36
Design, Manufacturing and Applications of Composites PROCEEDINGS OF THE ELEVENTH JOINT CANADA-JAPAN WORKSHOP ON COMPOSITES FIRST JOINT CANADA-JAPAN-VIETNAM WORKSHOP ON COMPOSITES Ho Chi Minh, Vietnam AUGUST 8-10, 2016 EDITED BY Suong Van Hoa Concordia University, Montreal, Canada Hiroyuki Hamada Kyoto Institute of Technology, Kyoto, Japan Nguyen Dinh Duc Vietnam National University-Hanoi, Hanoi, Vietnam

Design, Manufacturing and Applications of … Manufacturing and Applications of Composites PROCEEDINGS OF THE ELEVENTH JOINT CANADA-JAPAN WORKSHOP ON COMPOSITES FIRST JOINT CANADA-JAPAN-VIETNAM

  • Upload
    hathu

  • View
    239

  • Download
    6

Embed Size (px)

Citation preview

Design,Manufacturing and

Applications ofComposites

PROCEEDINGS OF THE

ELEVENTH JOINT CANADA-JAPANWORKSHOP ON COMPOSITES

FIRST JOINT CANADA-JAPAN-VIETNAMWORKSHOP ON COMPOSITES

Ho Chi Minh, VietnamAUGUST 8-10, 2016

EDITED BY

Suong Van HoaConcordia University, Montreal, Canada

Hiroyuki HamadaKyoto Institute of Technology, Kyoto, Japan

Nguyen Dinh DucVietnam National University-Hanoi, Hanoi, Vietnam

setisopmoC fo snoitacilppA dna gnirutcafunaM ,ngiseD

hcetSED .cnI ,snoit ac il buP teertS ekuD htroN 934

.A.S.U 20671 ain av lys nneP ,ret sac naL

thgir ypoC yb 7102 hcetSED .cnI ,snoit ac il buP devres er sthgir llA

a ni derots ,decud orp er eb yam noit ac il bup siht fo trap oN ,snaem yna yb ro mrof yna ni ,det tim snart ro ,met sys laveirt er ,esiw re hto ro ,gni droc er ,gni ypoc ot ohp ,lac i nahc em ,cinort cele

.rehsil bup eht fo nois sim rep net tirw roirp eht tuo htiw

aci remA fo setatS detinU eht ni detnirP1 2 3 4 5 6 7 8 9 01

:elt it red nu yrt ne niaMioJ htne velE eht fo sgni deec orP :seti sop moC fo snoit ac ilp pA dna gni rut caf u naM ,ngis eD tn nap aJ-ada naC

seti sop moC no pohs kroW setisopmoC no pohskoW man teiV-nap aJ-ada naC tnioJ tsriF/

A hcetSED koob snoit ac il buP .p :yhp ar go il biB

124 .p xed ni sedulc nI

7-623-59506-1-879 .oN NBSI

KOOB SIHT REDRO OT WOH:ENOHP YB 8 ,0661-092-717 ro 7334-005-778 MA 5– MP emiT nretsaE

:XAF YB 0016-905-717

:LIAM YB tnemtrapeD redrO hcetSED .cnI ,snoitacilbuP

teertS ekuD htroN 934.A.S.U ,20671 AP ,retsacnaL

:DRAC TIDERC YB revocsiD ,draCretsaM ,ASIV ,sserpxE naciremA

YB WWW :ETIS ptth //: www . buphcetsed moc.

stnetnoC

seettimmoC ix

ecaferP iiix

TNEMPOLEVED LAIRETAM

selcitraponaN gni sU lleC ral oS cinag rO ni ycneic if fE nois rev noC ygre nE fo tnem ecnah nE ........ 3 ,cuD hniD neyugN ,yaiG uaC ,yuhT nauX 441 ,ygo lon hceT dna gni reen ig nE fo ytis rev inU -UNV

man teiV ,ion aH ,hniD gnaN neyugN ,yaiG uaC ,yuhT nauX 441 ,ygo lon hceT dna gni reen ig nE fo ytis rev inU -UNV

man teiV ,ion aH ,gnahT cuD mahP ,yaiG uaC ,yuhT nauX 441 ,ygo lon hceT dna gni reen ig nE fo ytis rev inU -UNV

man teiV ,ion aH ,gnoL hniD gnaD ,yaiG uaC ,yuhT nauX 441 ,ygo lon hceT dna gni reen ig nE fo ytis rev inU -UNV

man teiV ,ion aH ,neyugN nauX neyugN man teiV ,ion aH ,nauX hnahT ,iarT neyugN 433- ecne icS fo ytis rev inU-UNV

straP gni laeS sa desU eti sop moC dediarB ehT ................................ 11adeU asihakaT

rot i cap aC repuS larut curtS hciw dnaS eti sop moC ............................... 71ikorodoT arikA

enehpoihtyxoidenelyhteyloP dna enilinayloP fo seit re porP cimorhcortcelE fo noit azi ret ca rahCseciv eD desaB ................................................... 32

,hniN iaH gnaD 441 ,ion aH ytis rev inU lanoit aN man teiV ,ygo lon hceT dna gni reen ig nE fo ytis rev inUmanteiV ,00001 ion aH ,yuhT nauX

,hniD gnaN neyugN ,ion aH ytis rev inU lanoit aN man teiV ,ygo lon hceT dna gni reen ig nE fo ytis rev inUmanteiV ,00001 ion aH ,yuhT nauX 441

,gnoL yuD mahP ,ygo lon hceT dna ecne icS fo yme dacA ese man teiV ,ecne icS sla ir et aM fo etut its nImanteiV ,00001 ion aH ,yaiG uaC ,teiV couQ gnaoH 81

decrof ni eR-cir baF suo i raV fo erutcurtsorciM dna seit re porP lac i nahc eM fo noitagitsevnIerut a rep meT detav e lE ta eti sop moC-oeG ................................... 13

,hnahT nahP nahN noit ac u dE dna ygo lon hceT fo ytis rev inU CMCH

GNIRUTCAFUNAM

snoit ac ilp pA erut a rep meT woL rof sla ir et aM gni laeH fleS .......................... 34 ,nahK-ragsA dammahoM fo tnem trap eD ,)MOCNOC( seti sop moC rof ret neC aidroc noC

hcraes eR rof ret neC ,ytis rev inU aidroc noC ,gni reen ig nE lairt sud nI dna lac i nahc eM,.W .dvlB evuennosiaM eD 5541 ,)CEPERC( seti sop moC dna srem yloP ni

8M1 G3H ,adanaC ,ceb euQ ,laert noM ,aoH naV gnouS dna lac i nahc eM fo tnem trap eD ,)MOCNOC( seti sop moC rof ret neC aidroc noC

op moC dna srem yloP ni hcraes eR rof ret neC ,ytis rev inU aidroc noC ,gni reen ig nE lairt sud nI seti s8M1 G3H ,adanaC ,ceb euQ ,laert noM ,.W .dvlB evuennosiaM eD 5541 ,)CEPERC(

seti sop moC cit salp om rehT decrof ni eR reb iF fo gni warD peeD no sret e mar aP ssec orP .......... 94 ,imanaN ihcimiroN ,ygo lon hceT dna ecne icS fo egel loC ,gni reen ig nE lac i nahc eM fo tnem trap eD

napaJ ,8038-101 oyk oT ,adoyihC ,iadaguruS-adnaK ,41-8-1 ,ytis rev inU nohiN ,onustaM ikuY nohiN ,ygo lon hceT dna ecne icS fo egel loC ,gni reen ig nE lac i nahc eM fo tnem trap eD

napaJ ,8038-101 oyk oT ,adoyihC ,iadaguruS-adnaK ,41-8-1 ,ytis rev inU

iii

,ihsayabatiK ayuzaK ,ygo lon hceT dna ecne icS fo egel loC ,gni reen ig nE lac i nahc eM fo tnem trap eDnapaJ ,8038-101 oyk oT ,adoyihC ,iadaguruS-adnaK ,41-8-1 ,ytis rev inU nohiN

,onihisoH okihihciM ,ygo lon hceT dna ecne icS fo egel loC ,gni reen ig nE lac i nahc eM fo tnem trap eDnapaJ ,8038-101 oyk oT ,adoyihC ,iadaguruS-adnaK ,41-8-1 ,ytis rev inU nohiN

reb iF nob raC fo htgnertS laru xelF eht no ssen i vaW eld nuB reb iF decud nI-ssec orP fo stcef fEseti sop moC cit salp om rehT decrof ni eR ..................................... 75

,ikezokoY orihomoT nap aJ ,6568-311 oyk oT ,uk-oyknuB ,ognoH 1-3-7 ,oyk oT fo ytis rev inU ,ebakakA oratoK nap aJ ,6568-311 oyk oT ,uk-oyknuB ,ognoH 1-3-7 ,oyk oT fo ytis rev inU

,ikoA arihakaT nap aJ ,6568-311 oyk oT ,uk-oyknuB ,ognoH 1-3-7 ,oyk oT fo ytis rev inU ,ikiboK arikA ,1058-532 awaganaK ,amah ok oY ,uk-ogosI ,ohc-arahakaN-nihS 1 ,noit ar op roC IHI

nap aJstnem ecrof ni eR fo niartS decud nI-ssec orP no noit id noC gni dloM fo ecne ulf nI .............. 36

,akasoK orustaT ihcoK ,imaK ,adamayasoT ,ihcukonayiM 581 ,ygo lon hceT fo ytis rev inU ihcoKnapaJ ,2058-287

,awakusuK orihuzaK ihcoK ,imaK ,adamayasoT ,ihcukonayiM 581 ,ygo lon hceT fo ytis rev inU ihcoKnapaJ ,2058-287

niartS eruC ssec orP-nI no desaB seti sop moC evalc ot uA-fo-tuO fo noit az im it pO elc yC eruCgni rot i noM .................................................... 17

,adekaT ouboN 5-1-5 ,oyk oT fo ytis rev inU ehT ,secne icS reit norF fo loohcS eta u darGnap aJ ,1658-772 abihC ,awihsaK ,ahonawihsaK

,adasiH ukasnihS 5-1-5 ,oyk oT fo ytis rev inU ehT ,secne icS reit norF fo loohcS eta u darGnap aJ ,1658-772 abihC ,awihsaK ,ahonawihsaK

,ikagakaT ironuzaK 5-1-5 ,oyk oT fo ytis rev inU ehT ,secne icS reit norF fo loohcS eta u darGnap aJ ,1658-772 abihC ,awihsaK ,ahonawihsaK

,ihcukaniM uhS 5-1-5 ,oyk oT fo ytis rev inU ehT ,secne icS reit norF fo loohcS eta u darGnap aJ ,1658-772 abihC ,awihsaK ,ahonawihsaK

ytre porP lac i nahc eM fo sis y lanA dna nos i rap moC llikS s’rekroW ..................... 97 ,inataruK iranusaY otoyK ,uk-oykaS ,ikasagustaM ,ohcodiakohsoG ,ygo lon hceT fo etut its nI otoyKnapaJ ,5858-606

,esaH oratneK nap aJ ,9614-976 ogoyH ,onustaT ,onustaT ,odiaD 1-343 ,noit ar op roC ODAK ,uzawaK eomoT nap aJ ,9614-976 ogoyH ,onustaT ,onustaT ,odiaD 1-343 ,noit ar op roC ODAK

,ikiM ayA nap aJ ,9614-976 ogoyH ,onustaT ,onustaT ,odiaD 1-343 ,noit ar op roC ODAK ,imuzoU ihsadaT napaJ ,3911-105 ufiG ,ufiG ,odiganaY 1-1 ,ytis rev inU ufiG

,otoG okihikA napaJ ,0358-475 akasO ,otiaD otiagakaN 1-1-3 ,ytis rev inU oygnaS akasO ,adam aH ikuyoriH otoyK ,uk-oykaS ,ikasagustaM ,ohcodiakohsoG ,ygo lon hceT fo etut its nI otoyKnapaJ ,5858-606

noisurtluP detsis sA muu caV gni su sdoR eti sop moC cit salp om rehT fo gni rut caf u naM .......... 88 ,etniopaL xil eF ret neC hcraes eR ,)balSFCA( yrot ar o bal erut curtS reb iF dna eti sop moC decnav dA

