page 97: Design of 115000 DWT Tanker

turn radius: R = 250.000 m

Vertical lever: h = 2.000 m

cosine power: n = 1

Area1 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (with heel arm)

1.1 deg 1.1

to the lesser of

spec. heel angle 70.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (with heel arm)

90.0 deg

Area2 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (ignoring heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 90.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (ignoring heel arm)

90.0 deg

Angle for GZ(max) in GZ ratio, the lesser of:

spec. heel angle 50.0 deg 50.0

97

Page 98: Design of 115000 DWT Tanker

Select required angle for angle of steady heel ratio:

MarginlineImmersionAngle

Criteria: Pass

Angle of steady heel shall be less than (<)

15.0 deg 1.1 Pass +92.79

Area1 / Area2 shall be greater than (>)

40.00 % 95.62 Pass +139.05

GZ(intersection) / GZ(max) shall be less than (<)

60.00 % 2.92 Pass +95.13

Intermediate values

Heel arm amplitude m 0.194

Area1 (under GZ), from 1.1 to 43.6 deg.

m.deg 172.8748

Area1 (under HA), from 1.1 to 43.6 deg.

m.deg 7.4717

Area1, from 1.1 to 43.6 deg. m.deg 165.4031

Area2, from 0.0 to 43.6 deg. m.deg 172.9799

GZ(intersection) m 0.194

GZ(max) m 6.655

DDS 079-1-b(2) Damaged stability

079-1-b(2)iii Damaged value of max. GZ above heeling arm - general heeling arm

Pass

Heeling arm = A cos^n(phi)

A = 1.450 m

n = 1

in the range from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

fraction of upper angle 100.00 % (deg) (45.5)

angle of max. GZ above heel arm 45.5 deg 45.5

first flooding angle of the DownfloodingPoints

n/a deg

98

Page 99: Design of 115000 DWT Tanker

shall be greater than (>) 0.091 m 5.785 Pass +6257.14

Intermediate values

angle at which this occurs deg 45.5

value of GZ m 6.802

value of HA m 1.017

Stability Calculation - DictatorHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn - with tilts (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Loadcase - Ballast, 10% Consumables; No Cargo

Damage Case - Intact

Fixed Trim = 0 m (+ve by stern)

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Fluid analysis method: Use corrected VCG

Item Name Quantity

Unit Mass tonne

Total Mass tonne

Unit Volume m^3

Total Volume m^3

Long. Arm m

Trans. Arm m

Vert. Arm m

Total FSM tonne.m

FSM Type

Lightship 1 14000.000

14000.000 113.000 0.000 8.000 0.000 User Specified

CS4 0% 11868.145

0.000 11635.436 0.000 146.000 9.313 2.000 0.000 Maximum

CS3 98% 11869.195

11631.811 11636.466 11403.736 113.999 9.313 11.567 0.000 Maximum

CS2 0% 10386.465

0.000 10182.809 0.000 84.000 9.313 2.000 0.000 Maximum

CS1 0% 9642.226 0.000 9453.163 0.000 55.223 7.716 2.000 0.000 Maximum

CS6 0% 4033.111 0.000 3954.031 0.000 204.806 4.194 2.000 0.000 Maximum

CP1 0% 9642.226 0.000 9453.163 0.000 55.223 -7.716 2.000 0.000 Maximum

99

Page 100: Design of 115000 DWT Tanker

CP2 0% 10386.465

0.000 10182.809 0.000 84.000 -9.313 2.000 0.000 Maximum

CP3 98% 11869.195

11631.811 11636.466 11403.736 113.999 -9.313 11.567 0.000 Maximum

CP4 0% 11868.145

0.000 11635.436 0.000 146.000 -9.313 2.000 0.000 Maximum

CP5 0% 10631.018

0.000 10422.567 0.000 176.883 -8.489 2.000 0.000 Maximum

CP6 0% 4033.111 0.000 3954.031 0.000 204.806 -4.194 2.000 0.000 Maximum

slop tk-S 0% 1113.085 0.000 1091.259 0.000 35.541 5.576 2.000 0.000 Maximum

slop tk-P 0% 1113.085 0.000 1091.259 0.000 35.541 -5.576 2.000 0.000 Maximum

CS5 0% 10631.018

0.000 10422.567 0.000 176.883 8.489 2.000 0.000 Maximum

BP1 100% 2253.998 2253.998 2199.022 2199.022 51.864 17.671 13.273 0.000 Maximum

BP DB 100% 6032.542 6032.542 5885.407 5885.407 124.646 8.996 1.050 0.000 Maximum

BS DB 100% 6032.542 6032.542 5885.407 5885.407 124.646 -8.996 1.050 0.000 Maximum

BS 1 100% 4179.296 4179.296 4077.362 4077.362 123.130 19.614 11.882 0.000 Maximum

BS 3 100% 2711.122 2711.122 2644.997 2644.997 206.163 11.412 13.684 0.000 Maximum

BP DB 100% 2253.998 2253.998 2199.022 2199.022 51.864 -17.671 13.273 0.000 Maximum

BP2 100% 4179.296 4179.296 4077.362 4077.362 123.130 -19.614 11.882 0.000 Maximum

BP4 100% 2711.122 2711.122 2644.997 2644.997 206.163 -11.412 13.684 0.000 Maximum

FS1 10% 1503.110 150.311 1591.772 159.177 21.738 14.295 14.019 1272.970 Maximum

FP1 10% 1503.110 150.311 1591.772 159.177 21.738 -14.295 14.019 1272.969 Maximum

sett. tk-P 96% 82.050 78.768 86.890 83.414 31.045 -6.261 10.944 24.666 Maximum

serv tk-P 96% 40.284 38.672 42.660 40.954 31.045 -6.261 7.200 24.666 Maximum

LO tk-P 10% 54.946 5.495 59.724 5.972 31.045 -6.261 2.675 24.032 Maximum

settl. tk-S 96% 82.050 78.768 86.890 83.414 31.045 6.261 10.944 24.666 Maximum

serv tk-S 96% 40.284 38.672 42.660 40.954 31.045 6.261 7.200 24.666 Maximum

LO tk-S 10% 54.946 5.495 59.724 5.972 31.045 6.261 2.675 24.032 Maximum

FW-P 10% 213.663 21.366 213.663 21.366 5.097 -12.171 14.082 48.326 Maximum

100

Page 101: Design of 115000 DWT Tanker

FW-S 10% 213.662 21.366 213.662 21.366 5.097 12.171 14.082 48.321 Maximum

Total Loadcase

68206.765 150354.457

53042.818 119.243 0.000 9.299 2789.315

FS correction 0.041

VCG fluid 9.339

Heel to Port deg 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

GZ m 0.000 1.874 3.895 5.843 6.880 6.817 6.115 5.010 3.640 2.105

Area under GZ curve from zero heel m.deg

0.0000 9.2913 38.0125 87.1039 151.6794 220.9030 285.9517 341.8473 385.2822 414.0858

101

-2

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90

Max GZ = 6.964 m at 43.6 deg.

3.1.2.4: Initial GMt GM at 0.0 deg = 10.608 m

6.2 Offset load test - equilibrium w ith heel arm6.3.2 Rolling in beam w aves and w ind Wind Heeling6.4 Heel due to w ind action (Categories C and D only) Wind Heeling

6.6.6 Wind stif fness test (angle of equilbrium w ith heel arm less than specif ied value)7.6.6 Wind stif fness test (angle of equilbrium w ith heel arm less than specif ied value)

2a: Initial GMo GM at 0.0 deg = 10.608 m2b iv: Initial GMo GM at 0.0 deg = 10.608 m27.1.1 Initial GMo in port GM at 0.0 deg = 10.608 m27.1.2.4 Initial GMo at sea GM at 0.0 deg = 10.608 m

079-1-b(1)i Ratio of GZ:GZmax, general heeling arm079-1-b(1)ii Ratio of areas type 2 - general w ind heeling arm079-1-b(1)iii Lifting of heavy w eights079-1-b(1)iv Tow line pull for tugs079-1-b(1)v Personnel crow ding079-1-b(1)vi High speed turning079-1-b(2)iii Damaged value of max. GZ above heeling arm - general heeling arm

Heel to Port deg.

GZ

m

Page 102: Design of 115000 DWT Tanker

Displacement t 68207 68207 68211 68207 68207 68207 68212 68207 68207 68206

Draft at FP m 9.077 9.034 8.889 8.445 7.368 5.894 3.656 -0.555 -12.737 n/a

Draft at AP m 9.077 9.034 8.889 8.445 7.368 5.894 3.656 -0.555 -12.737 n/a

WL Length m 228.548 228.417 231.008 233.565 234.483 235.030 235.546 236.057 236.680 234.798

Beam max extents on WL m

41.285 41.924 43.910 40.777 33.628 28.214 24.955 22.997 21.945 21.613

Wetted Area m^2 10949.413 10976.365 11012.590 10805.479 10782.312 10843.739 10881.568

10909.754 10929.873 10928.831

Waterpl. Area m^2

8093.767 8192.514 8476.428 8206.784 7134.156 6173.998 5549.156 5131.470 4891.855 4774.833

Prismatic coeff. (Cp)

0.779 0.783 0.796 0.812 0.816 0.818 0.818 0.819 0.820 0.822

Block coeff. (Cb) 0.777 0.570 0.445 0.420 0.475 0.546 0.611 0.677 0.744 0.820

LCB from zero pt. (+ve fwd) m

117.859 117.570 116.738 115.634 114.690 113.926 113.345 112.879 112.481 112.149

LCF from zero pt. (+ve fwd) m

114.365 114.359 114.346 113.829 113.719 113.907 114.240 114.390 114.720 114.607

Max deck inclination deg

0.0000 10.0000 20.0000 30.0000 40.0000 50.0000 60.0000 70.0000 80.0000 90.0000

Trim angle (+ve by stern) deg

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.#IND

Key point Type Immersion angle deg

Emergence angle deg

Margin Line (immersion pos = 232.858 m) 0 n/a

Deck Edge (immersion pos = 232.858 m) 0 n/a

Code Criteria Value Units Actual Status Margin %

A.749(18) Ch3 - Design criteria applicable to all ships

3.1.2.1: Area 0 to 30 Pass

102

Page 103: Design of 115000 DWT Tanker

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 90.0 deg

shall not be less than (>=) 3.1513 m.deg 87.1039 Pass +2664.06

A.749(18) Ch3 - Design criteria applicable to all ships

3.1.2.1: Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 90.0 deg

shall not be less than (>=) 5.1566 m.deg 151.6794 Pass +2841.46

A.749(18) Ch3 - Design criteria applicable to all ships

3.1.2.1: Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 90.0 deg

shall not be less than (>=) 1.7189 m.deg 64.5755 Pass +3656.79

A.749(18) Ch3 - Design criteria

3.1.2.2: Max GZ at 30 or greater Pass

103

Page 104: Design of 115000 DWT Tanker

applicable to all ships

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 43.6 deg 43.6

shall not be less than (>=) 0.200 m 6.964 Pass +3382.00

Intermediate values

angle at which this GZ occurs deg 43.6

A.749(18) Ch3 - Design criteria applicable to all ships

3.1.2.3: Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 43.6 Pass +74.54

A.749(18) Ch3 - Design criteria applicable to all ships

3.1.2.4: Initial GMt Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 10.608 Pass +6972.00

ISO 12217-1:2002(E)

6.1.3 Downflooding angle Immersion angle not valid.

shall not be less than (>=) 49.7 deg Immersion angle not valid.

