3
Design Equations—Commonly Used Amplifier Configurations V OUT = V IN V OUT V IN BUFFER HIGH IMPEDANCE SOURCE TO LOW RESISTANCE LOAD Voltage Follower Noninverting Op Amp Inverting Op Amp AMPLIFY AND INVERT INPUT V IN R G R F V OUT V A V B R 1 R 1 R 2 V OUT R 2 V CM Voltage Subtractor/ Difference Amplifier R AMPLIFY THE DIFFERENCE BETWEEN TWO VOLTAGES, REJECT COMMON-MODE VOLTAGE SUM MULTIPLE VOLTAGES Voltage Adder V A V C V B V OUT R 1 R 2 R 3 R F V N R N Low-Pass Filter/Integrator LIMIT BANDWIDTH OF SIGNAL V IN V OUT R 1 C R F t = RC = R F C V OUT = V IN –R F 1 R 1 s R F C + 1 High-Pass Filter/Differentiator BLOCK DC, AMPLIFY AC C IN R IN V OUT V IN R F V OUT = V IN –R F s R IN C IN R IN s R IN C IN + 1 Differential Amplifier R F R F R G R G V OUT V OUT diff = R F V IN R G V OUT V OCM V IN DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL, REJECT COMMON-MODE SIGNAL Instrumentation Amplifier V OUT R G R1' R1 R2' R2 R3' + + + V OUT =V SIG 1 + 2R1 R G R3 R2 IF R2 = R3, G = 1 + 2R1 R G ~ ~ ~ ~ ~ ~ V CM + + V SIG 2 V SIG 2 A1 A2 A3

Design Equations—Commonly Used Amplifier Configurations...Design Equations—Commonly Used Amplifier Configurations V OUT OUT= V IN V OUT V IN BUFFER HIGH IMPEDANCE SOURCE TO LOW

  • Upload
    others

  • View
    11

  • Download
    4

Embed Size (px)

Citation preview

Design Equations—Commonly Used Amplifier Configurations

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF � 1

R1 s RFC + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF � s RINCIN

RIN s RINCIN+ 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

V rms = 0.707 VPEAK VAVE = 0.637 VPEAK VPEAK = 1.414 VEFF VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in SeriesRTOTAL = R1 + R2 + R3 + …

Resistors in Parallel

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

V rms = 0.707 VPEAK VAVE = 0.637 VPEAK VPEAK = 1.414 VEFF VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in SeriesRTOTAL = R1 + R2 + R3 + …

Resistors in Parallel

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

V rms = 0.707 VPEAK VAVE = 0.637 VPEAK VPEAK = 1.414 VEFF VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in SeriesRTOTAL = R1 + R2 + R3 + …

Resistors in Parallel

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

V rms = 0.707 VPEAK VAVE = 0.637 VPEAK VPEAK = 1.414 VEFF VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in SeriesRTOTAL = R1 + R2 + R3 + …

Resistors in Parallel

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

V rms = 0.707 VPEAK VAVE = 0.637 VPEAK VPEAK = 1.414 VEFF VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in SeriesRTOTAL = R1 + R2 + R3 + …

Resistors in Parallel

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

V rms = 0.707 VPEAK VAVE = 0.637 VPEAK VPEAK = 1.414 VEFF VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in SeriesRTOTAL = R1 + R2 + R3 + …

Resistors in Parallel

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

V rms = 0.707 VPEAK VAVE = 0.637 VPEAK VPEAK = 1.414 VEFF VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in SeriesRTOTAL = R1 + R2 + R3 + …

Resistors in Parallel

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

V rms = 0.707 VPEAK VAVE = 0.637 VPEAK VPEAK = 1.414 VEFF VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in SeriesRTOTAL = R1 + R2 + R3 + …

Resistors in Parallel

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

V rms = 0.707 VPEAK VAVE = 0.637 VPEAK VPEAK = 1.414 VEFF VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in SeriesRTOTAL = R1 + R2 + R3 + …

Resistors in Parallel

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

V rms = 0.707 VPEAK VAVE = 0.637 VPEAK VPEAK = 1.414 VEFF VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in SeriesRTOTAL = R1 + R2 + R3 + …

Resistors in Parallel

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

V rms = 0.707 VPEAK VAVE = 0.637 VPEAK VPEAK = 1.414 VEFF VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in SeriesRTOTAL = R1 + R2 + R3 + …

Resistors in Parallel

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

Common Capacitor Values

pF pF pF pF µF µF µF µF µF µF µF1.0 10 100 1000 0.01 0.1 1.0 10 100 1000 10,0001.1 11 110 11001.2 12 120 12001.3 13 130 13001.5 15 150 1500 0.015 0.15 1.5 15 150 15001.6 16 160 16001.8 18 180 18002.0 20 200 20002.2 22 220 2200 0.022 0.22 2.2 22 220 22002.4 24 240 24002.7 27 270 27003.0 30 300 30003.3 33 330 3300 0.033 0.33 3.3 33 330 33003.6 36 360 36003.9 39 390 39004.3 43 430 43004.7 47 470 4700 0.047 0.47 4.7 47 470 47005.1 51 510 51005.6 56 560 56006.2 62 620 62006.8 68 680 6800 0.068 0.68 6.8 68 680 68007.5 75 750 75008.2 82 820 82009.1 91 910 9100

1% standard values decade multiples are available from 10.0 through 1.00 M (also 1.10 M, 1.20 M, 1.30 M, 1.50 M, 1.60 M, 1.80 M, 2.00 M, and 2.20 M).

Standard base resistor values are given in the following table for the most commonly used tolerance (1%), along with typically available resistance ranges. To determine values other than the base, multiply the base value by 10, 100, 1000, or 10,000.

Common 1% Resistor Values

10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.013.3 13.7 14.0 14.3 14.7 15.0 15.4 15.8 16.2 16.5 16.9 17.417.8 18.2 18.7 19.1 19.6 20.0 20.5 21.0 21.5 22.1 22.6 23.223.7 24.3 24.9 25.5 26.1 26.7 27.4 29.0 28.7 29.4 30.1 30.931.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.242.2 43.2 44.2 45.3 46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.956.2 57.6 59.0 60.4 61.9 63.4 64.9 66.5 68.1 69.8 71.5 73.275.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7 90.9 93.1 95.3 97.6