,gni reen ig nE lac i nahc eM ,)CEPERC( smet syS eti sop moC dna rem yloP ecnam rof reP hgiH rof4J1 T3H ,adanaC ,cQ ,laert noM ,.dR euqinhcetyloP 0052 ,laert noM euqinhcetyloP

,lebeL egrebaL siuoL dlawsO dlon rA yrot ar o bal erut curtS reb iF dna eti sop moC decnav dAsmet syS eti sop moC dna rem yloP ecnam rof reP hgiH rof ret neC hcraes eR ,)balSFCA(

,.dR euqinhcetyloP 0052 ,laert noM euqinhcetyloP ,gni reen ig nE lac i nahc eM ,)CEPERC(4J1 T3H ,adanaC ,cQ ,laert noM

a ir et aM decrof ni eR-reb iF dere yaL-itluM rof stnem e lE llehS niartS etin iF fo tnem po lev eD slssec orP ylb mes sA gni rud noit am rof eD straP digiR-noN rof deilp pA .................... 69

,uV gnuH-cogN ,0011 ,erueirépus eigolonhcet ed elocÉ ,euqinacém einég ed tnemetrapéD3K1 C3H ,ada naC ,CQ ,laértnoM ,tseuO emaD-ert oN

,siocnarF tnec niV ,serèiviR-siorT à ceb éuQ ud étisrevinU ,euqinacéM einéG ed tnemetrapéD7H5 A9G ,ada naC ,CQ ,serèiviR-siorT ,segroF sed eur ,1533

,ereilliuC ehpotsirhC-naeJ à ceb éuQ ud étisrevinU ,euqinacéM einéG ed tnemetrapéD7H5 A9G ,ada naC ,CQ ,serèiviR-siorT ,segroF sed eur ,1533 ,serèiviR-siorT

,mahP naT-nauX ,erueirépus eigolonhcet ed elocÉ ,euqinacém einég ed tnemetrapéD3K1 C3H ,ada naC ,CQ ,laértnoM ,tseuO emaD-ert oN ,0011

PRFG dedarg eD lac i mehC rof noit a u lavE evit curts ed-noN ........................ 401 ,iijuF ihcimihsoY nap aJ ,5858-606 otoyK ,uk-oykaS ,ygo lon hceT fo etut its nI otoyK

,onO ekusieK nap aJ ,5858-606 otoyK ,uk-oykaS ,ygo lon hceT fo etut its nI otoyK ,adaW orihikA ,ukuhsiN ,ihctamihsagihneukaG ygo lon hceT fo egel loC ytiC eboK

nap aJ ,4912-166 eboK ,arumihsiN ikuyoriH ,5858-606 otoyK ,uk-oykaS ,ygo lon hceT fo etut its nI otoyK

nap aJ

vi

lit xeT ni gni taeH suoen at lum iS yb noit ac ir baF epiP PTRFC gni ruD roi vah eB noit an gerp mI essecorP gni mrof erP ............................................... 211

,atawI imukaT nap aJ ,3911-105 ,ytiC ufiG ,odiganaY 1-1 ,ytis rev inU ufiG ,imuzoU ihsadaT nap aJ ,3911-105 ,ytiC ufiG ,odiganaY 1-1 ,ytis rev inU ufiG

,iakaN imasA nap aJ ,3911-105 ,ytiC ufiG ,odiganaY 1-1 ,ytis rev inU ufiGrem yloP/leG evit is neS erut a rep meT fo seit re porP esnops eR lam rehT dna gni ssec orP

seti sop moC ................................................... 711 ,akasoH ihciiE dna ecne icS fo loohcS eta u darG ,gni reen ig nE & ecne icS rem yloP fo tnem trap eD

napaJ ,0158-299 atagamaY ,awazenoY ,nanoJ 61-3-4 ,ytis rev inU atagamaY ,gni reen ig nE ,gnoG niJ ,ytis rev inU atagamaY ,gni reen ig nE fo ytlu caF ,noit av on nI smet syS fo tnem trap eD

napaJ ,0158-299 ,atagamaY ,awazenoY ,nanoJ 61-3-4 ,otI ihsoriH dna ecne icS fo loohcS eta u darG ,gni reen ig nE & ecne icS rem yloP fo tnem trap eD

napaJ ,0158-299 atagamaY ,awazenoY ,nanoJ 61-3-4 ,ytis rev inU atagamaY ,gni reen ig nE ,atabihS uzakihsoY ,orihsustaY ,ihcamukokuoK 1-1 ,dtL ,.oC slac i mehC & smliF NIJHOK

nap aJ ,6868-668 ,otomamuK ,ihsinakaN iaD ,orihsustaY ,ihcamukokuoK 1-1 ,dtL ,.oC slac i mehC & smliF NIJHOK

nap aJ ,6868-668 ,otomamuK ,arah ihsI orihci-nihS ,orihsustaY ,ihcamukokuoK 1-1 ,dtL ,.oC slac i mehC & smliF NIJHOK

nap aJ ,6868-668 ,otomamuKrof ssec orP gni nioJ fo sroi vah eB noit ag uj noC no erutcurtsorciM ecaf ruS fo tcef fE

lair et aM dirb yH lateM-rem yloP ....................................... 321 ,aganeuS otoriH 61-3-4 ,ytis rev inU atagamaY ,gni reen ig nE dna ecne icS fo loohcS eta u darG

napaJ ,0158-299 ,atagamaY ,awazenoY ,nanoJ ,otI ihsoriH ,nanoJ 61-3-4 ,ytis rev inU atagamaY ,ecne icS sla ir et aM cinag rO fo loohcS eta u darG

napaJ ,0158-299 ,atagamaY ,awazenoY ,ihcuiroH urataW ,igayiM ,otasimnugadooT ,arahiganayuoA 08 ,dtL ,.oC cirt celE esamaY

nap aJ ,5100-879setan i maL PRF fo met syS gni rot i noM eruC emiT-laeR fo tnem po lev eD ................. 131

,adareT ogneK ihcoK ,imaK ,adamayasoT ,ihcukonayiM 581 ,ygo lon hceT fo ytis rev inU ihcoKnapaJ ,2058-287

,akasoK orustaT ihcoK ,imaK ,adamayasoT ,ihcukonayiM 581 ,ygo lon hceT fo ytis rev inU ihcoKnapaJ ,2058-287

,awakusuK orihuzaK ihcoK ,imaK ,adamayasoT ,ihcukonayiM 581 ,ygo lon hceT fo ytis rev inU ihcoKnapaJ ,2058-287

sros neS reb iF lac it pO yb PRFC elit xeT fo noit al u miS dna gni rot i noM eruC ............... 931 ,amayeU oG ihcoK ,imaK ,adamayasoT ,ihcukonayiM 581 ,ygo lon hceT fo ytis rev inU ihcoK

napaJ ,2058-287 ,akasoK orutaT ihcoK ,imaK ,adamayasoT ,ihcukonayiM 581 ,ygo lon hceT fo ytis rev inU ihcoK

napaJ ,2058-287 ,awakusuK orihuzaK ,imaK ,adamayasoT ,ihcukonayiM 581 ,ygo lon hceT fo ytis rev inU ihcoK

napaJ ,2058-287 ihcoKpu-yarpS no looT lanoit curts nI deif it nauQ dna seuqin hceT luf llikS no noit ag it sev nI nA

dohteM noit ac ir baF .............................................. 741ihcukiK ousteT

sreb iF tun oc oC rof mrof erP lanoit cer id inU dna mod naR gni rap erP rof seuqin hceTeti sop moC decrof ni eR ............................................. 651 ,mahP-naV yuhT-naD ohtnaC ,teertS 2/3 ,ytis rev inU ohtnaC ,ygo lon hceT gni reen ig nE fo egel loC

man teiV ,ytiC ,hnahT ihC gnourT ,ytiC ohtnaC ,teertS 2/3 ,ytis rev inU ohtnaC ,ygo lon hceT gni reen ig nE fo egel loC

man teiV ,irT hniM neyugN ,ytiC ohtnaC ,teertS 2/3 ,ytis rev inU ohtnaC ,ygo lon hceT gni reen ig nE fo egel loC

man teiV ,teiV naV neyugN ,ytiC ohtnaC ,teertS 2/3 ,ytis rev inU ohtnaC ,ygo lon hceT gni reen ig nE fo egel loC

man teiV ,noT naV hnyuH ,ytiC ohtnaC ,teertS 2/3 ,ytis rev inU ohtnaC ,ygo lon hceT gni reen ig nE fo egel loC

man teiV

SETISOPMOCOIB

noit cud orP fo noit ag it sev nI :eti sop moC enel yporp yloP decrof ni eR sreb iF tun oc oCgnidloM nois serp moC gni su sret e mar aP ................................... 561

v

,hnahT ihC gnourT ,ytiC ohtnaC ,teertS 2/3 ,ytis rev inU ohtnaC ,ygo lon hceT gni reen ig nE fo egel loCman teiV

,irT hniM neyugN ,ytiC ohtnaC ,teertS 2/3 ,ytis rev inU ohtnaC ,ygo lon hceT gni reen ig nE fo egel loCman teiV

,hnaH cogN uuL oaC ohtnaC ,teertS 2/3 ,ytis rev inU ohtnaC ,ygo lon hceT gni reen ig nE fo egel loCman teiV ,ytiC

,uhN hnyuQ maL gnourT ,teertS 2/3 ,ytis rev inU ohtnaC ,ygo lon hceT gni reen ig nE fo egel loCman teiV ,ytiC ohtnaC

,eruuV naV melliW traA ekeilohtaK ,gni reen ig nE sla ir et aM dna ygrul la teM fo tnem trap eDmuigleB ,nevueL 1003-B ,44 ,grebnerA krapleetsaK ,nevueL tietisrevinU

,tseopreV saangI tietisrevinU ekeilohtaK ,gni reen ig nE sla ir et aM dna ygrul la teM fo tnem trap eDmuigleB ,nevueL 1003-B ,44 ,grebnerA krapleetsaK ,nevueL

,gnouhC iuG man teiV ,ion aH ,teiV oC iaD 10 ,ygo lon hceT dna ecne icS fo ytis rev inU ion aHmet syS xirt aM dnelB ALP/CP desaboiB morf setisopmocoiB elb ar uD levoN ............... 271

,arsiM irsujnaM G1N ,hpleuG ,hpleuG fo ytis rev inU ,gni dliuB hguorbnrohT ,gni reen ig nE fo loohcSada naC ,oirat nO ,1W2

,veyruY yruY G1N ,hpleuG ,hpleuG fo ytis rev inU ,gni dliuB hguorbnrohT ,gni reen ig nE fo loohcSada naC ,oirat nO ,1W2

,ytnahoM .K ramA tnalP fo tnem trap eD ,ert neC tnem po lev eD dna yre voc siD stcudorpoiBadanaC ,oirat nO ,1W2 G1N ,hpleuG ,hpleuG fo ytis rev inU ,gni dliuB ecne icS porC ,erut luc ir gA

gni su PG eht yb gni dloM ref snarT niseR rof cir baF pmirc-noN fo noit ar olp xE ngis eDLOT dna CIA .................................................. 181

,awakihsI orihomoT fo ytis rev inU oyk oT fo loohcS eta u darG ,gni reen ig nE lac i nahc eM fo .tpeDnapaJ 0158-872 abihC ,adoN ,1462 ikazamaY ecne icS

,ikazustaM ekusoyR ikazamaY ,ecne icS fo ytis rev inU oyk oT ,gni reen ig nE lac i nahc eM fo .tpeDnapaJ 0158-872 ,abihC ,adoN ,1462

,ebakO aganomoT ,amay-aboA ,10-6-6 ,ytis rev inU ukohoT gni reen ig nE ecaps oreA fo .tpeDnap aJ ,igayiM ,iadneS ,uk-aboA