ISO 12217-1:2002(E)

6.2 Offset load test - equilibrium with heel arm

Pass

Heeling arm = A cos^n(phi)

A = 0.300 m

104

Page 105: Design of 115000 DWT Tanker

n = 1

shall not be greater than (<=) 10.0 deg 1.6 Pass +83.73

ISO 12217-1:2002(E)

6.3.2 Rolling in beam waves and wind

Pass

Wind arm: a v^2 A (h - H) / (g disp.) cos^n(phi)

constant: a (0.5 rho_air Cd) = 0.0003 tonne/m^3

wind velocity: v = 54.428 kts

area centroid height (from zero point): h =

10.000 m

total area: A = 80.000 m^2

height of lateral resistance: H = 0.000 m

cosine power: n = 0

gust ratio 1

Area2 integrated to the lesser of

roll back angle from equilibrium (with heel arm)

30.0 deg

Area 1 upper integration range, to the lesser of:

spec. heel angle 50.0 deg

first downflooding angle deg

angle of vanishing stability (with heel arm)

deg

Angle for GZ(max) in GZ ratio, the lesser of:

spec. heel angle 50.0 deg 50.0

first downflooding angle n/a deg

Select required angle for angle of steady heel ratio:

DeckEdgeImmersionAngle

Criteria:

105

Page 106: Design of 115000 DWT Tanker

Area1 / Area2 shall be greater than (>)

100.00 % Pass

Intermediate values

Heel arm amplitude m

Equilibrium angle with heel arm deg

Area1 (under GZ). m.deg

Area1 (under HA). m.deg

Area1. m.deg

Area2 (under GZ). m.deg

Area2 (under HA). m.deg

Area2. m.deg

ISO 12217-1:2002(E)

6.3.3 Resistance to waves (Value of RM)

Pass

heel angle at which required RM is constant

30.0 deg

required value of RM at this angle is

25000.000 N.m

limited by first downflooding angle

n/a deg

RM at 30.0 deg shall be greater than (>)

25000.000 N.m 3908158580.823

Pass +15632534.32

Intermediate values

angle at which max. GZ occurs deg 43.6

ISO 12217-1:2002(E)

6.3.3 Resistance to waves (Value of GZ)

Pass

heel angle at which required GZ is constant

30.0 deg

required value of GZ at this angle is

0.200 m

limited by first downflooding angle

n/a deg

GZ at 30.0 deg shall be greater than (>)

0.200 m 5.843 Pass +2821.50

106

Page 107: Design of 115000 DWT Tanker

Intermediate values

angle at which max. GZ occurs deg 43.6

ISO 12217-1:2002(E)

6.4 Heel due to wind action (Categories C and D only)

Pass

Wind arm: a v^2 A (h - H) / (g disp.) cos^n(phi)

constant: a (0.5 rho_air Cd) = 0.001 tonne/m^3

wind velocity: v = 33.045 kts

area centroid height (from zero point): h =

10.000 m

total area: A = 80.000 m^2

height of lateral resistance: H = 0.000 m

cosine power: n = 0

gust ratio 1

Area2 integrated to the lesser of

roll back angle from equilibrium (with heel arm)

25.0 deg

Area 1 upper integration range, to the lesser of:

angle of max. GZ deg

first downflooding angle deg

angle of vanishing stability (with heel arm)

deg

Angle for GZ(max) in GZ ratio, the lesser of:

angle of max. GZ 43.6 deg 43.6

Select required angle for angle of steady heel ratio:

DeckEdgeImmersionAngle

Criteria: Pass

107

Page 108: Design of 115000 DWT Tanker

Angle of steady heel shall be less than (<)

5.0 deg 0.0 Pass +99.96

Heel arm amplitude m 0.000

Equilibrium angle with heel arm deg

ISO 12217-2:2002(E)

6.2.3 Downflooding angle Pass.

shall be greater than (>) 40.0 deg Pass

ISO 12217-2:2002(E)

6.4 STIX Pass

delta 0 See ISO 12217-2

AS, sail area ISO 8666 72.000 m^2

height of centroid of AS 9.180 m

LH, Hydromax calculated 238.513 m

BH, Hydromax calculated 41.261 m

LWL, Hydromax calculated 228.548 m

BWL, Hydromax calculated 41.285 m

height of immersed profile area centroid, Hydromax calculated

4.598 m

STIX value shall be greater than (>)

32.0 See ISO 12217-2

592.6 Pass +1751.89

Intermediate values

m, mass of boat in current loading condition

tonne 68206.898

height of waterline in current loading condition

m 9.077

phiD, actual downflooding angle deg 90.0

PhiV, actual angle of vanishing stability

deg 90.0

AGZ, area under righting lever curve, from 0.0 to 90.0 deg.

m.deg 414.0858

GZ90, righting lever at 90 deg m 2.105

108

Page 109: Design of 115000 DWT Tanker

GZD, righting lever at downflooding angle

m 2.105

FR See ISO 12217-2

9713558.750

LBS, weighted average length See ISO 12217-2

231.870

FL, length factor See ISO 12217-2

1.840

FB, beam factor See ISO 12217-2

1.073

VAW, steady apparent wind speed

m/s n/a

FDS, dynamic stability factor (1.696) See ISO 12217-2

1.500

FIR, inversion recovery factor (0.900) See ISO 12217-2

0.900

FKR, knockdown recovery factor (809140.319) See ISO 12217-2

1.500

FDL, displacement-length factor (0.708) See ISO 12217-2

0.750

FBD, beam-displacement factor (0.827) See ISO 12217-2

0.827

FWM, wind moment factor (1.000) See ISO 12217-2

1.000

FDF, downflooding factor (1.000) See ISO 12217-2

1.000

ISO 12217-2:2002(E)

6.6.6 Wind stiffness test (angle of equilbrium with heel arm less than specified value)

Pass

Heeling arm = A cos^n(phi)

A = 1.200 m

n = 1.3

shall be less than (<) 45.0 deg 6.4 Pass +85.74

109

Page 110: Design of 115000 DWT Tanker

Regulation 25A 2a

2a: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 10.608 Pass +6972.00

Regulation 25A 2b

2b i: Area 0 to 30 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 90.0 deg

shall not be less than (>=) 3.1513 m.deg 87.1039 Pass +2664.06

Regulation 25A 2b

2b i: Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 90.0 deg

shall not be less than (>=) 5.1566 m.deg 151.6794 Pass +2841.46

Regulation 25A 2b

2b i: Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

110

Page 111: Design of 115000 DWT Tanker

angle of vanishing stability 90.0 deg

shall not be less than (>=) 1.7189 m.deg 64.5755 Pass +3656.79

Regulation 25A 2b

2b ii: Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 43.6 deg 43.6

shall not be less than (>=) 0.200 m 6.964 Pass +3382.00

Intermediate values

angle at which this GZ occurs deg 43.6

Regulation 25A 2b

2b iii: Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 43.6 Pass +74.54

Regulation 25A 2b

2b iv: Initial GMo Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 10.608 Pass +6972.00

Regulation 27 - Intact stability

27.1.1 Initial GMo in port Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 10.608 Pass +6972.00

Regulation 27 - Intact stability

27.1.2.1 Area 0 to 30 Pass

from the greater of

111

Page 112: Design of 115000 DWT Tanker

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 30.0 deg 30.0

angle of vanishing stability 90.0 deg

shall not be less than (>=) 3.1513 m.deg 87.1039 Pass +2664.06

Regulation 27 - Intact stability

27.1.2.1 Area 0 to 40 Pass

from the greater of

spec. heel angle 0.0 deg 0.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 90.0 deg

shall not be less than (>=) 5.1566 m.deg 151.6794 Pass +2841.46

Regulation 27 - Intact stability

27.1.2.1 Area 30 to 40 Pass

from the greater of

spec. heel angle 30.0 deg 30.0

to the lesser of

spec. heel angle 40.0 deg 40.0

first downflooding angle n/a deg

angle of vanishing stability 90.0 deg

shall not be less than (>=) 1.7189 m.deg 64.5755 Pass +3656.79

Regulation 27 - Intact stability

27.1.2.2 Max GZ at 30 or greater Pass

in the range from the greater of

spec. heel angle 30.0 deg 30.0

112

Page 113: Design of 115000 DWT Tanker

to the lesser of

spec. heel angle 90.0 deg

angle of max. GZ 43.6 deg 43.6

shall not be less than (>=) 0.200 m 6.964 Pass +3382.00

Intermediate values

angle at which this GZ occurs deg 43.6

Regulation 27 - Intact stability

27.1.2.3 Angle of maximum GZ Pass

shall not be less than (>=) 25.0 deg 43.6 Pass +74.54

Regulation 27 - Intact stability

27.1.2.4 Initial GMo at sea Pass

spec. heel angle 0.0 deg

shall not be less than (>=) 0.150 m 10.608 Pass +6972.00

DDS 079-1-b(1) Intact stability

079-1-b(1)i Ratio of GZ:GZmax, general heeling arm

Pass

Heeling arm = A cos^n(phi)

A = 1.430 m

n = 1

Phi1, first heel angle, the lesser of...

angle of equilibrium (with heel arm)

7.6 deg 7.6

Phi2, second heel angle, the lesser of...

angle of max. GZ 43.6 deg 43.6

GZ(phi1) / GZ(phi2) shall be less than (<)

60.00 % 20.35 Pass +66.08

Intermediate values

GZ(phi1) m 1.417

113

Page 114: Design of 115000 DWT Tanker

GZ(phi2) m 6.964

DDS 079-1-b(1) Intact stability

079-1-b(1)ii Ratio of areas type 2 - general wind heeling arm

Pass

Heeling arm = A cos^n(phi)

A = 1.200 m

n = 2

gust ratio 1

Area1 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (with heel arm)

deg

to the lesser of

spec. heel angle 70.0 deg

angle of first GZ peak deg

angle of max. GZ deg

angle of max. GZ above heel arm deg

first downflooding angle deg

angle of vanishing stability (with heel arm)

deg

Area2 integrated to the lesser of

roll back angle from equilibrium (with heel arm)

25.0 deg

Area1 / Area2 shall not be less than (>=)