,orihsaY ikegihS ,ukakaN ,ukohoJ 1-5-3 ,ytis rev inU akouzihS gni reen ig nE lac i nahc eM fo .tpeDnapaJ 1658-234 ustamamaH

sreb iF xalF nev oW decrof ni eR eti sop moC citsaleocsiV fo noit az in e gom oH ................ 781 ,neyugN uV hnA maN teiV ,ioN aH ,aD gnoD ,noS yaT 571 ,ytis rev inU ioL yuhT

,neyugN gnouhC neiT maN teiV ,ioN aH ,aD gnoD ,noS yaT 571 ,ytis rev inU ioL yuhT

SISYLANA

ral uc riC MGF-E dene ffitS yllac irt nec cE na fo gnilkcubtsoP dna gnil kcuB rae nil noNtnemnorivnE lam rehT ni snoit ad nuoF cit salE no gni tseR sllehS lac ird nil yC ............... 591

cuD hniD neyugN nauQ couQ narT

neyugN hniD mahPfo nois il loC tnorF rof reb meM lac ird nil yC PTRFC fo sis y lanA esnops eR ciman yD

selib om ot uA ................................................... 402 ,atawihsI ikuyuzaK ecne icS fo loohcS eta u darG ,gni reen ig nE yre nihc aM nois ic erP fo tnem trap eD

napaJ 1058-472 abihC ,ihsabanuF ,iadonihsaraN ,1-42-7 ,ytis rev inU nohiN ,ygo lon hceT dna ,akustO amuY dna ecne icS fo loohcS eta u darG ,gni reen ig nE yre nihc aM nois ic erP fo tnem trap eD

napaJ 1058-472 abihC ,ihsabanuF ,iadonihsaraN ,1-42-7 ,ytis rev inU nohiN ,ygo lon hceT ,adamaY ihsotiH ecne icS fo loohcS eta u darG ,gni reen ig nE yre nihc aM nois ic erP fo tnem trap eD

napaJ 1058-472 abihC ,ihsabanuF ,iadonihsaraN ,1-42-7 ,ytis rev inU nohiN ,ygo lon hceT dna ,akanaruM iranustaK fo loohcS eta u darG ,gni reen ig nE yre nihc aM nois ic erP fo tnem trap eD

,ihsabanuF ,iadonihsaraN ,1-42-7 ,ytis rev inU nohiN ,ygo lon hceT dna ecne icSnapaJ 1058-472 abihC

,ikoA oihsoY ,ygo lon hceT dna ecne icS fo egel loC ,gni reen ig nE yre nihc aM nois ic erP fo tnem trap eDnapaJ 1058-472 abihC ,ihsabanuF ,iadonihsaraN ,1-42-7 ,ytis rev inU nohiN

htiw sllehS lac ird nil yC lair et aM dedarG ylla noit cnuF gni tat oR fo noit arb iV eerFsre ne ffitS lan ogoht rO ............................................. 212

,uT hniM narT man teiV ,ion aH ,gnohP iaiG 55 ,gni reen ig nE liviC fo ytis rev inU lanoit aN ,ioL naV neyugN man teiV ,ion aH ,gnohP iaiG 55 ,gni reen ig nE liviC fo ytis rev inU lanoit aN

ecnam rof reP hgiH fo sis y lanA eht ot gnigirK lauD dna yhpargomotorciM yaR-X fo noit ac ilp pAseti sop moC ................................................... 022

,ardaM annA rus ehc rehc er ed ert neC ,)PHCC( ecnam rof rep etuah à seti sop moc sel rus eriahC

iv

einég ed tnemetrapéD ,)CEPERC( ecnam rof rep etuah à seti sop moc te serèmylop sellaértnoM ed euqinhcetyloP elocÉ ,euqinacém

,uhcorT siocnarF ehc rehc er ed ert neC ,)PHCC( ecnam rof rep etuah à seti sop moc sel rus eriahCeinég ed tnemetrapéD ,)CEPERC( ecnam rof rep etuah à seti sop moc te serèmylop sel rus

laértnoM ed euqinhcetyloP elocÉ ,euqinacém ,fpoktierB rtoiP ed eigolonhceT ed étisrevinU ,SRNC-CTU 7337 RMU ,lavreboR eriotarobaL

ecnarF ,ueillayoR ed sehcrehceR ed ert neC ,engèipmoCseti sop moC PTRFC dna PRFC lanoit cer id inU fo noit azi ret ca rahC ygo lohp roM erut carF ....... 822

,aM naY nap aJ ,5858606 otoyK ,ygo lon hceT fo etut its nI otoyK ,ecne icS-orbiF decnav dA ,arahaguS ihsoT nap aJ ,6720-019 iukuF ,noit ar op roC ihcahuraM

,gnahZ iyiY nap aJ ,5858606 otoyK ,ygo lon hceT fo etut its nI otoyK ,ecne icS-orbiF decnav dA ,gnaY uiquY anihC RP ,026102 iah gnahS ,ytis rev inU auhgnoD ,selit xeT fo egel loC

,adam aH ikuyoriH nap aJ ,5858606 otoyK ,ygo lon hceT fo etut its nI otoyK ,ecne icS-orbiF decnav dAetalP MGF-E dene ffitS yllac irt nec cE na fo sis y lanA noit arb iV dna ciman yD rae nil noN

tnem nor iv nE lam rehT ni ............................................ 532 ,cuD hniD neyugN fo ytis rev inU ,ion aH-UNV ,yrot ar o baL serut curtS dna sla ir et aM decnav dA

manteiV–ion aH–yaiG uaC–yuhT nauX–441 ,ygo lon hceT dna gni reen ig nE ,gnoC gnoH mahP fo ytis rev inU ,ion aH-UNV ,yrot ar o baL serut curtS dna sla ir et aM decnav dA

manteiV–ion aH–yaiG uaC–yuhT nauX–441 ,ygo lon hceT dna gni reen ig nE ,taD hniD ogN fo ytis rev inU ,ion aH-UNV ,yrot ar o baL serut curtS dna sla ir et aM decnav dA

manteiV–ion aH–yaiG uaC–yuhT nauX–441 ,ygo lon hceT dna gni reen ig nEelb ar uD htiw gnip parW yb decud orP knaT ladior oT erus serP hgiH fo ngis eD lam it pO

eti sop moC .................................................... 342,.tS maS gnaoH 71 .oN ,ygo lon hceT dna ecne icS fo yme dacA yrat i liM ,narT hnahT cogN

ion aH ,yaiG uaC ,eL nauT hnA ,yaiG uaC ,.tS maS gnaoH 71 .oN ,ygo lon hceT dna ecne icS fo yme dacA yrat i liM

ion aHnoit am rof eD raehS red rO-hgiH eht gni su setalP dedarG ylla noit cnuF fo sis y lanA citatS

segdE no dehtoomS sniartS gni vaH stnem e lE etalP 3CTIM yb yro ehT .................. 252 ,hniD-uahC hnahT fo ytis rev inU CMCH ,sci nahc eM deilp pA dna gni reen ig nE liviC fo ytlu caF

manteiV ,ytiC hniM ihC oH ,noit ac u dE dna ygo lon hceT ,naV-neyugN hniH fo ytis rev inU CMCH ,sci nahc eM deilp pA dna gni reen ig nE liviC fo ytlu caF

manteiV ,ytiC hniM ihC oH ,noit ac u dE dna ygo lon hceT ,naV-neyugN ueiH hniM ihC oH ,erut cet ihc rA fo ytis rev inU CMCH ,gni reen ig nE liviC fo ytlu caF

man teiV ,ytiCrae niL-noN rof )3gsD-meF-sC( dohteM paG raehS eterc siD dehtoomS desaB-lleC A

daoL tsalB ret aw red nU ot etalP eti sop moC etan i maL fo esnops eR ciman yD ............... 562 ,naV ehT narT ,tcirt siD paV oG ,01 draW ,teertS hnaO neyugN ,981 ,ytis rev inU aihgN iaD narT

man teiV ,ytiC hniM ihC oH ,aoH couQ mahP ,tcirt siD paV oG ,01 draW ,teertS hnaO neyugN ,981 ,ytis rev inU aihgN iaD narT

man teiV ,ytiC hniM ihC oHdecrof ni eR-reb iF ecnam rof reP-hgiH-art lU fo seit re porP gni kcarC-tsoP fo suludoM llubieW

seterc noC .................................................... 372 ,neyugN meiL-yuD ytiC hniM ihC oH ,sci nahc eM deilp pA dna gni reen ig nE liviC fo tnem trap eD

iC hniM ihC oH , tcirt siD cuD uhT ,tS nagN naV oV 1 ,noit ac u dE dna ygo lon hceT fo ytis rev inU ,ytmanteiV

,eL gnahT-hnA ytiC hniM ihC oH ,sci nahc eM deilp pA dna gni reen ig nE liviC fo tnem trap eDiC hniM ihC oH , tcirt siD cuD uhT ,tS nagN naV oV 1 ,noit ac u dE dna ygo lon hceT fo ytis rev inU ,yt

manteiVoF :snois ulc nI cib uC gni niat noC sla ir et aM suoen eg o re teH fo seit re porP cit salE eht nO reir u

dohteM tnem e lE etin iF sus reV seir eS ..................................... 182 ,neyugN gnouD-ehT aD ,gnurT gnauQ 7K/52 ,ytis rev inU nâT yuD ,gni reen ig nE liviC fo ytlu caF

maN teiV ,gnaN ,neyugN nauT-yS ,gnaN aD ,gnurT gnauQ 7K/52 ,ytis rev inU nâT yuD ,gni reen ig nE liviC fo ytlu caF

maN teiV ,oT gnoD-yuQ ,gnaN aD ,gnurT gnauQ 7K/52 ,ytis rev inU nâT yuD ,gni reen ig nE liviC fo ytlu caF

maN teiVsnoit ad nuoF citsaleocsiV no gni tseR setalP eti sop moC detan i maL fo sis y lanA ciman yD ehT

dohteM tnem e lE gni voM gni sU daoL cinom raH gni voM a ot detcej buS ................. 092 ,nahT cogN naT oaC ,ygo lon hceT fo ytis rev inU ytiC hniM ihC oH ,gni reen ig nE liviC fo tnem trap eD

iiv

hniM ihC oH ,01 tcirt siD ,teertS teiK gnouhT yL 862 ,hniM ihC oH-ytis rev inU lanoit aN man teiVmanteiV ,ytiC

,iaH naV gnouL ,ygo lon hceT fo ytis rev inU ytiC hniM ihC oH ,gni reen ig nE liviC fo tnem trap eDhniM ihC oH ,01 tcirt siD ,teertS teiK gnouhT yL 862 ,hniM ihC oH-ytis rev inU lanoit aN man teiV

manteiV ,ytiC ,ihT hniM narT fo ytis rev inU lanoit aN ,gni reen ig nE lat nem nor iv nE dna liviC fo tnem trap eD

eropagniS ,erop ag niS ,couhP gnorT neyugN nepO ytiC hniM ihC oH ,erut cet ihc rA dna gni reen ig nE liviC fo ytlu caF

manteiV ,ytiC hniM ihC oH ,3 tcirt siD ,teertS naT naV oV 79 ,ytis rev inU

GNITSET DNA NOITAZIRETCARAHC

htgnertS IAC dna ega maD tcap mI fo noit am it sE lac i tyl a nA ........................ 103 ,usameuS ihsoriH 1-7 ,ytis rev inU aihpoS ,secne icS deilp pA dna gni reen ig nE fo tnem trap eD

napaJ ,4558-201 oyk oT ,uk-adoyihC ,ohc-ioiKret se yloP/ssalG fo scit si ret ca rahC nois simE cit suocA no erut cet ihc rA reb iF fo tcef fE

seti sop moC ................................................... 013 ,iiroM urhoT fo etut its nI nanohS ,secne icS lat nem nor iv nE nam uH dna sla ir et aM fo tnem trap eD

napaJ ,1158-152 awaganaK ,awasijuF ,agiakihsiN-odijusT 52-1-1 ,ygo lon hceT ,otomakO orihihsoT nanohS ,secne icS lat nem nor iv nE nam uH dna sla ir et aM fo tnem trap eD

napaJ ,1158-152 awaganaK ,awasijuF ,agiakihsiN-odijusT 52-1-1 ,ygo lon hceT fo etut its nIsetan i maL evaeW nialP yxo pE/nob raC fo ruoi vah eB elis neT eugit aF no tcef fE ycneuq erF

snoit id noC lamrehtorgyH tne ref fiD red nu .................................. 713 ,yahK demahoM ,seti sop moc xuairétam ed noitasirétcarac ed te noit ac ir baf ed eriotarobaL

,tseW emaD-ert oN 0011 ,erueirépus eigolonhcet ed elocÉ ,tnem trap eD gni reen ig nE lac i nahc eMadanaC ,3K1 C3H ,ceb éuQ ,laértnoM

,ogN gnuD hnA ,seti sop moc xuairétam ed noitasirétcarac ed te noit ac ir baf ed eriotarobaL,tseW emaD-ert oN 0011 ,erueirépus eigolonhcet ed elocÉ ,tnem trap eD gni reen ig nE lac i nahc eM

adanaC ,3K1 C3H ,ceb éuQ ,laértnoM ,nasenaG nahomajaR lairt sud nI dna lac i nahc eM fo tnem trap eD ,seti sop moC rof ert neC aidroc noC

G3H ,ceb éuQ ,laértnoM ,tseW .dvlB evuennosiaM ed 5541 ,ytis rev inU aidroc noC ,gni reen ig nEadanaC ,8M1

ecit carP ngis eD no sgni raeB reb buR gni pmaD hgiH fo gni taeH-fleS fo tcef fE .............. 623 ,gnuD hnA neyugN man teiV ,ioN aH ,aD gnoD ,noS yaT 571 ,ytis rev inU ioL yuhT

,gnouhC neiT neyugN man teiV ,ioN aH ,aD gnoD ,noS yaT 571 ,ytis rev inU ioL yuhT ikaihsoY ,0758-833 erut cef erP amatiaS ,draW arukaS ,obukoomihS 55 ,ytis rev inU amatiaS ,iukO

nap aJnev oW gni sU PRFG·PTRFG dna PRFC PTRFC fo seit re porP erut carF fo noit a u lavE

tseT elis neT deepS-hgiH yb cir baF ...................................... 333 ,otomiguS oaN nohiN ,ygo lon hceT lairt sud nI fo egel loC ,gni reen ig nE lac i nahc eM fo tnem trap eD

tnedutS eta u darG ,ytis rev inU ,neB ihcioG SRPJ ,ros sef orP gni ti siV ,ytis rev inU ayogaN

,amayariH oiroN nohiN ,ygo lon hceT lairt sud nI fo egel loC ,gni reen ig nE lac i nahc eM fo tnem trap eDrosseforP ,ytis rev inU

scit salP decrof ni eR reb iF nob raC fo roi vah eB noit sub moC ........................ 143 ,ihsokO ikuyasaM 5858-606 otoyK ,uk-oykaS ,ikasagustaM ,ygo lon hceT fo etut its nI otoyK ,ikuzihcoM ukasuY 5858-606 otoyK ,uk-oykaS ,ikasagustaM ,ygo lon hceT fo etut its nI otoyK

,nassaH ylA 5858-606 otoyK ,uk-oykaS ,ikasagustaM ,ygo lon hceT fo etut its nI otoyK ,adam aH ikuyoriH 5858-606 otoyK ,uk-oykaS ,ikasagustaM ,ygo lon hceT fo etut its nI otoyK

stI dna sdnelB enel yporp yloP / 6 edimayloP fo erut curtS dna seit re porP lac i nahc eMseti sop moC ................................................... 543

,imagihsI arikA 61-3-4 ,ytis rev inU atagamaY ,ecne icS sla ir et aM cinag rO fo loohcS eta u darGnapaJ ,0158-299 atagamaY ,awazenoY ,nanoJ

,amadoK ikuY ,nanoJ 61-3-4 ,ytis rev inU atagamaY ,ecne icS sla ir et aM cinag rO fo loohcS eta u darGnapaJ ,0158-299 atagamaY ,awazenoY

,otI ihsoriH ,nanoJ 61-3-4 ,ytis rev inU atagamaY ,ecne icS sla ir et aM cinag rO fo loohcS eta u darGnapaJ ,0158-299 atagamaY ,awazenoY

SEITREPORP LACISYHP

enotS evit id dA ret fa rat roM remylopoeG fo seit re porP lac i nahc eM eht no sei dutS lait inItnem taerT red woP ............................................... 553

iiiv

,gnahT neyugN meiX ueihC hniD neyugN 20 ,ytis rev inU gnarT ahN ,gni reen ig nE liviC fo ytlu caFman teiV ,000056 ,teertS

ecrof ni eR reb iF dirb yH ecnam rof reP hgiH art lU fo roi vah eB elis neT no stcef fE etaR niartS deterc noC ..................................................... 363

,teiK nauT narT man teiV ,noit ac u dE dna ygo lon hceT fo ytis rev inU ytiC hniM ihC oH ,ooJ gnoD miK aer oK ,luo eS ,ytis rev inU gnojeS

fo noit ar a perP dna teehS eti hparG no yol lA muis en gaM tnat sis eR-emalF fo ytilibatteWseti sop moC yol lA muis en gaM/FCGV ..................................... 173

,ikasaS neG ,amayimagaK ,1-4-1 ,ytis rev inU amihs or iH ,gni reen ig nE fo loohcS eta u darGnapaJ ,7258-937 ,erut cef erP amihs or iH ,amihs or iH-ihsagiH

,oaY gnaiquoY ,amayimagaK ,1-4-1 ,ytis rev inU amihs or iH ,gni reen ig nE fo loohcS eta u darGnapaJ ,7258-937 ,erut cef erP amihs or iH ,amihs or iH-ihsagiH

,oiguS orijneK ,amayimagaK ,1-4-1 ,ytis rev inU amihs or iH ,gni reen ig nE fo loohcS eta u darGnapaJ ,7258-937 ,erut cef erP amihs or iH ,amihs or iH-ihsagiH

SNOITACILPPA

tnem sses sA ssec orP gni dluoM eti sop moC diu qiL rof wolfkroW A ..................... 183 ,nelueK yesaC ehT ,gni reen ig nE sla ir et aM fo tnem trap eD ,krow teN hcraes eR seti sop moC

4Z1 T6V ,adanaC ,CB ,rev uoc naV ,daoR serotS 0536-903 ,aib mul oC hsi tirB fo ytis rev inU ,nohcuboM ehpotsirhC ,gni reen ig nE sla ir et aM fo tnem trap eD ,krow teN hcraes eR seti sop moC

4Z1 T6V ,adanaC ,CB ,rev uoc naV ,daoR serotS 0536-903 ,aib mul oC hsi tirB fo ytis rev inU ehT ,yrieboZ divaN ehT ,gni reen ig nE sla ir et aM fo tnem trap eD ,krow teN hcraes eR seti sop moC

4Z1 T6V ,adanaC ,CB ,rev uoc naV ,daoR serotS 0536-903 ,aib mul oC hsi tirB fo ytis rev inU ,dnulnreF naroG ehT ,gni reen ig nE sla ir et aM fo tnem trap eD ,krow teN hcraes eR seti sop moC

4Z1 T6V ,adanaC ,CB ,rev uoc naV ,daoR serotS 0536-903 ,aib mul oC hsi tirB fo ytis rev inU ,pitrasruoP hsuonA ehT ,gni reen ig nE sla ir et aM fo tnem trap eD ,krow teN hcraes eR seti sop moC

4Z1 T6V ,adanaC ,CB ,rev uoc naV ,daoR serotS 0536-903 ,aib mul oC hsi tirB fo ytis rev inUamsalP krapS yb detac ir baF seti sop moC nZ/gM fo seit re porP lac i nahc eM dna erutcurtsorciM

stnalp mI lac i dem oiB rof gniretniS ...................................... 093 ,hniD cogN mahP dna ecne icS fo ytis rev inU ion aH ,gni reen ig nE dna ecne icS sla ir et aM fo loohcS

manteiV ,ion aH ,daoR teiV oC iaD 1.oN ,ygo lon hceT ,iaH naV hniD dna ecne icS fo ytis rev inU ion aH ,gni reen ig nE dna ecne icS sla ir et aM fo loohcS

manteiV ,ion aH ,daoR teiV oC iaD 1.oN ,ygo lon hceT ,ihsayaboK ouqE ygo lon hceT fo etut its nI oyk oT ,ecne icS sci mar eC dna ygrul la teM fo tnem trap eD

napaJ ,2558-251 oyk oT ,uk-orugeM ,amayakoO 1-21- 2tlahp sA xiM toH fo htgnertS no etsaW cit salP morf )TEP( etalahthpereT ene ly hte yloP fo tcef fE

man teiV nre htuoS ni eterc noC ........................................ 693ygo lon hceT fo ytis rev inU ytiC hniM ihC oH ,nauT hnaM neyugN

dohteM ydnaC not toC yb reb iF onaN nob raC no ydutS .......................... 104 ,adaT orihikA agihS ,ytiC ustO ,onakaN ,emohc-3 ,31-4 .dtL ,.oC noita erC lac i gol on hceT ighO

nap aJ ,4112-025 erut cef erP ,ustamekaT oyR ,ygo lon hceT fo etut its nI otoyK ,ecne icS-orbiF decnav dA fo tnem trap eD

napaJ ,5858-606 ,otoyK ,uk-oykaS ,ikasagustaM ,ohcodiakoysoG ,nrosmuhT nrohpapuS ,ygo lon hceT fo etut its nI otoyK ,ecne icS-orbiF decnav dA fo tnem trap eD

napaJ ,5858-606 ,otoyK ,uk-oykaS ,ikasagustaM ,ohcodiakoysoG ,ihsokO ikuyasaM ,ygo lon hceT fo etut its nI otoyK ,ecne icS-orbiF decnav dA fo tnem trap eD

napaJ ,5858-606 ,otoyK ,uk-oykaS ,ikasagustaM ,ohcodiakoysoG ,ayonI ikuyoriH ,ygo lon hceT fo etut its nI otoyK ,ecne icS-orbiF decnav dA fo tnem trap eD

napaJ ,5858-606 ,otoyK ,uk-oykaS ,ikasagustaM ,ohcodiakoysoG ,adam aH ikuyoriH ,ygo lon hceT fo etut its nI otoyK ,ecne icS-orbiF decnav dA fo tnem trap eD

napaJ ,5858-606 ,otoyK ,uk-oykaS ,ikasagustaM ,ohcodiakoysoG ,ioA imufihsoY ,ygo lon hceT dna ecne icS fo ytlu caF ,yrt si mehC sla ir et aM fo tnem trap eD

napaJ ,4912-025 agihS ,ytiC ustO ,ateS ,ytis rev inU ukokuyRsllaW CR-leetS dirb yH rof ledoM ngis eD ................................... 014

,neyugN yuH-gnauQ gni reen ig nE liviC .tpeD ,senneR secne icS deilp pA fo etut its nI lanoit aNecnarF ,nab rU dna

,narT naoT naV man teiV ,ytis rev inU iolyuhT ,jaijH dem mah oM gni reen ig nE liviC .tpeD ,senneR secne icS deilp pA fo etut its nI lanoit aN

ecnarF ,nab rU dnaxednI rohtuA .................................................. 124

xi

seettimmoC

eettimmoC evitucexE oC( aoH .V gnouS - adanaC ,ytisrevinU aidrocnoC ,)riahC

adanaC ,ytisrevinU aidrocnoC ,naV oV gnourT ,erueirepuS eigolonhceT ed elocE ,ogN gnuD hnA adanaC

adanaC ,erueirepuS eigolonhceT ed elocE ,mahP nauX naT oC( adamaH ikuyoriH - napaJ ,ygolonhceT fo etutitsnI otoyK ,)riahC

napaJ ,ytisrevinU ufiG ,iakaN imasA napaJ ,ytisrevinU nohiN ,neB ihcioG

napaJ ,ygolonhceT fo etutitsnI otoyK ,iijuF ihcimihsoY aT napaJ ,.dtL ,.oC gnikcaP ralliP noppiN ,adeU asihak

napaJ ,oykoT fo ytisrevinU ehT ,adekaT ouboN napaJ ,ytisrevinU aihpoS ,usameuS ihsoriH

dtL ,.oC gnirutcafunaM dna gnireenignE cificaP aisA rotoM atoyoT ,esagaN ihsakkaT PAMT( - napaJ ,)ME