140.00 % Pass

Intermediate values

Equilibrium angle with heel arm deg

Area1 (under GZ). m.deg

Area1 (under HA). m.deg

Area1. m.deg

Area2 (under GZ). m.deg

114

Page 115: Design of 115000 DWT Tanker

Area2 (under HA). m.deg

Area2. m.deg

DDS 079-1-b(1) Intact stability

079-1-b(1)iii Lifting of heavy weights

Pass

Lifting of mass arm = M (h cos(phi) + v sin(phi)) / disp.

mass being lifted: M = 0.100 tonne

vertical separation of suspension point from stowage position: v =

2.200 m

horizontal separation of suspension point from stowage position: h =

1.100 m

Area1 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (with heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 70.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (with heel arm)

90.0 deg

Area2 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (ignoring heel arm)

0.0 deg 0.0

to the lesser of

115

Page 116: Design of 115000 DWT Tanker

spec. heel angle 90.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (ignoring heel arm)

90.0 deg

Angle for GZ(max) in GZ ratio, the lesser of:

spec. heel angle 50.0 deg 50.0

Select required angle for angle of steady heel ratio:

MarginlineImmersionAngle

Criteria: Pass

Angle of steady heel shall be less than (<)

15.0 deg 0.0 Pass +100.00

Area1 / Area2 shall be greater than (>)

40.00 % 100.00 Pass +150.00

GZ(intersection) / GZ(max) shall be less than (<)

60.00 % 0.00 Pass +100.00

Intermediate values

Heel arm constant 0

amplitude of cos component m 1.100

amplitude of sin component m 2.200

Area1 (under GZ), from 0.0 to 43.6 deg.

m.deg 176.8927

Area1 (under HA), from 0.0 to 43.6 deg.

m.deg 0.0001

Area1, from 0.0 to 43.6 deg. m.deg 176.8926

Area2, from 0.0 to 43.6 deg. m.deg 176.8927

GZ(intersection) m 0.000

GZ(max) m 6.817

116

Page 117: Design of 115000 DWT Tanker

DDS 079-1-b(1) Intact stability

079-1-b(1)iv Towline pull for tugs Pass

Towline Pull arm = T (v cos^n(phi+tau) - h sin(phi+tau)) / (g disp.)

tension or thrust: T = 1200.00 N

vertical separation of propeller centre and tow attachment: v =

1.100 m

horizontal offset of tow attachment: h =

2.200 m

angle of tow above horizontal: tau =

33.3 deg

cosine power: n = 1

Area1 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (with heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 70.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (with heel arm)

90.0 deg

Area2 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (ignoring heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 90.0 deg

angle of first GZ peak 43.6 deg

117

Page 118: Design of 115000 DWT Tanker

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (ignoring heel arm)

90.0 deg

Angle for GZ(max) in GZ ratio, the lesser of:

spec. heel angle 50.0 deg 50.0

Select required angle for angle of steady heel ratio:

MarginlineImmersionAngle

Criteria: Pass

Angle of steady heel shall be less than (<)

15.0 deg 0.0 Pass +100.00

Area1 / Area2 shall be greater than (>)

40.00 % 100.00 Pass +150.00

GZ(intersection) / GZ(max) shall be less than (<)

60.00 % 0.00 Pass +100.00

Intermediate values

Heel arm constant 0

amplitude of cos component m 1.100

amplitude of sin component m 2.200

Area1 (under GZ), from 0.0 to 43.6 deg.

m.deg 176.8927

Area1 (under HA), from 0.0 to 43.6 deg.

m.deg 0.0000

Area1, from 0.0 to 43.6 deg. m.deg 176.8927

Area2, from 0.0 to 43.6 deg. m.deg 176.8927

GZ(intersection) m 0.000

GZ(max) m 6.817

DDS 079-1-b(1) Intact stability

079-1-b(1)v Personnel crowding Pass

Pass. crowding arm = nPass M /

118

Page 119: Design of 115000 DWT Tanker

disp. D cos^n(phi)

number of passengers: nPass = 50

passenger mass: M = 0.075 tonne

distance from centre line: D = 2.000 m

cosine power: n = 1

Area1 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (with heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 70.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (with heel arm)

90.0 deg

Area2 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (ignoring heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 90.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 43.6 deg

first downflooding angle n/a deg

angle of vanishing stability (ignoring heel arm)

90.0 deg

119

Page 120: Design of 115000 DWT Tanker

Angle for GZ(max) in GZ ratio, the lesser of:

spec. heel angle 50.0 deg 50.0

Select required angle for angle of steady heel ratio:

MarginlineImmersionAngle

Criteria: Pass

Angle of steady heel shall be less than (<)

15.0 deg 0.0 Pass +99.99

Area1 / Area2 shall be greater than (>)

40.00 % 100.00 Pass +150.00

GZ(intersection) / GZ(max) shall be less than (<)

60.00 % 0.00 Pass +100.00

Intermediate values

Heel arm amplitude m 0.000

Area1 (under GZ), from 0.0 to 43.6 deg.

m.deg 176.8927

Area1 (under HA), from 0.0 to 43.6 deg.

m.deg 0.0043

Area1, from 0.0 to 43.6 deg. m.deg 176.8884

Area2, from 0.0 to 43.6 deg. m.deg 176.8927

GZ(intersection) m 0.000

GZ(max) m 6.817

DDS 079-1-b(1) Intact stability

079-1-b(1)vi High speed turning Pass

Turn arm: a v^2 / (R g) h cos^n(phi)

constant: a = 1

vessel speed: v = 29.999 kts

turn radius: R = 250.000 m

Vertical lever: h = 2.000 m

cosine power: n = 1

Area1 integrated from the greater

120

Page 121: Design of 115000 DWT Tanker

of

spec. heel angle 0.0 deg

angle of equilibrium (with heel arm)

1.1 deg 1.1

to the lesser of

spec. heel angle 70.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 44.5 deg

first downflooding angle n/a deg

angle of vanishing stability (with heel arm)

90.0 deg

Area2 integrated from the greater of

spec. heel angle 0.0 deg

angle of equilibrium (ignoring heel arm)

0.0 deg 0.0

to the lesser of

spec. heel angle 90.0 deg

angle of first GZ peak 43.6 deg

angle of max. GZ 43.6 deg 43.6

angle of max. GZ above heel arm 44.5 deg

first downflooding angle n/a deg

angle of vanishing stability (ignoring heel arm)

90.0 deg

Angle for GZ(max) in GZ ratio, the lesser of:

spec. heel angle 50.0 deg 50.0

Select required angle for angle of steady heel ratio:

MarginlineImmersionAngle

Criteria: Pass

121

Page 122: Design of 115000 DWT Tanker

Angle of steady heel shall be less than (<)

15.0 deg 1.1 Pass +92.97

Area1 / Area2 shall be greater than (>)

40.00 % 95.72 Pass +139.30

GZ(intersection) / GZ(max) shall be less than (<)

60.00 % 2.85 Pass +95.25

Intermediate values

Heel arm amplitude m 0.194

Area1 (under GZ), from 1.1 to 43.6 deg.

m.deg 176.7903

Area1 (under HA), from 1.1 to 43.6 deg.

m.deg 7.4771

Area1, from 1.1 to 43.6 deg. m.deg 169.3132

Area2, from 0.0 to 43.6 deg. m.deg 176.8927

GZ(intersection) m 0.194

GZ(max) m 6.817

DDS 079-1-b(2) Damaged stability

079-1-b(2)iii Damaged value of max. GZ above heeling arm - general heeling arm

Pass

Heeling arm = A cos^n(phi)

A = 1.450 m

n = 1

in the range from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

fraction of upper angle 100.00 % (deg) (46.4)

angle of max. GZ above heel arm 46.4 deg 46.4

first flooding angle of the DownfloodingPoints

n/a deg

shall be greater than (>) 0.091 m 5.939 Pass +6426.37

Intermediate values

122

Page 123: Design of 115000 DWT Tanker

angle at which this occurs deg 46.4

value of GZ m 6.940

value of HA m 1.001

Stability Calculation - DictatorHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn - with tilts (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Loadcase - Loadcase 1

Damage Case - DCase 1

Free to Trim

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Compartments Damaged -

CP5 Perm:100%

CS5 Perm:100%

Fluid analysis method: Use corrected VCG

Item Name Quantity Unit Mass tonne

Total Mass tonne

Unit Volume m^3

Total Volume m^3

Long. Arm m

Trans. Arm m

Vert. Arm m

Total FSM tonne.m

FSM Type

Lightship 1 14000.000

14000.000 113.000 0.000 9.500 0.000 User Specified

CS4 98% 11868.145

11630.782 11635.436 11402.727 146.000 9.313 11.566 0.000 Maximum

CS3 98% 11869.195

11631.811 11636.466 11403.736 113.999 9.313 11.567 0.000 Maximum

CS2 98% 10386.465

10178.735 10182.809 9979.151 84.000 9.313 11.568 0.000 Maximum

CS1 98% 9642.226 9449.382 9453.163 9264.100 55.148 7.690 11.581 0.000 Maximum

CS6 98% 4033.111 3952.449 3954.031 3874.950 204.806 4.194 11.600 0.000 Maximum

CP1 98% 9642.226 9449.382 9453.163 9264.100 55.148 -7.690 11.581 0.000 Maximum

123

Page 124: Design of 115000 DWT Tanker

CP2 98% 10386.465

10178.735 10182.809 9979.151 84.000 -9.313 11.568 0.000 Maximum

CP3 98% 11869.195

11631.811 11636.466 11403.736 113.999 -9.313 11.567 0.000 Maximum

CP4 98% 11868.145

11630.782 11635.436 11402.727 146.000 -9.313 11.566 0.000 Maximum

CP5 Damaged

CP6 98% 4033.111 3952.449 3954.031 3874.950 204.806 -4.194 11.600 0.000 Maximum

slop tk-S 85% 1113.085 946.122 1091.259 927.570 35.541 5.576 10.324 590.823 Maximum

slop tk-P 85% 1113.085 946.122 1091.259 927.570 35.541 -5.576 10.324 590.823 Maximum