K ,ihsasaM ebamaY napaJ ,ygolonhceT fo etutitsnI awazana napaJ ,oykoT fo ytisrevinU ehT ,ikoA arihakaT

napaJ ,ytisrevinU nohiN ,ikoA oihsoY napaJ ,ygolonhceT fo etutitsnI oykoT ,ikorodoT arikA

napaJ ,ytisrevinU ayogaN ,akoagaN umotusT V ,ytisrevinU lanoitaN ,hniB hnahT nahP mantei

oC( uhP iaD hnyuH - manteiV ,ygolonhceT fo ytisrevinU ytiC hniM ihC oH ,)riahc manteiV ,ytisrevinU ohT naC ,hnahT ihC gnourT

manteiV ,ytisrevinU ohT naC ,neihT gnoH naV naoD

eettimmoC noitazinagrO adanaC ,ytisrevinU aidrocnoC ,nasenaG nahomajaR

idheM adanaC ,ytisrevinU aidrocnoC ,itajjoH adanaC ,hpleuG fo ytisrevinU ,arsiM ujnaM

adanaC ,setavonnI atreblA ,ogN gnuD irT C ,oL nosaJ temna adanaC ,adanaC

napaJ ,oykoT fo ytisrevinU ehT ,ikezokoY orihomoT napaJ ,ytisrevinU nohiN ,adeU otihasaM

,onukO oratneK napaJ ,scitsalP awiaD xi

napaJ ,.dtL ,.oC adihcU ,adihcU uzakihsoT napaJ ,noitaroproC odaK ,inataruK iranusaY

napaJ ,ecneicS fo ytisrevinU oykoT ,ikazustaM ekusoyR napaJ ,ytisrevinU amihsukoT ,iakaS ikuyakaT

napaJ ,.dtL ,.oC yrenihcaM elitxeT iuraM ,iuraM oyR napaJ ,ytisrevinU nohiN ,ihcimiroN imanaN napaJ ,ytisrevinU akasO ,ikihsaruK iesusteT napaJ ,oykoT fo ytisrevinU ehT ,ebakO ijoY

napaJ ,.oC nekiG uyoT ,ihcukiK ousteT napaJ ,.oC nekihsiH ,awakuruF ihsakaT

,ecneicS fo ytisrevinU oykoT ,ikazustaM ekusoyR napaJ napaJ ,ytisrevinU eiM ,ihsinakaN asamusaY

napaJ ,.oC ihcahuraM ,arahaguS edihihsoT

eettimmoC yrosivdA adanaC ,aibmuloC hsitirB fo ytisrevinU ,pitrasruoP hsuonA

adanaC ,licnuoC hcraeseR lanoitaN ,tluaneD ennahoJ danaC ,ytisrevinU lliGcM ,drasseL yrraL a

adanaC ,ytisrevinU nosreyR ,nooP gnuehC napaJ ,ygolonhceT fo itutitsnI nanohS ,iiroM uroT

napaJ ,ytisrevinU atagamaY ,otI ihsoriH napaJ ,ygolonhceT fo etutitsnI otoyK ,ihsokO ikuyasaM napaJ ,ygolonhceT fo ytisrevinU ihcoK ,akasoK orustaT

,imuzoU ihsadaT napaJ ,ytisrevinU ufiG napaJ ,ytisrevinU amihsoriH ,ikasaS neG

manteiV ,ytisrevinU lacinhcetyloP ioN aH ,gnaiG gnorT neyugN manteiV ,ytisrevinU lanoitaN ,neihC uaM gnaD

manteiV ,ytisrevinU lanoitaN ,hniD gnaN neyugN iV ,ytisrevinU lanoitaN ,cuD hniD neyugN mante

xii

ecaferP

ni ytic a ni sraey owt yreve dleh spohskrow seires si setisopmoc no spohskrow napaJ adanaC ehTadanaC eht ,6102 nI .6991 ni gnitrats ,napaJ ni dna adanaC - napaJ - saw setisopmoc no pohskrow manteiV

8 tsuguA ,manteiV ni ytic hniM ihC oH ni dleh – tinutroppo edivorp ot era sevitcejbo ehT .6102 ,01 sei rof noitcaretni dna esenapaJ ,naidanaC neewteb .setisopmoc no gnikrow sreenigne dna stsitneics esemanteiV

ehT pohskrow ot smia setisopmoC ni gnikrow sreenigne dna stsitneics neewteb noitaroballoc retsof ni eht ni ecneirepxe dna noitamrofni fo egnahcxe eht rof murof a edivorp ot dna ,manteiV dna napaJ ,adanaC

tsisnoc pohskrow ehT .seirtnuoc eerht de .seinapmoc lacol ot stisiv dna snoitatneserp lacinhcet fo seirtnuoc eerht eht morf stnapicitrap 08 naht eroM etapicitrap evah d yrav scipoT .pohskrow eht ot ni

,seitreporp lacisyhP ,seuqinhcet sisylanA ,setisopmoc oiB ,gnirutcafunaM ,tnempoleved slairetaM morf ni stsitneics eht morf snoitubirtnoc fo noitroporp doog a si erehT .snoitacilppA dna ,segamad tcapmI

iV .manteiV ni setisopmoc no krow fo tohspans a edivorp yehT .mante

sgnideecorP Co- srotide

aoH naV gnouS ytisrevinU aidrocnoC

adanaC ,laertnoM

adamaH ikuyoriH ygolonhceT fo etutitsnI otoyK

napaJ ,otoyK

cuD hniD neyugN ytisrevinU lanoitaN manteiV - ionaH

,ionaH manteiV

xiii

Material Development

________________________ 1VNU- University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

2VNU-University of Science -334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

*Email: [email protected]

Enhancement of Energy Conversion Efficiency

in Organic Solar Cell Using Nanoparticles

Nguyen Dinh Duc*,1, Nguyen Nang Dinh1, Pham Duc Thang1, Dang Dinh Long1 and Nguyen Xuan Nguyen2

ABSTRACT

Doping nanomaterials such as the nanoparticles, nanorods, nanoprisms, etc. into

composite organic solar cells (OSCs) have recently attracted considerable research interest to obtain higher energy conversion efficiency. Among them, doping of Ag, ZnO nanoparticles into photoactive layers of multilayered composite OSCs are proposed to enhance the photocurrent due to the localized surface plasmon resonance (LSPR) effect. The size as well as the geometry of these nanoparticles are the most important key factors to contribute to LSPR effect. In this work we have investigated the LSPR effects of Ag and ZnO nanoparticles on the photoactive layer in a regular structure of OSC as ITO/photo-active layer doped with nanoparticles/ buffer layer/Al. The photoactive layer such as P3HT:PCBM doping with nanoparticles can be modeled as the light absorbed medium in which its physics behavior is altered by LSPR. Changing the size of Ag and ZnO nanoparticles, i.e. the radius, in P3HT:PCBM active layers will tune their absorption spectrum. The mechanical properties of nanoparticles doping in OSC structures based on P3HT:PCBM will also be discussed.

KEYWORDS

Organic solar cells, energy conversion efficiency, Ag and ZnO nanoparticles.

INTRODUCTION

In the recent years, organic solar cell (OSC) based on polymer has attracted much interest of the research community due to its great promise as renewable sources. One has also expected OSC to become the next generation photovoltaics for its low-cost, flexible as well as light devices which can be realized at room temperature solution processing. High energy conversion efficiency, i.e. exceeding 11% [1, 2, 3, 4] has been achieved in the polymer-fullerence bulk heterojunction (BFBHJ) type of devices

3

which may quickly bring the commercialized products of OSC-BFBHJ into life. The major obstacle towards the power conversion efficiency is the trade off between two main physics mechanisms inside OSC: the light harvesting, i.e. the light absorption and the charge collections, i.e. collections of photogenerated excitons. As the result, the mobility of charge-carrier is low and the exiton diffusion length is reduced due to the hopping limit. As the result, the thickness of the active layer is small, typically around 200 nm. Having such a thin active layer, OSC has a poor absorption process although the rate of charge-carrier recommbination is low [5, 6]. In most OSC structures, P3HT:PCBM is frequently used as a promising active layer which is able to exhibit the theoretical current Jsc close to 20 mA.cm-2, the experimental value still falls short in the range of 12-14 mA.cm-2. Hence, the main solution lies on the way to improve the light absorption of the P3HT:PCBM active layer, i.e. enhancing the light trapping process. Interestingly, localized surface plasmon resonance effect of nanoparticles (NPs) have been proposed to enhance the light absorption in medium [7, 8, 9, 10]. This has opened the new door to develop the OSC based on polymer structures as well as to create a new pathway for a better power conversion. More interestingly, mechanical properties of OSC will be influenced significantly by doping with NPs, for example, the Young and Bulk modulus of the OSC structures are affected in the presence of NPs. Figure 1 illustrates the regular structure of OSC doping the NPs.

Figure 1. A regular structure of OSC, the NPs are illustrated with the spheres with the same radius. From top to bottom: incident light shining to Al+Glass electrode, the hole transport layer (HTL), P3HT:PCBM

active layer, NPs in P3HT:PCBM are grown on top of ZnO buffer layer; ITO+Glass electrode. The sections are organized as the follows: we will discuss the major role of NPs in

enhancing the light traping process with LSPR in the next section. The numerical simulation using finite element technique will follow. The main findings will be discussed in the results and discussion section. And, the conclusion at the end will summarize our main findings. LOCALIZED SURFACE PLASMON RESONANCE EFFECTS OF THE

NANOPARTICLES

It is well-known that the metallic NPs, i.e. Au, Ag-NPs are scattered at the near

field in the LSPR effect due the collective oscillations of electrons inside metal [8, 9, 10]. The similar calculation can be applied for the different type of non-metallic NPs,

4

i.e. ZnO-NPs, nanorods, pyramids, so on. By using Mie theory [12, 13], the scattering and absorption cross section can be calculated as:

4 21 2( ) | |

6scat

, 2 Im[ ]abs

(1)

where, is the polarized coefficient of NPs which reads:

/ 13/ 2

P m

P m

(2)

This quantity depends on the volumes of NPs, , the dielectric of NPs

P , the dielectric of the surrounding environment

m . In case of 2p m , the polarized coefficient of NPs diverges due to the LSPR effect. As the results, the cross section of LSPR NPs are much larger than the cross section of the typical NPs without LSPR. The larger the cross section is, the better light trapping process is. In other words, the harvesting light through the absorbance will be improved in the presence of LSPR and the power conversion efficiency will increase. As we may know, the NPs size has a large impact on the absorption spectrum. For example, the increase of the NPs size causes the red shift of the peaks in the spectrum. Moreover, the range of absorption spectrum is wider in the presence of LSPR effects. It can be explained by strong polarization occurred at the large effective NP size, i.e. the large cross sections. We should note that Mie scattering regime is only valid for the NPs with the diameters in the range of 0.1 10d . In this work, we have chosen Ag for a case of the metallic nanoparticle instead of Au nanoparticle since Ag nanoparticle is cheaper than Au nanoparticle and there is not much different feature between their absorption spectrums. The diameter of Ag nanoparticle is about 100 nm and the diameter of ZnO-NPs is about 150 nm. These diameters are valid to apply the Mie theory. NUMERICAL SIMULATION: FINITE ELEMENT METHOD

In this work, we will apply the finite element method (FEM) [14] for the different

types of NPs which can be model as a perfect sphere. Comparing to other techniques, i.e. FDTD technique [15], FEM is a good choice for a complex problem since it will transform the continuos problem into the discrete one in a great manor. As a result, we have a good mesh which can be used to solve the PDEs and integral equations, i.e. the Maxwell’s equations. In other words, we will map our problem into a set of the independent ordinary differential equations of the different smaller elements. We should note that a mapped mesh has to satify the following rules: firstly, the two different elements only share their boundaries. This condition will rule out the overlap between the two elements. The boundary can be the points, the lines as well as the surfaces. Secondly, the set of these elements forms a shape similar to the original one. In other words, the good grid can capture the most feature of the original system. This condition tries to avoid the empty space between the elements. An example of a FEM grid for a NP is illustrated in Figure 2 below.

5

Figure 2. A typical quarter of NPs mesh using in a FEM simulation.

Figure 2 shows only a FEM mesh for a quarter of a nanoparticle since a particle is

a perfect sphere with the high symmetry. There should not be any different between the full mesh for a sphere and its quarter but we will save the computing time as well as CPU memory by using a quarter of a NP instead of a full NP in FEM mesh. Following the standard way, we divide the original volume into the different smaller volume elements

s in which its size can be described by an unknown

function 1

N

i i

i

f

. Here,if is the basic polynomial functions and

i is the

coefficients. Due to the second rule stated above, the discrepency between the approximated functions and is close to zero as much as possible. The set of equations for the unknown coefficients are now ready to solve. We should note that the different elements are meshed following the first rule mentioned above. The boudary conditions of a different volume elements s and the approximated function are constrained and could be applied Neuman’s condition .n S or Dirichlet’s condition S ; where S is a scalar function and n is a normal vector to the boundary. In this manuscript, we will apply COMSOL multiphysics based on FEM technique to investigate the absorption spectrum of different NPs: Ag and ZnO NPs. RESULTS AND DISCUSSION

We will start with ZnO nanoparticle, the radius is about 150 nm, doping into

P3HT:PCBM active layer. In order to investigate the LSPR effect of ZnO nanoparticle, we will compare its absorption spectrum in two different environments: a pure air and P3HT:PCBM.

6

Figure 3. The absorption intensity of ZnO-NPs versus the wavelength in two environments: in air (black filled circles) and in P3HT:PCBM (red filled circles).

Figure 3 shows the absorption spectrum of ZnO-NPs in air (black filled circles) and ZnO-NPs in P3HT:PCBM (red filled circles). The two curves are obviously different: ZnO-NPs in air has a smooth curve and a weak peak in the infrared region whereas ZnO-NPs in P3HT:PCBM has a stronger peak around the two wavelengths

500nm and 580nm . The higher absorption intensity in the wide range of invisible light has been observed as well. We conclude that the oxide ZnO-NPs do not absorb the invisible light in the air but ZnO-NPs has a strong absorption effect in P3HT:PCBM. This can be explained simply using the LSPR theory: exciting ZnO-NPs with the invisible light induces the multi-oscilations, on other hand this will lead to the defraction as well as the absorption of light. Moreover, P3HT:PCBM owns the bindings in its polymer chain which causes the stronger absorption. This makes P3HT:PCBM become a better absorption environment. The LSPR effects of ZnO-NPs in P3HT:PCBM could be illustrated through the distribution of the electromagnetic field at different weavelengths.

Figure 4. The distribution of the electromagnetic field of the ZnO-NPs in P3HT:PCBM with

different incident wavelengths: a) =400 nm, b) =580 nm, c) =650 nm, d) =800 nm.

Figure 4 shows that the LSPR at the wavelengths 400nm and 580nm has stronger effects than LSPR in the infrared region, i.e. 650nm and

800nm . As we can see, the red-shift of the incident light reduces the LSPR effect illustrated by the change of the electromagnetic field from 400nm to

800nm . It also means that the defraction as well as the absorption of ZnO-NPs responses weakly to the incident light with a large wavelength, i.e. the infrared region.

More interesting, ZnO indeed has a strong LSPR effect although metallic NPs such as Au, Ag-NPs are previously well-known to enhance LSPR. We therefore investigate the absoprtion spectrum of Ag-NPs and compare it with ZnO-NPs to

7

verify this conclusion. The result is shown in Figure 5, obviously, the ZnO-NPs peak as well as its absorption intensity are much stronger than those of Ag-NPs. This also suggests us to use ZnO-NPs doping into OSC structure for a better the power conversion efficiency.

Figure 5. The absorption spectrum of Ag-NP (filled black square)

and ZnO-NP (filled red circle).

Using Mie theory, it is easy to show that the larger the ZnO-NPs is, the further the absorption peak shifts to the near infrared region. We here also have recaptured this conclusion for ZnO-NPs in P3HT:PCBM with different NPs radius and the fixed incident light wavelength 580nm .

Figure 6. The dependence of absorption intensity on the radius of ZnO-NPs in P3HT:PCBM

at the fixed wavelength =580 nm.

Figure 6 displays the dependence of the absorption intensity as a function of the radius of ZnO-NPs in P3HT:PCBM. From Mie theory, the scattering and absorption cross section is proportional to the dielectric function of NP, p as written in Equation (2). In the rough approximation, i.e. using the simple Drude model, the dielectric

function:2 2

21( )

p

p

e

i

with p is Plasma frequency, e is electron unit and e =

1.6 x 10-19 C, is frequency of the incident light. The absorption intensity is

proportional to 1/r as the follows: 0( ) fAr

r

, with vf is electron velocity at

Fermi level. Hence, the absorption cross sections abs is quantitatively proportional to

the radius r which is well consistent with Mie theory. This result is important since

8

one is able to control the absorption and scattering properties of NPs by tuning the radius of NPs.

MECHANICAL EFFECT OF NANOPARTICLES ON OSC COMPOSITE

STRUCTURE

The role of particles in several FGM structures at macroscopic scale is well

known. However, the role of particles in the multilayered structure at nano-scale has not been known much. Other than the enhancement of the energy conversion, the nanoparticle can stabilize the OSC multilayered structure. Therefore, it should be interesting to take a closer look at the mechanical properties of these NPs in our structure of interest. We can use a simple model to investigate this problem as the following: the NPs are considered as the ideal spheres with the same radius r (nm). The elastic, homogeneous and isotropic conditions for NPs are assumed. Under these conditions, the most two important parameters, which we should take into account, are Young’s (E) and bulk (K) modules. At nano-scale, the mechanical coupling between the different ingredients can be represented by the stress distribution as the follows:

0 (1) (2) ...ik ik ik ik (3)

Where, 0ik is the homogeneous stress, (1)

ik is coupling stress between matrix and particles, (2)

ik is the coupling stress between the nearest particles. We will cut off the stress distribution at the first order of coupling, meaning we only take into account the first and the second term in Equation (3), for the simplicity. We, now, are able to apply the well-known Lame’s equilibrium equation for the displacement components u as the follows:

2(1 ) . (1 2 ) 0v u v u (4)

The mechanical effects can be extracted by solving the Equation (4) under the additional assumption in which the location of stress for NPs at nano-scale is at the center of the particles [16]. As the results, we can obtain that the dispersion of NPs doping in polymers structure such as P3HT:PCBM have increased both the effective Young’s (Eeff) and effective bulk modulus (Keff). This finding is similar to our finding of TiO2 doping in MEH-PPV-OSC structure. In other words, the NPs not only enhance the energy conversion but also increase the stability as well as lifetime of the OSC multilayered structure. This conclusion is important for the commercial products. CONCLUSION

In this manscript, we have investigated the effects of the metallic nanoparticle Ag

and non-metallic nanoparticle ZnO on the power conversion efficiency as well as the mechnical impact on the OSC devices. We have found that the absorption of ZnO is enhanced inside P3HT:PCBM environment due to LSPR. In other words, the

9

harvesting light process in active layer has been affected by using ZnO-NPs. We have also found a similar behavior for Ag-NPs except the weaker absoprtion intensity and the peak. The mechanical properties of OSC devices such as the effective Young’s and effective bulk modulus doping with ZnO-NPs and Ag-NPs have been improved.

ACKNOWLEDGEMENTS

This work has been supported by Vietnam National University, Hanoi (VNU), under Project No. QG.15.24.

REFERENCES 1. C.-C. Chen, W.-H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang.

2014, “An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency

Exceeding 11%,” Adv. Mat., 26: 5670-5677. 2. Li, G., Zhu, R. & Yang, Y. 2012, “Polymer solar cells,” Nature Photon., 6: 153-161. 3. Li, Y. F. 2012, “Molecular design of photovoltaic materials for polymer solar cells: toward

suitable electronic energy levels and broad absorption,” Acc. Chem. Res., 45: 723-733. 4. You, J. et al. 2013, “A polymer tandem solar cell with 10.6% power conversion efficiency,”

Nature Commun., 4: 1446. 5. V. Shrotriya, et al. 2014, “Efficient light harvesting in multiple-device stacked structure for

polymer solar cells ,” Appl. Phys. Lett. 88: 064104. 6. G. Dennler, et al. 2009, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21:

1323. 7. Morfa AJ, Rowlen KL, Reilly III TH, Romero MJ, Van de Lagemaat J. 2008, “Plasmon-

enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92:013504.

8. Rand BP, Peumans P, Forrest SR. 2004, “Long-range absorption enhancement in organic

tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96:7519-26. 9. Kim K, Carroll DL. 2005, “Roles of Au and Ag nanoparticles in efficiency enhancement of

poly(3-octylthiophene)/C-60 bulk heterojunction photovoltaic devices” Appl. Phys. Lett. 87:203113.

10. S. Linic, P. Christopher, and D. B. Ingram. 2011, “Plasmonic-Metal Nanostructures for

Efficient Conversion of Solar to Chemical Energy,” Nat. Mater., 10 (12): 911-921. 11. E. Stratakis and E. Kymakis. 2013, “Nanoparticle-based plasmonic organic photovoltaic

devices,” Mater. Today 16(4), 133-146. 12. Mie, G. 1908, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Annalen

der Physik 330 (3): 377-445. 13. Michael Quinten, “Optical properties of nanoparticle systems: Mie and beyond”, Wiley-VCH,

2011, pp. 76-101,170. 14. P. Monk. 2003, “Finite element methods for Maxwell’s equations”, Oxford University Press 15. Atef Elsherbeni and Veysel D. 2009, “The Finite Difference Time Domain Method for

Electromagnetics with MATLAB Simulations”, SciTech Publishing. 16. Chung D. N., Dinh N. D., David H., Duc N. D., Trung T. Q and Mircea C. 2013, “Investigation

of polymeric composite films using modified TiO2 nanoparticles for organic light emitting

diodes”, Current Nanoscience. 9 (1): 14-20.

10

________________________ 1National Institute of Applied Sciences Rennes, Dept. Civil Engineering and Urban, France

2Thuyloi University, Vietnam

Design Model for Hybrid Steel-RC Walls

Quang-Huy Nguyen1, Van Toan Tran2 and Mohammed Hjiaj1

ABSTRACT

Hybrid RCS frames consisting of reinforced concrete (RC) column and steel (S) are used frequently in practice for mid to high-rise buildings. RCS frames possess several advantages from structural, economical and construction view points compared to either traditional RC or steel frames. One of the key elements in RCS frames is the composite shear wall consisting of several steel sections encased in reinforced concrete. Regarding the RC walls reinforced by more than one steel profile, namely “Hybrid” wall, although a number of researchers have focused on its various aspects, they are currently not covered by standards because they are neither reinforced concrete structures in the sense of Eurocode 2 or ACI318, nor composite steel-concrete structures in the sense of Eurocode 4 or AISC 2010. This paper is dedicated to present a tentative design model for hybrid walls with several embedded steel profiles subjected to combined axial force, bending and shear. The model is based principally on the design rules of Eurocode 2 and Eurocode 4. Particular attention will be paid to shear (longitudinal and transversal) resistances because preventing shear failure is one of the major concerns when designing a composite structural member. A strut-and-tie model is developed to evaluate the transverse shear resistance taking into account the contribution of the steel profiles. Furthermore, an analytical method is proposed for the prediction of the longitudinal shear stress at the concrete-steel profile interface which allows to design adequate shear connection of the profile to concrete. The proposed design model provides a faire estimation of the part of applied shear which is applied to the embedded steel profiles; this allows to take into account the influence of transverse shear on the combined axial force and bending resistance. When used with design values of bond and friction shear strength of Eurocode 4, the proposed design model gives a faire estimation of the longitudinal shear stress at the concrete-steel profile interface.