CS5 Damaged

BP1 0% 2253.998 0.000 2199.022 0.000 51.123 15.373 2.000 0.000 Maximum

BP DB 0% 6032.542 0.000 5885.407 0.000 129.597 8.454 0.000 0.000 Maximum

BS DB 0% 6032.542 0.000 5885.407 0.000 129.597 -8.454 0.000 0.000 Maximum

BS 1 0% 4179.296 0.000 4077.362 0.000 126.020 19.565 2.000 0.000 Maximum

BS 3 0% 2711.122 0.000 2644.997 0.000 208.661 8.136 2.000 0.000 Maximum

BP DB 0% 2253.998 0.000 2199.022 0.000 51.123 -15.373 2.000 0.000 Maximum

BP2 0% 4179.296 0.000 4077.362 0.000 126.020 -19.565 2.000 0.000 Maximum

BP4 0% 2711.122 0.000 2644.997 0.000 208.661 -8.136 2.000 0.000 Maximum

FS1 100% 1503.110 1503.110 1591.772 1591.772 21.683 14.533 17.659 0.000 Maximum

FP1 100% 1503.110 1503.110 1591.772 1591.772 21.683 -14.533 17.659 0.000 Maximum

sett. tk-P 96% 82.050 78.768 86.890 83.414 31.045 -6.261 10.944 24.666 Maximum

serv tk-P 96% 40.284 38.672 42.660 40.954 31.045 -6.261 7.200 24.666 Maximum

LO tk-P 100% 54.946 54.946 59.724 59.724 31.045 -6.261 4.250 0.000 Maximum

settl. tk-S 96% 82.050 78.768 86.890 83.414 31.045 6.261 10.944 24.666 Maximum

serv tk-S 96% 40.284 38.672 42.660 40.954 31.045 6.261 7.200 24.666 Maximum

LO tk-S 100% 54.946 54.946 59.724 59.724 31.045 6.261 4.250 0.000 Maximum

FW-P 100% 213.663 213.663 213.663 213.663 4.797 -12.316 17.758 0.000 Maximum

124

Page 125: Design of 115000 DWT Tanker

FW-S 100% 213.662 213.662 213.662 213.662 4.797 12.316 17.758 0.000 Maximum

Total Loadcase

113356.879

129509.323

97683.524 107.154 0.000 11.470 1280.312

FS correction 0.011

VCG fluid 11.481

Heel to Port deg 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

GZ m 0.000 1.082 2.078 2.399 2.375 2.139 1.677 1.071 0.385 -0.331

Area under GZ curve from zero heel m.deg

0.0000 5.3597 21.5186 44.4000 68.4436 91.2030 110.4443 124.2743 131.5941 131.8706

125

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

Max GZ = 2.415 m at 33.6 deg.

079-1-b(2)iii Damaged value of max. GZ above heeling arm - general heeling arm

Heel to Port deg.

GZ

m

Page 126: Design of 115000 DWT Tanker

Displacement t 113357 113357 113357 113354 113353 113355 113355 113356 113356 113356

Draft at FP m 16.669 16.640 16.853 18.120 20.457 24.298 30.469 42.172 76.026 n/a

Draft at AP m 15.601 15.592 15.556 16.037 17.172 19.053 22.063 27.826 44.546 n/a

WL Length m 231.190 231.704 232.226 233.265 235.573 237.777 233.773 229.383 225.733 222.619

Beam max extents on WL m

41.282 41.919 38.286 33.405 31.552 28.219 24.962 23.005 21.950 21.616

Wetted Area m^2 14533.709

14513.283

15300.948

16228.492

16713.683

17039.788

17193.858

17284.649

17358.751

17420.080

Waterpl. Area m^2 7570.749 7659.142 6892.512 5862.924 5310.664 4746.046 4250.714 3951.115 3797.014 3770.917

Prismatic coeff. (Cp)

0.719 0.720 0.722 0.725 0.727 0.730 0.732 0.733 0.733 0.732

Block coeff. (Cb) 0.707 0.597 0.576 0.585 0.560 0.579 0.623 0.662 0.697 0.719

LCB from zero pt. (+ve fwd) m

107.170 107.169 107.172 107.176 107.189 107.214 107.240 107.261 107.279 107.291

LCF from zero pt. (+ve fwd) m

99.292 99.656 98.286 99.310 100.124 99.398 97.947 96.972 96.202 95.628

Max deck inclination deg

0.2683 10.0033 20.0023 30.0031 40.0042 50.0053 60.0056 70.0048 80.0029 90.0000

Trim angle (+ve by stern) deg

-0.2683 -0.2633 -0.3260 -0.5234 -0.8256 -1.3179 -2.1114 -3.6005 -7.8612 -1.#IND

Key point Type Immersion angle deg Emergence angle deg

Margin Line (immersion pos = 232.858 m) 0 n/a

Deck Edge (immersion pos = 232.858 m) 0 n/a

DF point Downflooding point Not immersed in positive range 0

Code Criteria Value Units Actual Status Margin %

Regulation 25 3b 3b: Equi heel <= 25 or <= 30 if no DE immersion Pass

126

Page 127: Design of 115000 DWT Tanker

Ratio of equilibrium heel angle to the lesser of:

spec. heel angle 25.0 deg 25.0

shall not be greater than (<=) 100.00 % 0.00 Pass +100.00

Regulation 25 3c 3c.i: Range of positive stability including DF Pass

from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

first downflooding angle n/a deg

angle of vanishing stability 85.4 deg 85.4

shall not be less than (>=) 20.0 deg 85.4 Pass +326.97

Regulation 25 3c 3c.ii: Residual righting lever Pass

in the range from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

spec. heel angle above equilibrium 20.0 (20.0)

deg 20.0

angle of max. GZ 33.6 deg

first downflooding angle n/a deg

shall not be less than (>=) 0.100 m 2.078 Pass +1978.00

Intermediate values

angle at which this GZ occurs deg 20.0

Regulation 25 3c 3c iii: Area under GZ curve Pass

from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

spec. angle above equilibrium 20.0 (20.0)

deg 20.0

127

Page 128: Design of 115000 DWT Tanker

first downflooding angle n/a deg

angle of vanishing stability 85.4 deg

shall not be less than (>=) 1.0027 m.deg

21.5186 Pass +2046.06

Regulation 28 GZ-based

28.3.2 Equi heel <= 25 or <= 30 if no DE immersion Pass

Ratio of equilibrium heel angle to the lesser of:

spec. heel angle 25.0 deg 25.0

shall not be greater than (<=) 100.00 % 0.00 Pass +100.00

Regulation 28 GZ-based

28.3.3 Range of positive stability including DF Pass

from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

first downflooding angle n/a deg

angle of vanishing stability 85.4 deg 85.4

shall not be less than (>=) 20.0 deg 85.4 Pass +326.97

Regulation 28 GZ-based

28.3.3 Residual righting lever Pass

in the range from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

spec. heel angle above equilibrium 20.0 (20.0)

deg 20.0

angle of max. GZ 33.6 deg

first downflooding angle n/a deg

shall not be less than (>=) 0.100 m 2.078 Pass +1978.00

Intermediate values

128

Page 129: Design of 115000 DWT Tanker

angle at which this GZ occurs deg 20.0

Regulation 28 GZ-based

28.3.3 Area under GZ curve Pass

from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

spec. angle above equilibrium 20.0 (20.0)

deg 20.0

first downflooding angle n/a deg

angle of vanishing stability 85.4 deg

shall not be less than (>=) 1.0027 m.deg

21.5186 Pass +2046.06

DDS 079-1-b(2) Damaged stability

079-1-b(2)ii Damaged angle of equilibrium Pass

shall be less than (<) 15.0 deg 0.0 Pass +100.00

DDS 079-1-b(2) Damaged stability

079-1-b(2)iii Damaged value of max. GZ above heeling arm - general heeling arm

Pass

Heeling arm = A cos^n(phi)

A = 1.450 m

n = 1

in the range from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

fraction of upper angle 100.00 % (deg)

(41.8)

angle of max. GZ above heel arm 41.8 deg 41.8

first flooding angle of the DownfloodingPoints n/a deg

shall be greater than (>) 0.091 m 1.268 Pass +1293.41

129

Page 130: Design of 115000 DWT Tanker

Intermediate values

angle at which this occurs deg 41.8

value of GZ m 2.349

value of HA m 1.081

Stability Calculation -DictatorHydromax 16.04, build: 32046

Model file: C:\Users\uglogin.NSDRC.001\Desktop\DICTATOR\latest\dictator-prodn - with tilts (Medium precision, 61 sections, Trimming on, Skin thickness not applied). Long. datum: AP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Loadcase - Loadcase 1

Damage Case - DCase 1

Free to Trim

Specific gravity = 1.025; (Density = 1.025 tonne/m^3)

Compartments Damaged -

CP6 Perm:100%

CS6 Perm:100%

Fluid analysis method: Use corrected VCG

Item Name Quantity Unit Mass tonne

Total Mass tonne

Unit Volume m^3

Total Volume m^3

Long. Arm m

Trans. Arm m

Vert. Arm m

Total FSM tonne.m

FSM Type

Lightship 1 14000.000

14000.000 113.000 0.000 9.500 0.000 User Specified

CS4 98% 11868.145

11630.782 11635.436 11402.727 146.000 9.313 11.566 0.000 Maximum

CS3 98% 11869.195

11631.811 11636.466 11403.736 113.999 9.313 11.567 0.000 Maximum

CS2 98% 10386.46 10178.735 10182.809 9979.151 84.000 9.313 11.568 0.000 Maximum

130

Page 131: Design of 115000 DWT Tanker

5

CS1 98% 9642.226 9449.382 9453.163 9264.100 55.148 7.690 11.581 0.000 Maximum

CS6 Damaged

CP1 98% 9642.226 9449.382 9453.163 9264.100 55.148 -7.690 11.581 0.000 Maximum

CP2 98% 10386.465

10178.735 10182.809 9979.151 84.000 -9.313 11.568 0.000 Maximum

CP3 98% 11869.195

11631.811 11636.466 11403.736 113.999 -9.313 11.567 0.000 Maximum

CP4 98% 11868.145

11630.782 11635.436 11402.727 146.000 -9.313 11.566 0.000 Maximum

CP5 98% 10631.018

10418.397 10422.567 10214.115 176.824 -8.485 11.585 0.000 Maximum

CP6 Damaged

slop tk-S 85% 1113.085 946.122 1091.259 927.570 35.541 5.576 10.324 590.823 Maximum

slop tk-P 85% 1113.085 946.122 1091.259 927.570 35.541 -5.576 10.324 590.823 Maximum

CS5 98% 10631.018

10418.397 10422.567 10214.115 176.824 8.485 11.585 0.000 Maximum

BP1 0% 2253.998 0.000 2199.022 0.000 51.123 15.373 2.000 0.000 Maximum

BP DB 0% 6032.542 0.000 5885.407 0.000 129.597 8.454 0.000 0.000 Maximum

BS DB 0% 6032.542 0.000 5885.407 0.000 129.597 -8.454 0.000 0.000 Maximum

BS 1 0% 4179.296 0.000 4077.362 0.000 126.020 19.565 2.000 0.000 Maximum

BS 3 0% 2711.122 0.000 2644.997 0.000 208.661 8.136 2.000 0.000 Maximum

BP DB 0% 2253.998 0.000 2199.022 0.000 51.123 -15.373 2.000 0.000 Maximum

BP2 0% 4179.296 0.000 4077.362 0.000 126.020 -19.565 2.000 0.000 Maximum

BP4 0% 2711.122 0.000 2644.997 0.000 208.661 -8.136 2.000 0.000 Maximum

FS1 100% 1503.110 1503.110 1591.772 1591.772 21.683 14.533 17.659 0.000 Maximum

FP1 100% 1503.110 1503.110 1591.772 1591.772 21.683 -14.533 17.659 0.000 Maximum

sett. tk-P 96% 82.050 78.768 86.890 83.414 31.045 -6.261 10.944 24.666 Maximum

serv tk-P 96% 40.284 38.672 42.660 40.954 31.045 -6.261 7.200 24.666 Maximum

LO tk-P 100% 54.946 54.946 59.724 59.724 31.045 -6.261 4.250 0.000 Maximum

131

Page 132: Design of 115000 DWT Tanker

settl. tk-S 96% 82.050 78.768 86.890 83.414 31.045 6.261 10.944 24.666 Maximum

serv tk-S 96% 40.284 38.672 42.660 40.954 31.045 6.261 7.200 24.666 Maximum

LO tk-S 100% 54.946 54.946 59.724 59.724 31.045 6.261 4.250 0.000 Maximum

FW-P 100% 213.663 213.663 213.663 213.663 4.797 -12.316 17.758 0.000 Maximum

FW-S 100% 213.662 213.662 213.662 213.662 4.797 12.316 17.758 0.000 Maximum

Total Loadcase

126288.776

142446.396

110361.854 112.537 0.000 11.480 1280.312

FS correction 0.010

VCG fluid 11.491

132

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

Max GZ = 2.238 m at 30 deg.