Keywords: Steel-concrete hybrid shear walls, shear connection, design method,

static test.

410

INTRODUCTION

Nowadays, hybrid reinforced concrete steel (RCS) frames consisting of reinforced

concrete (RC) column and steel (S) are used frequently in practice for mid to high-rise buildings. RCS frames possess several advantages from structural, economical and construction view points compared to either traditional RC or steel frames. As described by Griffis (Griffis, 1986), RCS frames effectively combine structural steel and reinforced concrete members to their best advantage. From construction view point, these systems are usually built by first erecting a steel skeleton, which allows the performance of different construction tasks along the height of the building. One of the key elements of RCS frames is the steel-concrete composite core wall, where the practice of encasing structural steel shapes encased in reinforced concrete is common. For many years, the traditionally reinforced concrete shear walls have been used as the primary lateral load resisting system in multistory buildings. Although reinforced concrete shear walls have many structural and economical advantages some disadvantages appear when using this structural system in buildings subjected to seismic action. One of the main disadvantages is the development of tension cracks in tension zones and compressive crushing in localized compression areas during large cyclic excursions. Such cracks and crushing failures can result in splitting and spalling failure of the wall with serious deterioration of stiffness and reduction in strength. Steel-concrete composite shear walls can mitigate most disadvantages of RC shear walls and take advantage of the best characteristics the RC and the steel can offer.

Various types of composite walls have been developed, investigated and used for

core walls of high-rise buildings in seismic zones. Zhao and Astaneh-Asl (Zhao, 2004) attached RC panels to the steel plate walls using bolts, resulting in highly ductile behavior and stable cyclic post-yielding performance. Saari et al. (Saari, 2004) studied the behavior of headed shear stud connectors for use in steel frames with partially restrained connections and reinforced concrete infill walls, attached compositely to the steel frame around the perimeter of each wall panel. They pointed out that, in infill walls, the shear connectors lie in the plane of the concrete panel, which results in different behavior from studs in composite beams. Experimental results shown that the presence of axial tension greatly reduced the stud shear strength and deformation capacity when no confining reinforcement was provided. When confining reinforcement was provided, test results correlated better with existing design equations. Tong et al. (Tong, 2005) conducted an experimental study of the cyclic behavior of a composite structural system consisting of partially-restrained steel frames with reinforced concrete infill walls. The composite interaction is achieved through the use of the headed stud connectors along the steel frame-infill interfaces so that the two main components of the system share in the resistance of lateral shear and overturning moment. They concluded that this system has the potential to offer strength appropriate for resisting the forces from earthquakes and stiffness adequate for controlling drift for low to moderate-rise buildings located in earthquake-prone regions. Zhou et al. (Zhou Y. X., 2010) performed experimental and numerical studies of composite shear with multi-embedded steel sections at wall boundaries as well as wall middles. They indicated that composite shear walls with multi-embedded steel sections had better energy dissipation capacity than that with steel sections only at boundaries. The presence of multi-embedded steel sections did not affect the final

411

failure mode of the composite shear walls, but they would restrain the development of cracks and prevent the concrete from serious spalling. Similar kind of composite shear walls was experimentally and numerically studied by Dan et al. (Dan, 2011). They encased vertical steel profiles into RC walls and demonstrated the effectiveness of the steel profiles in improving the seismic performance of RC shear walls. Qian et al. (Qian, 2012) investigated the behavior of composite shear walls with embedded steel tubes at the wall boundaries and proved that such composite details can ensure good seismic performance under high axial load and cyclic lateral loading. Rafiei et al. (Rafiei, 2015); Hossain et al. (Hossain, 2016) studied the behavior of composite shear walls consisting of two skins of profiled steel sheeting and an infill of concrete under in-plane monotonic and cyclic loading respectively, demonstrating more ductile behavior and higher energy absorbing capacity. Chen et al. (Chen, 2015) investigated the double steel plate-high strength concrete composite walls with concrete filled steel tube boundary elements, showing high strength and excellent deformation capacity. Wu et al. (Wu, 2016) studied the seismic behavior of steel and concrete composite shear walls with embedded steel truss. Test results indicated that the embedded truss web braces affect significantly the hysteretic behavior of the composite walls in terms of lateral load capacity, energy dissipation and ductility, while the embedded truss chords can enhance the lateral load capacity. Zhang et al. (Zhang, 2016) proposed and investigated a new structural shear wall consisting of bundled lipped channels seam-welded together and in-filled concrete. They pointed out that that the level of axial force ratio and the configuration detail significantly affect the entire hysteresis performance, while the presence of shear studs delays the occurrence of fracture and failure.

Regarding the RC walls reinforced by more than one steel profile, namely hybrid

wall, although a number of researchers have focused on its various aspects, they are currently not covered by standards because they are neither reinforced concrete structures in the sense of Eurocode 2 (Eurocode 2, 2004) or ACI-318 (ACI-318, 2005), nor composite steel-concrete structures in the sense of Eurocode 4 (Eurocode 4, 2004) or AISC (ANSI/AISC 360-05, 2010). Gaps in knowledge are mostly related to the problem of force transfer between concrete and embedded steel profiles, a situation in which it is neither known how to combine the resistances provided by bond, by stud connectors and by plate bearings, nor how to reinforce the transition zones between classical reinforced concrete and concrete reinforced by steel profiles. This paper is dedicated to present a tentative design model for hybrid walls with several embedded steel profiles subjected to combined axial force, bending and shear. This model is based principally on the design rules of Eurocode 2 (Eurocode 2, 2004) and Eurocode 4 (Eurocode 4, 2004). Particular attention will be paid to shear (longitudinal and transversal) resistances because preventing shear failure is one of the major concerns when designing a composite structural member. Experiments conducted with steel-concrete composite columns (simple encased steel profile) shown that the shear failure generally involves two possible failure modes: (1) the diagonal shear failure, which closely resembles the shear failure of an ordinary reinforced concrete structural member; and (2) the shear bond failure, which results in cracks along the interface of the steel profile and concrete. For this reason, a strut-and-tie model is developed to evaluate the transverse shear resistance taking into account the contribution of the steel profiles. Furthermore, a analytical method is proposed for the prediction of the

412

longitudinal shear stress at the concrete-steel profile interface which allows to design adequate shear connection of the profile to concrete. Finally, a hybrid wall with three steel profiles is designed using the proposed method and the design resistance values are compared to the ones obtained by an Abaqus FE model.

DESIGN MODEL

As already mentioned in the introduction, the studied hybrid walls are not yet

covered by design standards. The present study aims to develop a tentative design method for such element subjected to combined axial force, bending and shear. Let consider a hybrid steel-concrete element subjected to axial force, bending and shear as shown in Figure 1. The cross-section consists of a rectangular RC section reinforced by several steel profiles. Question can be raised as how to assess the strength of this type of section. Can we simply consider it as reinforced concrete section in sense of Eurocode 2 (Eurocode 2, 2004) or ACI-318 (ACI-318, 2005) and apply them for design or as composite steel-concrete section in sense of Eurocode 4 (Eurocode 4, 2004) or AISC (ANSI/AISC 360-05, 2010). For this kind of composite element, gaps in knowledge are mostly related to the problem of force transfer between concrete and embedded steel profiles. In the case where the full interaction between steel profiles and concrete is ensured (by bond and/or connectors such as shear studs or plate bearings), the steel profiles can be considered as reinforcement rebars their bending and shear resistances can be evaluated using reinforced concrete standards. Otherwise, for the bending resistance the concept of composite section of Eurocode 4 (Eurocode 4, 2004) or AISC (ANSI/AISC 360-05, 2010) can be also used however the shear resistance of the composite section built-up from two or more encased steel is not yet covered by these standards.

In the proposed design method, particular attention will be paid to shear

(longitudinal and transversal) resistances because preventing shear failure is one of the major concerns when designing a such composite structural member. Experiments conducted with simple encased steel profile shown that the shear failure generally involves three possible failure modes:

Figure 1. Description of studied hybrid walls

413

(1) the diagonal shear failure, which closely resembles the shear failure of an ordinary reinforced concrete structural member;

(2) the longitudinal shear failure, which results in cracks along the interface of the steel flange and concrete.

(3) the flexural failure, which results in vertical cracks at mid-span.

A method for the calculation of the number of connector to ensure the full

interaction between steel profiles and concrete around is firstly developed. The bending resistance will be determined using the M-N interaction curve which is build using the method of stress distribution of Eurocode 4 (Eurocode 4, 2004). Regarding the shear resistance, a strut-and-tie model is developed taking into account the contribution of the steel profiles. For the sake of simplicity, in this work, we consider only the case of three encased steel profiles. The three steel profiles are oriented such that they are submitted to weak axis bending. It is assumed that the second order effect is negligible.

DESIGN RESISTANCE OF CROSS-SECTION TO COMBINED

COMPRESSION AND BENDING

There is nowadays no design standard providing the guidance on how to determine

properly the plastic resistances of composite section with more than one encased steel profile. However, once the steel profiles are fully embedded in concrete, the resistance of hybrid cross-sections to combined compression and bending and the corresponding interaction curve may be calculated assuming rectangular stress blocks as shown in Figure 1. This method is inspired from the simplified method of design of Eurocode 4 (Eurocode 4, 2004). In this method, the tensile strength of the concrete is neglected.

If the shear force Va,Ed acting on one steel section exceeds 50% of the design shear

resistance of the steel section Vpl,a,Rd (see EC3-1-1§6.2.6(2)) (Eurocode 3, 2004), the influence of the transverse shear on the resistance in combined bending and compression should be taken into account by a reduced design steel strength (1-ρ)fy where:

2

,

, ,

21a Ed

pl a Rd

V

V

(1)

The shear force Va,Ed acting on one steel section is assumed to be determined by:

, ,

,,

pl a RdEda Ed

a pl Rd

MVV

n M (2)

where Mpl,a,Rd is the plastic resistance moment of na steel sections and Mpl,Rd is the plastic resistance moment of the hybrid section.

DESIGN TRANSVERSE SHEAR RESISTANCE

If the encased steel profiles are considered as reinforcing bars, the shear resistance

can be evaluated using the strut-and-tie model proposed in Eurocode 2 (Eurocode 2,

414

2004). However it is obvious that the shear resistance provided by the steel profiles must be not negligible for such hybrid section. In our design approach it is assumed that the shear resistance of the hybrid section is given by adding up the shear resistances of RC section and composite steel-concrete section. As shown in Figure 2, the composite section has a width limited to the width of the steel shape ha and the RC section has a width bc=b- ha where b being the width of hybrid section.

, ,Rd Rd RC Rd aV V V (3)

where: Rd,RC is the design shear resistance of RC section which is determined in

accordance with EN 1992-1-1 §6.2.3(3):

w,

,w 1

,

cotmin

cot tan

sRd s ywd

Rd RC

c c cRd max

AV zf

sV

b z fV

(4)

VRd,a is the design shear resistance of composite section which is given by:

, , ,(1 )Rd a a pl a RdV n V (5)

with na being the number of steel profiles; Vpl,a,Ed being the design shear resistance of one steel section determined in accordance with EN 1993-1-1§6.2.6(2); The coefficient η represents the influence of normal stress on the shear resistance of steel profile when the design axial force exceeds 50% of the plastic resistance to compression Npl,Rd:

2

,

2 1Ed

pl Rd

N

N

(6)

Figure 2. Decomposition of hybrid section into a RC section and composite section

415

DESIGN LONGITUDINAL SHEAR RESISTANCE

Vertical force equilibrium: 2

w ,sinEd c a a EdV bz n V (7)

where σcw is the compression stress in struts; z is the distance between the compression and tension chords. In wall with huge embedded steel sections, it is proposed to consider z as the distance between the center of top and bottom embedded profiles. θ is the inclination of the compression struts.

Figure 3. Strut-and-tie model fore shear force transfer in hybrid wall

The longitudinal shear force acting on the bottom (or top) embedded profile can be

obtained by:

w (cos sin )cot

a cEd

a

hg

z

(8)

If the longitudinal shear force gEd is greater than the design shear strength τRd given in Eurocode 4 (Eurocode 4, 2004), shear connectors are therefore needed to ensure the full interaction between steel profiles and concrete. In this case, the longitudinal shear force, namely VL, acting on the shear connectors from the cross-section where the full plastic bending moment is reached to the cross-section where the bending moment vanishes is:

(1 )L a yV A f (9)

where Aa is area of one steel profile. The minimum number of shear stud needed for one steel profile to ensure the full interaction is nmin=VL/PRd where PRd is design shear resistance of one shear connector.

NUMERICAL APPLICATION

The proposed design model is now used to evaluate the resistance to combined

bending and shear of a composite wall reinforced by three encased steel profile. The geometric and material characteristics are presented in Figure 4.

The prediction of the longitudinal shear stress at concrete-steel profile interface is presented in Table I. As can be seen, at the maximum applied load the predicted shear stress gEd is greater than the design shear strength τRd which is taken equal to 0.51 MPa according to Eurocode 4 part 1 §6.7.4.3(4). This points out that in all specimens for

416

design conditions the shear connectors are always requited to provide at least a shear resistance equal to 0.51 MPa.

F

hL

Specimen Steel profile

Rebar Stirrups and pins

Stirrup spacing (mm)

Connector Connector

spacing (mm)

BW 3HEB100 8HA20 HA16 200

CW 3HEB100 8HA20 HA16 200 40 Nelson H3L16mm

200

• Distance between two axes of supports: L=1875mm;

• Design concrete resistance: fc= fck=30MPa;

• Steel profile resistance: fy=460MPa (S460);

• Steel rebar resistance: fyk=500MPa;

• Dimensions of the cross-section: height h=900mm and width b=250mm.

Figure 4. The geometric and material characteristics of hybrid wall

TABLE I. SAMMERY OF DESIGN RESISTANCE Design calculation EC4

Specimen Va,Ed (kN)

σcw (MPa)

*gEd (MPa)

Mpl,Rd (kNm)

VRd (kN)

**τRd (MPa)

BW 130 5.96 0.75 1446 1614 0.51 CW 131 6.39 0.81 1493 1614 * the coefficient of friction is taken as 0.5 (see Eurocode 4 part 1 §6.7.4.2(4))

** τRd including β factor of Eurocode 4 for concrete cover greater than 40mm;

β=1.7

CALIBRATION OF PROPOSED DESIGN MODEL BY NUMERICAL 3D

MODEL

The proposed design model is now calibrated by a numerical 3D model. The

hybrid wall considered in the previous section is now simulated by Abaqus FE software where solid elements are adopted for concrete, steel profiles and connectors and truss elements are used for steel reinforcement. Regarding the material models, concrete damaged plasticity model is used. The model parameters are selected to provide more or less the same stress-strain curve for uniaxial compression given in Eurocode 2. In this numerical model, steel reinforcement is embedded in concrete while “Hard contact” and “Frictionless” interactions are used to connect steel profiles and shear stud to concrete around. Figure 5 and Figure 6 show the load-displacement curve obtained by the numerical model. The design-numerical comparison of the shear force in steel profiles is presented in Table I and Figure 6. As can be seen, the design value is quiet well calibrated by the numerical results.

417

Figure 5. Crack distribution in the concrete at defection level of 60mm

Figure 6. Numerical results

CONCLUSIONS

In this paper, a design model for hybrid walls subjected to combined compression,

bending and shear has been proposed. Particular attention has been paid to transverse shear resistance for which a strut-and-tie model has been developed taking into account the contribution of the steel profiles. Furthermore, the proposed design model provides a method to evaluate longitudinal shear the concrete-steel profile interface, which is necessary to design an adequate shear connection of the profile to concrete.

REFERENCES

ACI-318. (2005). Building code requirements for reinforced concrete. American

Concrete Institute. ANSI/AISC 360-05. (2010). Specifications for Structural Steel Buildings. American

Institute for Steel Construction. Chen, L. H.-M. (2015). Seismic behavior of double steel plate-HSC composite walls.

Engineering Structures, 102, 1-12. Dan, D. A. (2011). Theoretical and experimental study on composite steel-concrete

shear walls with vertical steel encased profiles. Journal of Constructional Steel

Research, 67(5), 800-813. Echigo, S. Y. (1998). New type hybrid structure and practical analysis method of

creep and shrinkage. Construction and Building Materials, 12(2-3), 93-103. Eurocode 2. (2004). EN1992-1-1 Design of concrete structures-Part 1: General rules

and rules for buidings. European Standards - European Commission. Eurocode 3. (2004). Design of concrete structures. Part 1: General rules and rules for

buidings. European Standards - European Commission.

BW

418

Eurocode 4. (2004). EN1994-1-1 Design of composite steel and concrete structures-

Part 1: General rules and rules for buildings. European Standards - European Commission.

Griffis, L. (1986). Some design considerations for composite-frame structures. Engineering Journal, 23(2), 59-64.

Hossain, K. S. (2016). Structural performance of profiled composite wall under in-plane cyclic loading. Engineering Structures, 110, 88-104.

Morino, S. (1998). Recent developments in hybrid structures in Japan-research, design and construction. Engineering Structures, 20(4-6), 336-346.

Qian, J. Z. (2012). Behavior of steel tube-reinforced concrete composite walls subjected to high axial force and cyclic loading. Engineering Structures, 36, 173-184.

Rafiei, S. K. (2015). Profiled sandwich composite wall with high performance concrete subjected to monotonic shear. Journal of Constructional Steel

Research, 107, 124-136. Saari, W. J. (2004). Behavior of shear studs in steel frames with reinforced concrete

infill walls. Journal of Constructional Steel Research, 60(10), 1453-1480. Tong, X. J. (2005). Cyclic behavior of steel frame structures with composite

reinforced concrete infill walls and partially-restrained connections. Journal of

Constructional Steel Research, 61(4), 531-552. Wu, Y. D. (2016). Seismic performance of steel and concrete composite shear walls

with embedded steel truss for use in high-rise buildings. Engineering Structures,

125, 39-53. Zhang, X. Y. (2016). Experimental seismic behavior of innovative composite shear

walls. Journal of Constructional Steel Research, 116, 218-232. Zhao, Q. a.-A. (2004). Cyclic Behavior of Traditional and Innovative Composite

Shear Walls. Journal of Structural Engineering, 130(2), 271-284. Zhou, Y. X. (2010). Seismic behavior of composite shear walls with multi-embedded

steel sections. Part II: analysis. The Structural Design of Tall and Special

Buildings, 19(6), 637-655. Zhou, Y. X. (2010). Seismic behaviour of composite shear walls with multi-embedded

steel sections. Part I: experiment. The Structural Design of Tall and Special

Buildings, 19(6), 618-636.

419

xednI rohtuA

75 ,.K ,ebakakA104 ,.Y ,ioA75 ,.T ,ikoA

402 ,.Y ,ikoA34 ,.M ,nahK-ragsA

333 ,.G ,neB022 ,.P ,fpoktierB

252 ,.T ,hniD-uahC561 ,.G ,gnouhC

623 ,.T .N ,gnouhC532 ,.H .P ,gnoC

69 ,.C-.J ,ereilliuC

532 ,.D .N ,taD32 ,3 ,.N .N ,hniD

093 ,.N .P ,hniD532 ,591 ,3 ,.D .N ,cuD

623 ,.A .N ,gnuD

183 ,.G ,dnulnreF69 ,.V ,siocnarF

401 ,.Y ,iijuF

713 ,.R ,nasenaG711 ,.J ,gnoG

97 ,.A ,otoG

093 ,.V .D ,iaH092 ,.V .L ,iaH

,143 ,822 ,97 ,.H ,adamaH104

561 ,.N .L .C ,hnaH97 ,.K ,esaH

143 ,.A ,nassaH333 ,.N ,amayariH

17 ,.S ,adasiH014 ,.M ,jaijH562 ,.Q .P ,aoH

34 ,.V .S ,aoH321 ,.W ,ihcuiroH

711 ,.E ,akasoH

94 ,.M ,onihisoH

104 ,.H ,ayonI543 ,.A ,imagihsI711 ,.I-.S ,arahihsI

181 ,.T ,awakihsI402 ,.K ,atawihsI

543 ,321 ,711 ,.H ,otI211 ,.T ,atawI

363 ,.D .K ,ooJ

97 ,.T ,uzawaK183 ,.C ,nelueK

713 ,.M ,yahK363 ,.T .T ,teiK741 ,.T ,ihcukiK

94 ,.K ,ihsayabatiK093 ,.E ,ihsayaboK

75 ,.A ,ikiboK543 ,.Y ,amadoK

931 ,131 ,36 ,.T ,akasoK97 ,.Y ,inataruK

931 ,131 ,36 ,.K ,awakusuK

88 ,.F ,etniopaL372 ,342 ,.T .A ,eL

88 ,.L .L .O .A ,lebeL212 ,.V .N ,ioL3 ,.D .D ,gnoL32 ,.D .P ,gnoL

822 ,.Y ,aM022 ,.A ,ardaM94 ,.Y ,onustaM

181 ,.R ,ikazustaM97 ,.A ,ikiM

17 ,.S ,ihcukaniM271 ,.M ,arsiM

183 ,.C ,nohcuboM143 ,.Y ,ikuzihcoM

271 ,.K .A ,ytnahoM013 ,.T ,iiroM

402 ,.K ,akanaruM

211 ,.A ,iakaN711 ,.D ,ihsinakaN

94 ,.N ,imanaN713 ,.D .A ,ogN

781 ,.V .A ,neyugN372 ,.L-.D ,neyugN

3 ,.X .N ,neyugN591 ,.D .P ,neyugN014 ,.H-.Q ,neyugN

182 ,.T-.S ,neyugN781 ,.C .T ,neyugN182 ,.D-.T ,neyugN

252 ,.H ,naV-neyugN561 ,.Q .L .T ,uhN

32 ,.H .D ,hniN401 ,.H ,arumihsiN

181 ,.T ,ebakO013 ,.T ,otomakO

104 ,143 ,.M ,ihsokO623 ,.Y ,iukO401 ,.K ,onO

402 ,.Y ,akustO

69 ,.T-.X ,mahP092 ,.T .N ,couhP

183 ,.A ,pitrasruoP

591 ,.Q .T ,nauQ

173 ,.G ,ikasaS711 ,.Y ,atabihS

103 ,.H ,usameuS321 ,.H ,aganeuS822 ,.T ,arahaguS333 ,.N ,otomiguS

173 ,.K ,oiguS

104 ,.A ,adaT17 ,.K ,ikagakaT

17 ,.N ,adekaT

104 ,.R ,ustamekaT131 ,.K ,adareT

092 ,.N .T .C ,nahT3 ,.D .P ,gnahT

553 ,.N .X ,gnahT13 ,.P .N ,hnahT

561 ,651 ,.C .T ,hnahT092 ,.M .T ,ihT

104 ,.S ,nrosmuhT182 ,.D-.Q ,oT

71 ,.A ,ikorodoT651 ,.V .H ,noT342 ,.T .N ,narT014 ,.T .V ,narT561 ,.M .N ,irT651 ,.M-.N ,irT022 ,.F ,uhcorT

212 ,.M .T ,uT693 ,.M .N ,nauT

11 ,.T ,adeU931 ,.G ,amayeU

211 ,97 ,.T ,imuzoU

562 ,.T .T ,naV651 ,.T-.D ,mahP-naV

561 ,.I ,tseopreV651 ,.V .N ,teiV

69 ,.H-.N ,uV561 ,.V .W .A ,eruuV

401 ,.A ,adaW

402 ,.H ,adamaY822 ,.Y ,gnaY

173 ,.Y ,oaY181 ,.S ,orihsaY75 ,.T ,ikezokoY

271 ,.Y ,veyruY

822 ,.Y ,gnahZ183 ,.N ,yrieboZ

124