079-1-b(2)iii Damaged value of max. GZ above heeling arm - general heeling arm

Heel to Port deg.

GZ

m

Page 133: Design of 115000 DWT Tanker

Heel to Port deg 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

GZ m 0.000 1.100 2.012 2.238 2.153 1.900 1.486 0.947 0.336 -0.301

Area under GZ curve from zero heel m.deg

0.0000 5.5183 21.4956 43.2209 65.3190 85.7197 102.7748 115.0229 121.4722 121.6535

Displacement t 126289 126289 126288 126289 126282 126287 126288 126288 126289 126289

Draft at FP m 17.814 17.791 18.297 20.210 23.320 28.255 36.162 51.022 93.745 n/a

Draft at AP m 15.335 15.322 15.208 15.447 16.252 17.674 20.054 24.702 38.326 n/a

WL Length m 231.272 231.772 232.518 234.443 238.270 233.904 228.425 224.467 221.374 218.546

Beam max extents on WL m

41.282 41.919 37.627 32.734 30.719 28.194 24.962 23.005 21.951 21.617

Wetted Area m^2 14733.286

14715.159

15750.042

16693.516

17189.917

17487.329

17641.807

17742.222

17801.930

17837.284

Waterpl. Area m^2 8249.745 8345.604 7174.004 6077.101 5560.181 5193.864 4764.866 4474.899 4329.632 4301.598

Prismatic coeff. (Cp)

0.765 0.766 0.768 0.765 0.763 0.761 0.762 0.763 0.764 0.765

Block coeff. (Cb) 0.740 0.641 0.628 0.636 0.611 0.613 0.656 0.695 0.731 0.744

LCB from zero pt. (+ve fwd) m

112.569 112.568 112.575 112.602 112.612 112.661 112.698 112.727 112.746 112.752

LCF from zero pt. (+ve fwd) m

104.476 104.846 100.687 100.930 102.558 104.380 104.913 104.957 104.846 104.380

Max deck inclination deg

0.6230 10.0185 20.0128 30.0162 40.0192 50.0214 60.0206 70.0162 80.0090 90.0000

Trim angle (+ve by stern) deg

-0.6230 -0.6205 -0.7763 -1.1969 -1.7756 -2.6571 -4.0414 -6.5851 -13.6618 -1.#IND

Key point Type Immersion angle deg Emergence angle deg

Margin Line (immersion pos = 232.858 m) 0 n/a

Deck Edge (immersion pos = 232.858 m) 0 n/a

DF point Downflooding point Not immersed in positive range 0

133

Page 134: Design of 115000 DWT Tanker

Code Criteria Value Units Actual Status Margin %

Regulation 25 3b 3b: Equi heel <= 25 or <= 30 if no DE immersion Pass

Ratio of equilibrium heel angle to the lesser of:

spec. heel angle 25.0 deg 25.0

shall not be greater than (<=) 100.00 % 0.00 Pass +100.00

Equilibrium angle deg 0.0

Regulation 25 3c 3c.i: Range of positive stability including DF Pass

from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

first downflooding angle n/a deg

angle of vanishing stability 85.3 deg 85.3

shall not be less than (>=) 20.0 deg 85.3 Pass +326.45

Regulation 25 3c 3c.ii: Residual righting lever Pass

in the range from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

spec. heel angle above equilibrium 20.0 (20.0)

deg 20.0

angle of max. GZ 30.0 deg

first downflooding angle n/a deg

shall not be less than (>=) 0.100 m 2.012 Pass +1912.00

Intermediate values

angle at which this GZ occurs deg 20.0

134

Page 135: Design of 115000 DWT Tanker

Regulation 25 3c 3c iii: Area under GZ curve Pass

from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

spec. angle above equilibrium 20.0 (20.0)

deg 20.0

first downflooding angle n/a deg

angle of vanishing stability 85.3 deg

shall not be less than (>=) 1.0027 m.deg

21.4956 Pass +2043.78

Equilibrium angle deg

Regulation 28 GZ-based

28.3.2 Equi heel <= 25 or <= 30 if no DE immersion Pass

Ratio of equilibrium heel angle to the lesser of:

spec. heel angle 25.0 deg 25.0

shall not be greater than (<=) 100.00 % 0.00 Pass +100.00

Intermediate values

Equilibrium angle deg 0.0

Regulation 28 GZ-based

28.3.3 Range of positive stability including DF Pass

from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

first downflooding angle n/a deg

angle of vanishing stability 85.3 deg 85.3

shall not be less than (>=) 20.0 deg 85.3 Pass +326.45

Regulation 28 GZ-based

28.3.3 Residual righting lever Pass

135

Page 136: Design of 115000 DWT Tanker

in the range from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

spec. heel angle above equilibrium 20.0 (20.0)

deg 20.0

angle of max. GZ 30.0 deg

first downflooding angle n/a deg

shall not be less than (>=) 0.100 m 2.012 Pass +1912.00

Intermediate values

angle at which this GZ occurs deg 20.0

Regulation 28 GZ-based

28.3.3 Area under GZ curve Pass

from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

spec. angle above equilibrium 20.0 (20.0)

deg 20.0

first downflooding angle n/a deg

angle of vanishing stability 85.3 deg

shall not be less than (>=) 1.0027 m.deg

21.4956 Pass +2043.78

DDS 079-1-b(2) Damaged stability

079-1-b(2)ii Damaged angle of equilibrium Pass

shall be less than (<) 15.0 deg 0.0 Pass +100.00

DDS 079-1-b(2) Damaged stability

079-1-b(2)iii Damaged value of max. GZ above heeling arm - general heeling arm

Pass

Heeling arm = A cos^n(phi)

A = 1.450 m

n = 1

136

Page 137: Design of 115000 DWT Tanker

in the range from the greater of

angle of equilibrium 0.0 deg 0.0

to the lesser of

fraction of upper angle 100.00 % (deg)

(39.1)

angle of max. GZ above heel arm 39.1 deg 39.1

first flooding angle of the DownfloodingPoints n/a deg

shall be greater than (>) 0.091 m 1.042 Pass +1045.05

Intermediate values

angle at which this occurs deg 39.1

value of GZ m 2.168

value of HA m 1.125

CROSS CURVES OF STABILITY

137

Page 138: Design of 115000 DWT Tanker

POWER ESTIMATION:

Description of Input Symbol AFRAMAX

Length Overall (m) LOA 228.000

Length on Waterline (m) LWL 233.000

Breadth Moulded At Design Draft (m) B 41.246

Depth (Moulded) (m) D 21.595

Draft (Moulded) (m) T16.7360299

9

Volume Displacement (m^3) Vol 130590.90Speed (Knots) V 14.000

Block Coefficient CB 0.81Prismatic Coefficient CP 0.810

Midship Area Coefficient CM 0.997

Waterplane Area Coefficient CW 0.899Longitdinal Centre of Buoyancy (% LWL) from Midship LCB 0.000

Transverse Sectional Area of Bulb (m^2) ABT 100.000

VCG of Transverse Area of Bulb above Keel (m) hB 14.226Immersed Part of Transom Area at Zero Speed (m^2) AT 19.485

Kinematic Viscosity Nu 1.188E-06

Density (kg/m^3) Rho 1025.000

Trial Allowance dCF 0.000

138

Page 139: Design of 115000 DWT Tanker

Wetted Surface Area of Appendages (m^2) SAPP 120.000

Equivalent (1+k2) Equ.(1+K2) 1.400

Acceleration Due to Gravity (m/sec^2) g 9.810

d (Refer Paper) d -0.900

Calculation

Length of Run LR 100.000

cstern (From Reference Paper) cstern -10.000

c13 c13 0.970

c12 c12 0.556

(1+k1) 1+k1 1.113

Wetted Surface Area (m^2) S 15150.000

Reynold' s Number Rn 1.412E+09

Frictional Coefficient CF 0.001

Frictional Resistance (KN) RF 590.787

Half Angle of Entrance (Degrees) iE 45.000

c7 c7 0.177

c1 c1 6.349

c5 c5 0.977

c3 c3 0.145

c2 c2 0.487

c4 c4 0.040

Froude Number Fn 0.152

c15 c15 -1.694

c16 c16 1.158

m1 m1 -2.192

m2 m2 -0.015

lamda lamda 1.002

Wave Making Resistance (KN) RW 25.980

Model Ship Corelation Coefficient cA 0.000

Model Ship Corelation Resistance (KN) RA 128.445

Appendage Resistance (KN) RAPP 6.551

Measure of Emergence PB -1.217

Froude Number Based on Immersion Fni 2.119

Additional Resistance Due to Bulb (KN) RB 252.685

Froude Number Based on Transom Immersion FNT 3.260

c6 c6 0.070Added Pressure Resistance Due to Immersed Transom RTR 36.055

Total Resistance (KN) RT 1107.044

Appendage Allowance (%) AA 2

Trial Allowance (%) TA 20

Total Resistance Including Appendages (KN) RTS =RT + Allow. 1350.593

139

Page 140: Design of 115000 DWT Tanker

Effective Horse Power (KW) PE = RTS x V 9726.434

Quasi Propulsive Coefficient QPC 0.700

Shaft Efficiency NS 0.985

Engine Derating ED 0.900

Gear Losses GL 1.000

Delivered Power (KW)PD = PE /(QPCxNSxEDxGL) 15673.893

Delivered Horse Power (HP) PD =PE / 0.7355 21310.527

Number of Engines NE 1.000

Power Required (HP) PEN (HP) 21310.527

Power Required (KW) PEN (KW) 15673.893

Power Required (KW) 15673.893 KW

By MAXSURF HOLTROP

Effective Horse Power (KW) PE = RTS x V 7475.000

ENGINE: DIMENSIONS, TANKS & PROPERTIES

140

Page 141: Design of 115000 DWT Tanker

ENGINE SPACESB 1350 mmC 3820 mmD 7045 mmE 4292 mmF 3400 mmG 4850 mmI 1885 mmJ 345 mmKL 9162 mmM 800 mmN 4410 mmMax Height 12687 mmMax Breadth 8250 mmMax Length 9962 mm

ENGINE SELECTED MAN B&W7S60ME-B8

SFOC 170 g/KwhPower 16660 KwDist 12000 NmDistance In Kilometers 22224 KmSpeed 7.2016 m/s

Duration857.21691

5 Hrs

Fuel Required2427.8097

5 Tons

Total fuel Required2670.5907

2 Tons

Fuel Tank Capacity2680.7776

8 cu.mHFO Consumption/Day 67.9728 TonsTotal LDO Required 271.8912 Tons

Settling Tank Capacity (HFO/LDO) 67.293072 TonsService Tank Capacity (HFO/LDO) 33.646536 TonsLube oil Capacity 59.981182 Tons

TOTAL FUEL CAPACITY3074.1631

6 cu.m

141

Page 142: Design of 115000 DWT Tanker

PUMP CAPACITIESFuel Oil Circulation 6.7 cu.m/hFuel Oil Supply 4.2 cu.m/hJacket Cooling 140 cu.m/hMain Lube Oil 330 cu.m/hcentral Cooling 430 cu.m/h

Scavenge Air CoolersHeat diss. App. 6940 KWCentral Water Flow 251 cu.m/hLube Oil Cooler 1300 KWLube Oil Flow 330 cu.m/hCentral Water Flow 179 cu.m/h

Jacket Water CoolerHeat diss. App. 2440 KWJacket Water Flow 140 cu.m/hCentral Water Flow 179 cu.m/h

Central CoolerHeat diss. App. 10680 KWCentral Water Flow 480

Starting Air System 30 Bar 12 StartsReceiver Capacity 11 cu.mCompressor Capacity 180

142

Page 143: Design of 115000 DWT Tanker

143

Page 144: Design of 115000 DWT Tanker

THE GENERAL ARRANGEMENT PLAN:

Draw outline of profile, upper deck, forecastle deck. If upper deck is stepped show it that way. Forecastle deck should have a height more than 2.3m such that the required bow height as per ILLC rules is obtained (normally takes upto 3.0 m). Longitudinally, it should extend from forward end till the fore peak bulkhead or to the next bulkhead. The reason for a forecastle deck are:

1. Minimum bow height as per ILLC (reduction of probability of deck wetness) 2. Forecastle deck area for anchoring and mooring equipment 3. Adequate volume underneath for storage and chain locker etc. 4. Provide additional cargo space.

Divide the cargo space into holds by placing the remaining bulkheads. The principle of placing the bulkheads may be based on cargo requirement:

1. Equal length holds 2. Alternate large and small holds (bulk carriers/ products tankers/ container ship (as shown in the beginning ) 3. A single large hold (for large cargo in a multipurpose carrier)

Decide on longitudinal bulkheads - in double hull tankers, container ships etc. Discuss why in container ships – ballast requirement and box girder. Decide on sloped bulkheads on top and bottom wing tanks in a bulk carrier – top tank slope should be more than angle of repose of cargo – normally 300. Bottom tank slope is normally 450. Discuss why sloping bulkheads are provided in bulk carriers. The longitudinal and sloped bulkheads have a good relationship with cargo and ballast capacity; so this requires to be checked. Decide on double bottom height which should be more than centre girder height d as given below

(IRS): d = 250 +20 B + 50 T

Where d is in mm and B and T are in m.

The tank capacity below db should be adequate. Decide on height of tween deck(s). Ships carrying packaged cargo, such as multipurpose ships, non-standard cargo sizes such as refer cargo or some other cargoes such as cars etc., require large floor space. So, to provide more deck area, a number of tween decks are to be provided. The height of each tween deck should be adequate for the maximum height of cargo in that deck space. This is not required for volume based cargo such as tankers and bulk carriers. In container ships, the top of a container serves as the floor for the next higher container. So container ships do not require tween decks. Hatch openings and hatch covers.

Page 145: Design of 115000 DWT Tanker

Ballast Tank capacities and tank distribution. Ballast water is required for empty voyage to have proper sinkage, trim and stability. Excessive ballast capacity is bad since it is expensive and takes up useful space. Ballast capacity should be such that full propeller immersion is obtained at the aft end and forward draught is not too low to avoid the harmful effects of slamming. To avoid excess scantling IRS recommends a minimum forward draught of 0.04LBP (=TF). For , the ford scantlings are to be increased. For a TF < 0.025 LBP, direct calculations are to be submitted for approval. Approximately in a ballast voyage, displacement is 0.5 of fully loaded displacement which is about 0.55 of full draught. Ballast distribution should be such that excessive hogging moment is avoided in this condition. Segregate the B.W. tank from any other liquid tank.

The following points may be considered while making tank arrangements:

1. No access is required except for cleaning and maintenance. Minimum two manholes are to be provided on top preferably at diagonal corners.

2. Tanks and pipes carrying a particular type of liquid must be segregated from those carrying another type of liquid. 3. FW tank should not have any tank adjacent to itself. So an FW tank and any other tank must be separated by a cofferdam. For the

same reason, FW tanks cannot be placed below LWL. 4. Since total liquid carried relatively low, the tanks may conveniently be situated in the lower portions to increase transverse

stability. 5. To simplify piping arrangements FW tanks should be near E.R. as well as accommodation D.O. & H. F. O. tanks should be near the

E.R. for reducing piping length. D. O. can conveniently be stored in E.R. double bottom. B.W. tanks should be well distributed all over the length and breadth of ship to help stability and trim requirements. Pipes should not run inside tanks carrying another liquid, i.e. FO pipe should not run in B.W. tank. Consumable tanks (HFO, D.O. & F.W.) should be so located that their consumption does not cause unnecessary adverse trim. They should not cause unduly adverse free surface effects. So these tanks should be divided into smaller tanks with reduced breath. Too many small tanks, however, will make complicated piping system. B.W. tanks are either fully pressed or empty. B.W. tanks should be distributed all over the length of ship with sufficient capacity in the peak tanks to adjust for required trim and stability. Tanks should be distributed symmetrically about C. L. so that advice heel effects are not felt. If there is any such effect (damage stability) cross-connection between port and starboard tanks may be provided.

6. The boundaries of d.b. tanks, deep tanks etc. should be designed to withstand hydrostatic pressure. 7. The tank distribution should not adversely affect the longitudinal strength of hull girder.

145

Page 146: Design of 115000 DWT Tanker

146

Page 147: Design of 115000 DWT Tanker

SCANTLING &WEIGHT ESTIMATION CALCULATIONS:

Scantlings, steel weight, LCG & VCG of the bare hull were calculated for a 228 m long crude carrier. The scantling calculations for the above were done using the empirical formulae given in Part-3 of the IRS rule book.

LBP=228m, B=41.4m, T= 16.736m, D=21.6m (particulars of the crude carrier)

The weight calculations were done using the IRS class rules for :-

1. Shell plates – bottom. Inner bottom, side shell, main deck, superstructure tiers etc.

2. Bulkheads – Aft peak & Fore peak, transverse bulkheads, etc.

3. Girders – centre, side, deck girders.

4. Longitudinals – bottom stiffeners, side stiffeners, deck stiffeners, etc

5. Floor plates – solid floors, etc.

6. Frames – bottom, side, deck transverses, bulkhead frames, web frames, etc.

7. Brackets, stringers, Intercoastal girders, etc.

With the given GA, the approximate area of the shell plate was determined and multiplied with the thickness and density of steel to get the steel weight of the vessel.

The shell thickness formulae will have a design pressure term which is taken from different values obtained from various conditions and corresponding formulae. The largest of them is considered for calculation.

Number of frames is found from the GA where the frame numbers are marked. All the frames under the engine compartment and every fourth floor elsewhere are considered to be floor plates.

The stiffener weight is calculated using the chart which gives the weight per length of a particular stiffener type. The length of the stiffener is determined from the GA and multiplied with the wt./length to get the stiffener weight.

Weight of the brackets is considered to be about 10% of the stiffener weight.

The LCG is calculated by adding all the moments of the various shells, superstructures, frames, etc. about the aft and dividing it by steel weight.

The VCG is calculated by adding all the moments of the various shells, superstructures, frames, etc. about the keel and dividing it by steel weight.

Page 148: Design of 115000 DWT Tanker

TYPE OF FRAMING Longitudinal As the ship length is above 200m

Lwl 233 m

Lbp 228 m

B 41.246 m

D 21.594 m

T 16.736 m

Frame Spacing 1006 But this value exceeds 1000mm

Corrected Frame Spacing 1000 mm

Frame Spacing in peaks 600 mm

Frame Spacing between FP and 0.2L 700 mm

Assuming Engine Room in AFT

No. Of Bulkheads 10

Distance from FP to collision Bhd(Xc min) 6.505 m

Main Deck

Plating Units Ref

Cw 10.13906 IRS Pg. 433

h0 4.854 IRS Pg. 483

ks (aft of AP) 6 IRS Pg. 436

ks (btwn AP & 0.2L frm AP) 4.75 IRS Pg. 436

ks (btwn 0.2L & 0.7L frm AP) 3.5 IRS Pg. 436

ks (btwn 0.7L frm AP & FP) 6.725124 IRS Pg. 436

ks (fwd of FP) 9.950249 IRS Pg. 436

Rs 1 IRS Pg. 433

p (frm 48m frm AP) 0.015 N/mm2 IRS Pg. 484

p (aft of 48m frm AP) 0.005 N/mm2 IRS Pg. 485

s (stiffener spacing) 1000 mm assumed

l (spam of stiffener) 3 m assumed

fa 1.021981 IRS Pg. 425

k 1 IRS Pg. 411

σ(128 m frm mid) 120 IRS Pg. 485

σ(upto 32m frm ends) 160 IRS Pg. 486

tc (min) 2 mm IRS Pg. 424

t(upto 32 m frm aft end) 4.856523 mm IRS Pg. 484

t(frm 32 m to 48 m frm aft) 5.298428 mm IRS Pg. 485

t(frm 48m to 288 m frm aft) 7.713046 mm IRS Pg. 486

t(frm 288m to 333m frm aft) 6.947643 mm IRS Pg. 487

t(min) 13 mm IRS Pg. 488

148

Page 149: Design of 115000 DWT Tanker

Stiffener Units Ref

tc 2 mm assumed

hw(height of web) 180 mm assumed

bf(breadth of flange) 60 mm assumed

Zc 41.04 cm^3 IRS Pg. 424

Z (long) 134.79 cm^3 IRS Pg. 485

Z (trans) 125.415 cm^3 IRS Pg. 485

weight 26.2 kg/m bulb

GIRDERS

b 5 m

S 10 m

m 12

σ 160

Zreq 1302.083 cm^3

Weight/m 72.4 kg/m

I section 450*150

keel platet 21.97347 mm IRS Pg. 455width 1800 mm IRS Pg. 466Bottom Structure:

Bottom plate units Ref

Cw 10.13906 IRS Pg. 433

ks (aft of AP) 6 IRS Pg. 436

ks (btwn AP & 0.2L frm AP) 4.75 IRS Pg. 436

ks (btwn 0.2L & 0.7L frm AP) 3.5 IRS Pg. 436

ks (btwn 0.7L frm AP & FP) 6.725124 IRS Pg. 436

ks (fwd of FP) 9.950249 IRS Pg. 436

Rs 1 IRS Pg. 433

p (aft of AP) 0.212986 N/mm^2 IRS Pg. 465

p (btwn AP & 0.2L frm AP) 0.200312 N/mm^3 IRS Pg. 465

p (btwn 0.2L & 0.7L frm AP) 0.187638 N/mm^4 IRS Pg. 465

p (btwn 0.7L frm AP & FP) 0.220338 N/mm^5 IRS Pg. 465

p (fwd of FP) 0.253038 N/mm^6 IRS Pg. 465

tb 6.56 m IRS Pg. 437

pi (internal load) 0.1743 N/mm^2 IRS Pg. 465

s (stiffener spacing) 1000 mm assumed

l (spam of stiffener) 3 m assumed

fa 1.021981 IRS Pg. 425

k 1 IRS Pg. 411

σ(128 m frm mid) 120 IRS Pg. 485

σ(upto 32m frm ends) 160 IRS Pg. 486

149

Page 150: Design of 115000 DWT Tanker

fr 0.820853 IRS Pg. 425

tc (min) 2 mm IRS Pg. 424

t (btwn AP & 0.2L frm AP) 19.13723 mm IRS Pg. 466

t (btwn 0.2L & 0.7L frm AP) 18.58624 mm IRS Pg. 466

t (btwn 0.7L frm AP & FP) 19.97347 mm IRS Pg. 466

tmin 16.12 IRS Pg. 466

WT floors and girders Units Ref

hp 21.59 IRS Pg. 465

hs 21.59 IRS Pg. 465

p0 0.024 N/mm^2 IRS Pg. 465

p 0.2399 N/mm^2 IRS Pg. 465

d(center girder height) 2000 mm IRS Pg. 468

t(center girder) 20 mm IRS Pg. 469

t(side girder & floor plates) 17 mm IRS Pg. 469

Z(for stiffener on girder & floor) 1390.478 cm^3 IRS Pg. 469

Weight/m 72.4 kg/m

I section 450*150

Inner bottom plate Units Ref

ρ 0.97 assumed

H 19.59 IRS Pg. 465

Cv 0.2 IRS Pg. 433

Cw 10.13906 IRS Pg. 433

Kv 0.9 IRS Pg. 435

a0 0.318843 IRS Pg. 433

p 0.223641 N/mm^2 IRS Pg. 465

s (stiffener spacing) 1000 mm assumed

l (spam of stiffener) 3 m assumed

fa 1.021981 IRS Pg. 425

k 1 IRS Pg. 411

σ 160 IRS Pg. 485

fr 0.820853 IRS Pg. 425

tc (min) 2 mm IRS Pg. 424

t 15.68173 mm IRS Pg. 466

tmin 13.84 mm IRS Pg. 466

Side Shell:

150

Page 151: Design of 115000 DWT Tanker

Plating Units Ref

h0 8.368 m given

Cw 10.13906 IRS Pg. 433

Rs 1 IRS Pg. 433

ks (aft of AP) 6 IRS Pg. 436

ks (btwn AP & 0.2L frm AP) 4.75 IRS Pg. 436

ks (btwn 0.2L & 0.7L frm AP) 3.5 IRS Pg. 436

ks (btwn 0.7L frm AP & FP) 6.725124 IRS Pg. 436

ks (fwd of FP) 9.950249 IRS Pg. 436

p (aft of AP)(below DWL) 0.13691 N/mm^2 IRS Pg. 475

p (btwn AP & 0.2L frm AP)(below DWL) 0.124236 N/mm^2 IRS Pg. 475

p (btwn 0.2L & 0.7L frm AP)(below DWL) 0.111562 N/mm^2 IRS Pg. 475

p (btwn 0.7L frm AP & FP)(below DWL) 0.144262 N/mm^2 IRS Pg. 475

p (fwd of FP)(below DWL) 0.176962 N/mm^2 IRS Pg. 475

p (aft of AP)(above DWL) 0.056818 N/mm^2 IRS Pg. 475

p (btwn AP & 0.2L frm AP)(above DWL) 0.044981 N/mm^2 IRS Pg. 475

p (btwn 0.2L & 0.7L frm AP)(above DWL) 0.033144 N/mm^2 IRS Pg. 475

p (btwn 0.7L frm AP & FP)(above DWL) 0.063684 N/mm^2 IRS Pg. 475

p (fwd of FP)(above DWL) 0.094225 N/mm^2 IRS Pg. 475

s (stiffener spacing) 1000 mm assumed

l (spam of stiffener) 3 m assumed

fa 1.021981 IRS Pg. 425

fr 0.820853 IRS Pg. 425

k 1 IRS Pg. 411

σ 160 IRS Pg. 485

tc (min) 2 mm IRS Pg. 424

t (aft of AP)(below DWL) 14.26975 mm IRS Pg. 477

t (btwn AP & 0.2L frm AP)(below DWL) 13.68805 mm IRS Pg. 477

t (btwn 0.2L & 0.7L frm AP)(below DWL) 13.07585 mm IRS Pg. 477

t (btwn 0.7L frm AP & FP)(below DWL) 14.59488 mm IRS Pg. 477

t (fwd of FP)(below DWL) 15.94947 mm IRS Pg. 477

t (aft of AP)(above DWL) 9.904235 mm IRS Pg. 477

t (btwn AP & 0.2L frm AP)(above DWL) 9.032844 mm IRS Pg. 477

t (btwn 0.2L & 0.7L frm AP)(above DWL) 8.036959 mm IRS Pg. 477

t (btwn 0.7L frm AP & FP)(above DWL) 10.36824 mm IRS Pg. 477

t (fwd of FP)(above DWL) 12.17891 mm IRS Pg. 477

Stiffener Units Ref

s (stiffener spacing) 1000 mm assumed

151

Page 152: Design of 115000 DWT Tanker

l (spam of stiffener) 3 m assumed

k 1 IRS Pg. 411

σ 160 IRS Pg. 485

p 0.111562 N/mm^2 IRS Pg. 477

tc 1.021981 mm assumed

hw(height of web) 180 mm assumed

bf(breadth of flange) 60 mm assumed

Zc 20.97104 cm^3 IRS Pg. 424

Z 543.9199 cm^3 IRS Pg. 477

Weight/m 70.2 kg/m

bulb 400*58

Watertight Bulkheads

Tank bulkhead Units Ref

Cv 0.2 IRS Pg. 433

Cw 10.13906 IRS Pg. 433

Kv 0.9 IRS Pg. 435

a0 0.318843 IRS Pg. 433

hs 9.795 m given

p0 0.024 N/mm^2 IRS Pg. 496

p 0.12195 N/mm^2 IRS Pg. 496

tc (min) 2 mm IRS Pg. 424

k 1 IRS Pg. 411

s 1000 mm assumed

t 15.80387 mm IRS Pg. 498

tmin 11.56 mm IRS Pg. 498

Zc 41.04 cm^3 IRS pg. 424

σ 160

m 12

l(span of stiffener) 3

Z (longitudinal) 612.6806 cm^3 IRS pg 499

Stiffener

s 1000 mmp 0.11527899 N/mm^2l 3 mσ 160m 10Kv 0.9Zreq 648.444324Weight/m 73.9 kg/m

430*63.5 BULB

152

Page 153: Design of 115000 DWT Tanker

Super Structure

Super Structure

Pressure 0.071323 0.053035 0.0369417 0.0152387

a 3.9 2.9 2.02 0.8332632

b 1.107565 1.107565 1.1075651 1.1075651

c 1 1 1 1

f 10.68 10.68 10.68 10.68

z 10 10 10 10

x 27 27 27 27

x/L 0.118421 0.118421 0.1184211 0.1184211

Thickness 7.28 8.011912

min

Z of stiffiners 224.6676

Z of Longitudinals 401.1921

Weight Estimation:

Component Area Thickness Weight Lever LCG

LCG Lever KG

KG

Keel 410.4 22 70.87608 114 8079.873 0 0

Bottom+bilge 6848.6 20 1075.23 114 122576.2 1 1075.23

side AWL 2407.447 12 226.7815 114 25853.09 19.168 4346.948

side BWL 8219.077 18 1161.356 114 132394.5 8.368 9718.223

main dk plate 8875.24 14 975.3889 114 111194.3 20 19507.78

INNER SKIN

bottom 5443.5 16 683.7036 114 77942.21 2 1367.407

side 7448 14 818.5352 114 93313.01 11.75 9617.789

Bulkheads

full-1 930 16 116.808 33 3854.664 10.8 1261.526

full-2 930 16 116.808 38 4438.704 10.8 1261.526

full-3 930 16 116.808 66 7709.328 10.8 1261.526

full-4 930 16 116.808 98 11447.18 10.8 1261.526

full-5 930 16 116.808 130 15185.04 10.8 1261.526

full-6 930 16 116.808 162 18922.9 10.8 1261.526

full-7 930 16 116.808 194 22660.75 10.8 1261.526

partial-1 245 16 30.772 221 6800.612 15 461.58

partial-2 889.57 16 111.73 8 893.8399 15 1675.95

partial-3 221.95 16 27.87692 0 0 15 418.1538

Girders

Centre 0.04 228 71.592 114 8161.488 1 71.592

153

Page 154: Design of 115000 DWT Tanker

side 0.036 228 515.4624 114 58762.71 1 515.4624

stringers 0.036 228 515.4624 114 58762.71 12.795 6595.341

Deck 228 59.42592 114 6774.555 20 1188.518

Frames

solid 163.436 20 1411.27 114 160884.8 10.8 15241.71

Sum= 8502.242

Stiffeners wt/m (T/m) length weight Lever LCG

LCG Lever VCG

VCG

Deck 0.0262 228 107.5248 114 12257.83 21 2258.021

Deck Longi 0.0724 228 79.23456 114 9032.74 21 1663.926

Tank top 0.0702 228 230.4806 114 26274.79 2 460.9613

Side shell 0.0702 228 307.3075 114 35033.06 10.8 3318.921

Bottom 0.0724 228 316.9382 114 36130.96 0.45 142.6222

Inner Side 0.0702 228 307.3075 114 35033.06 11.8 3626.229

BKD 0.0739 21.6 306.4781 114 34938.5 10.8 3309.963

Sum= 10157.51

Superstructure Thick Area Wt Lever LCG

LCG Lever VCG

VCG

Deck 10 1042.25 81.81663 27 2209.049 28 2290.866

Walls 10 787.116 61.78861 27 1668.292 28 1730.081

TOTAL WEIGHT

10481.01 Tons

LCG= 108.8742 VCG= 9.487062

Note: Engine weight, Fuel Weight, Outfit Weight Are still not available and hence not considered

154

Page 155: Design of 115000 DWT Tanker

MIDSHIP SECTION MODULUS CALCULATION:

Assume NA at KeelItem No Item B cm H cm

Area cm2 No. Arm 1st Mom 2nd Mom Abt Own

1 Keel 180 2.2 396 1 1.1 435.6 479.16 159.722 Bottom Plate 3945 2 7890 1 1 7890 7890 2590.28

3Inner bottom Plate 3725 1.6 5960 1 200 1192000 238400000

1271.46667

4 Inner Side 1.4 1959 5485.2 2 1179.5 6469793 7631121315175420398

5

5 Side Plate 1.8 2159 7772.4 2 1079.5 8390306 9057335111301911170

4

6 Main deck 4125 1.4 5775 1 21591246822

52691889777

5 943.25

7 Center Girder 2 200 400 1 100 40000 40000001333333.3

38 Side Girders 1.8 200 2880 8 100 288000 28800000 96000009 Stringer L1 200 1.8 720 2 250 180000 45000000 194.4

10 Stringer L2 200 1.8 720 2 750 540000 405000000 194.411 Stringer L3 200 1.8 720 2 1250 900000 1125000000 194.412 Stringer L4 200 1.8 720 2 1750 1260000 2205000000 194.4

13Bottom Stiffeners 92.27 32 24.5

2260.615 55385.0675 972505.6

14 Deck stiffeners 33.4 32 2159 72110.6155686785.

4 5088015 Deck Longi 92.27 8 2100 193767 406910700 243126.4

16 Side Stiff 89.4 32 1079.5 96507.3104179630.

4 454976

17 Inner side Stiff 89.4 32 1079.5 96507.3104179630.

4 454976

TOTAL 39835.3 3219780 4842957470 478643122

Page 156: Design of 115000 DWT Tanker

4 3 2 8

NA808.272

3 cm Above Keel

156

Page 157: Design of 115000 DWT Tanker

Additional I 32197802.62 Due to shift of NAFINAL I NA 53183808128Zmax 65799368.5 cm3Zmin 39374189.82 cm3Min Z req. 32851544.55 cm3C1 10.13905974k 1THUS THE SHIP IS SAFE!!!!!

FACTOR OF SAFETY: 1.2

Following were the formulae used for the above Calculations:Watertight Bulkhead platting

t=s*(p)^0.5/(2*(σ)^0.5)+tc

p=10*h

σ=160N/mm2

tc= corrosion margin= 1mm

Bulk head stiffening

Z=spl2/(mσ)+Zc cu.cm

s=500mm

l=3.8m

m=10

Zc= corrosion margin= 1mm

Deck Girder

Z=bpS2103/(mσ)+Zc cu.cm

b=4m

p=5kN/m2

S=72m

157

Page 158: Design of 115000 DWT Tanker

m=12

σ=160N/mm2

Zc= corrosion margin= 1mm

Frames

Z=spl2k/1.6+Zc cu.cm

s= 500mm

p=35kN/m2

l=3.8m

k=1

Zc= corrosion margin= 1mm

Floors

Z=spl2k/1.6+Zc cu.cm

s= 500mm

p=35kN/m2

l=3.8m

k=1

Zc= corrosion margin= 1mm

Keel Plate Thickness:

Width= 400+10L =400+720= 8.88mm

Bottom/side shell Plate Thickness:

T= (to+0.04L)k^(1/2) + tc

K= material Factor= 1

to =4mm basic thickness

L= LBP

tc= corrosion margin= 1mm

Stringers:

Z=spl2/(12σ)+Zc cu.cm

s= 500mm

p=35kN/m2

l=3.8m

k=1

Zc= corrosion margin= 1mm

Deck stiffening

Z=spl2/(12σ)+Zc cu.cm

158

Page 159: Design of 115000 DWT Tanker

RUDDER CALCULATIONS

Rudder Torque Calculations

Aspect Ratio,λ 1.82rudder blade area,Ar 68.70237 m2 PNA Vol. IIIc1 1.272116c2 (NACA-00) 1.1 ahead

0.8 asternc3 1v 15.5 knotsCth 1 (thrust coeff)Lateral force on rudder blade, Pl 3048796 ahead LR-Rules

2217306 astern

Rudder Torque, Mt 18750583 Nm ahead13636788 Nm astern

RUDDER GEOMETRY

Area = b * c T = 1.4b+X X = 0.05D-.0055DX 0.960844

b 11.17 m b - SpanC - Chord

c 6.15 m

Aspect Ratio = Span / Chord AR 1.82

αmax = (5/7)*ԃmax Where,αmax - Angle of Attackԃmax - Rudder deflection Angle

αmax 25 deg ԃmax = 33 - 35 for sea-going with conventional rudder

159

Page 160: Design of 115000 DWT Tanker

PROPELLER SELECTION

LBP 224 mLOA 233 mFn 0.152B 41.246 mDepth moulded 21.592 mT 16.5 mCb 0.81Cm 0.997Cwp 0.889Cp 0.810Vs 14 knotsVa 9.02 knotsTotal Resistance Including Appendages (KN)

1110.000 KN

Quasi Propulsive Coefficient

0.700

Shaft Efficiency 0.985relative rotative efficiency

1.000

Effective Horse Power 9726.500 KWPD 13323.75 KWwake fraction,w 0.356 PNA-2

Pg.158thrust deduction factor,t 0.2492 PNA pg. 159-

eqn(47)

η hull 1.165839ηο 0.56ηr 0.936753QPC 0.611577

PROPELLER CLEARANCESProp hub from AP 12.8a 1b 2.7c 2

160

Page 161: Design of 115000 DWT Tanker

Dia of prop 7.35 mmax permissible prop dia 7.4 m

Engine speed 105 rpmpower 15675 @100MCR

13323.75 @85MCROpen water Diameter 7.789474 mno. of propeller blades, Z 5density of water, ρ 1025 Kg/m3

AE/Ao CalculationsVa 9.016 knots 4.6378304RT 1110.000T 1478.423 KNh 5.6 height of shaft

centerline above base

Patm 101300 N/m2Pv 1646 N/m2 Vapour

pressure of water at 15 deg. C

P0 210902.2 N/m2K 0.2 for single screw

shipH 10.9AE/Ao 0.566188 Keller's formula~ 0.6 for 5 bladed

propeller1/J 166.4032

thus, Wageningen B5-60 propeller is chosen

RPM range BP δ ηο P/D PNA pg 192 (Bp-δ diagram)105 11 166.403238

955% 0.72

161

Page 162: Design of 115000 DWT Tanker

PROPELLER

A propeller is a type of fan that transmits power by converting rotational motion into thrust. A pressure difference is produced between the forward and rear surfaces of the airfoil-shaped blade, and a fluid (such as air or water) is accelerated behind the blade. Propeller dynamics can be modeled by both Bernoulli's principle and Newton's third law. A propeller is sometimes colloquially known as a screw.

PROCEDURE FOR PROPELLER CALCULATIONS:

Firstly, the propeller diameter is being taken from the calculations using all the propeller clearances.After that, the number of blades is fixed from the analysis done using the Hull Resonance DiagramThereafter the values of Wake Fraction and Thrust Deduction Factor are calculatedUsing the value of wake fraction, we calculate the velocity of advanceUsing the value of Thrust deduction fraction, we calculate the propeller thrustAs we know the value of Propeller RPM, Effective Power, Delivered Power we can calculate the value of Bp and δ.Thereafter various efficiencies such as Hull Efficiency, Relative rotative efficiency and Open water Efficiency are calculated by using empirical formulas. The values will be interpolated in the later course.Simultaneously, the blade area ratio will be calculated using the Keller formula, This will be the Selected Blade Area Ratio.We can select a propeller by using the number of blades and Blade area ratio, either from tables or empirical formulas. Hence you can select your propellerThereafter we have to look into the aspects of CavitationCavitation Number has to be calculated using the Difference between the vapour pressure and static pressure which are calculated from standard formulas and tables.Then we have to calculate the Developed Area, with the assumption that Developed area is equal to the Expanded areaUsing Bp-δ diagram we calculate the values of P/D ratio and Open water Efficiency, We can check the value of Open water efficiencyThe P/D ratio is input in the empirical formula in order to calculate the Blade Area Ratio; this BAR value will be taken as Calculated Blade Area Ratio.The Condition for Cavitation not to occur is that Calculated Blade area ratio should be less than Selected Blade Area RatioWe can check the risk of cavitation to our selected propeller.Hence Propeller calculations are completed.

162

Page 163: Design of 115000 DWT Tanker

RELEVANT FORMULAE

Velocity of Advance= Velocity of ship (1- Wake Fraction)

Propeller Thrust= Total Resistance/ Thrust Deduction factor

Height of Shaft Centre line above base= (Propeller Diameter/2) +0.2

Pressure Head= Draft- height of shaft centre line above base

Static Pressure at the centre line of propeller shaft= Atmospheric Pressure+ (ρg*pressure head)

Vapour Pressure at 15 degrees= 1.646 KN/m2

Cavitation Account (Ae/Ao) = (1.3+0.3Z)T/(PO-PV)Dp2+K (K=0.2 single screw)

Bp= N*P0.5/VA2.5

δ = N*D/VA

Relative Rotative Efficiency= 0.9922-0.05908AE/AO+0.07424*(Cp-0.0225*lcb)

Hull Efficiency= (1-t)/ (1-w)

Delivered Efficiency= Effective Power/ Delivered Power

Open Water Efficiency= Delivered Efficiency/ (1-t)/(1-w)*Relative Rotative Efficiency

Blade Area Ratio (Keller Formula)

Cavitation Number= (Static Pressure at C.L of Shaft- Vapour Pressure)/ Dynamic Pressure

Dynamic Pressure=

Projected Area= Propeller Thrust/(τc *Dynamic Pressure)

Developed Area (Taylor’s Relationship) = Projected Area/ (1.067-0.229*(P/D))

Blade Area Ratio (Calculated) = Ae/ (π D2/4)

163

Page 164: Design of 115000 DWT Tanker

REFERENCES:

Ship Design for Efficiency and Economy-Scheenkluth

Ship Design and Construction – DGM Watson IRS-Main-Rules-Jan-2012 Principles of Naval Architecture – Vol. I, II, II Ship Construction – D J Eyres Basic Ship Propulsion – Gokarn

164