26
Young Won Lim 9/17/12 Derivatives (2A) Partial Derivative Directional Derivative Tangent Planes and Normal Lines

Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Young Won Lim9/17/12

Derivatives (2A)

● Partial Derivative● Directional Derivative● Tangent Planes and Normal Lines

Page 2: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Young Won Lim9/17/12

Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to [email protected].

This document was produced by using OpenOffice and Octave.

Page 3: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 3 Young Won Lim

9/17/12

Partial Derivatives

Function of one variable y = f (x)

d ydx

= limΔ x→0

f (x+Δ x )− f (x)

Δ x

Function of two variable

∂ z∂ x

= limΔ x→0

f (x+Δ x , y )− f (x , y)

Δ x

z = f (x , y )

∂ z∂ y

= limΔx→0

f (x , y+Δ y)− f (x , y )

Δ y

treating as a constant

treating as a constant

y

x

Page 4: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 4 Young Won Lim

9/17/12

Partial Derivatives Notations

Function of one variable y = f (x)

d ydx

= limΔ x→0

f (x+Δ x )− f (x)

Δ x

Function of two variables

∂ z∂ x

= limΔ x→0

f (x+Δ x , y )− f (x , y)

Δ x

z = f (x , y )

∂ z∂ y

= limΔx→0

f (x , y+Δ y)− f (x , y )

Δ y

treating as a constant

treating as a constant

y

x

∂ z∂ x

=∂ f∂ x

= zx = f x

∂ z∂ y

=∂ f∂ y

= z y = f y

Page 5: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 5 Young Won Lim

9/17/12

Higher-Order & Mixed Partial Derivatives

Second-order Partial Derivatives

∂2 z

∂ x2 = ∂∂x (∂ z∂ x ) ∂

2 z∂ y2 = ∂

∂ y ( ∂ z∂ y )Third-order Partial Derivatives

∂3 z

∂ x3= ∂

∂x (∂2 z

∂ x2 )∂3z

∂ y3= ∂

∂ y ( ∂2 z

∂ y2 )

Mixed Partial Derivatives

∂2z

∂ x∂ y= ∂

∂ x ( ∂ z∂ y ) ∂2z

∂ y ∂ x= ∂

∂ y (∂ z∂x )=

Page 6: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 6 Young Won Lim

9/17/12

Chain Rule (1)

Function of two variable z = f (u , v )

u = g(x , y ) v = h(x , y )

∂ z∂ x

=∂ z∂u

∂u∂ x

+∂ z∂v

∂v∂ x

∂ z∂ y

=∂ z∂u

∂u∂ y

+∂ z∂v

∂v∂ y

Page 7: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 7 Young Won Lim

9/17/12

Chain Rule

Function of two variables z = f (u , v )

z

u v

x y x y

∂ z∂u

∂ z∂v

∂u∂ y

∂u∂ x

∂v∂ y

∂v∂ x

z

u v

x y x y

∂ z∂u

∂ z∂v

∂u∂ y

∂u∂ x

∂v∂ y

∂v∂ x

∂ z∂ x

=∂ z∂u

∂u∂ x

+∂ z∂v

∂v∂ x

∂ z∂ y

=∂ z∂u

∂u∂ y

+∂ z∂v

∂v∂ y

Page 8: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 8 Young Won Lim

9/17/12

Directional Derivatives

Function of two variables

∂ z∂ x

= limΔ x→0

f (x+Δ x , y )− f (x , y)

Δ x

z = f (x , y )

∂ z∂ y

= limΔx→0

f (x , y+Δ y)− f (x , y )

Δ y

Rate of change of f in the x direction

Rate of change of f in the y direction

Rate of change of f in the u direction y

z

x

i = ⟨1, 0 , 0⟩

j = ⟨0, 1 , 0⟩

k = ⟨0, 0 , 1⟩

θ

j

value

value ?

value

Page 9: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 9 Young Won Lim

9/17/12

Gradient of a 2 Variable Function

Function of two variables

∇ f (x , y) =∂ f∂x

i +∂ f∂ y

j

f (x , y )

y

z

x

i

j

k

θu

∂ f∂x

= −2

∂ f∂ y

= −1

vector

∂ f∂x

i = −2i∂ f∂ y

j = −1 j

Slope in the x direction

Slope in the y direction

x

y

Rate of change of f in the x directionRate of change of f in the y direction

Page 10: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 10 Young Won Lim

9/17/12

Gradient of a 3 Variable Function

Function of three variables

∇ F (x , y , z) =∂F∂ x

i +∂F∂ y

j +∂F∂ z

k

F (x , y , z)

vector

∇ f (x , y) =∂ f∂x

i +∂ f∂ y

j vector

Rate of change of f in the x directionRate of change of f in the y direction

Function of two variables f (x , y)

Rate of change of f in the x directionRate of change of f in the y directionRate of change of f in the z direction

Page 11: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 11 Young Won Lim

9/17/12

General Partial Differentiation

Rate of change of f in the u direction

Function of two variables f (x , y)

(x , y , 0) (x+Δ x , y+Δ y , 0)

h = √(Δx )2+ (Δ y)

2

y

z

x

i

j

k

θu

v = hu

v = hu

f (x+Δ x , y+Δ y )− f (x , y )

h

=f (x + hcosθ , y + hsinθ)− f (x , y )

h

Δ x = hcosθ

Δ y = hsinθ

Δ x

Δ y

h

f (x , y )

f (x+Δ x , y+Δ y )

Δ f

value

u = cosθ i + sinθ j

Page 12: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 12 Young Won Lim

9/17/12

Directional Derivative

Rate of change of f in the u direction

Function of two variable f (x , y)

(x , y , 0) (x+Δ x , y+Δ y , 0)

Du f (x , y ) = limh→0

f (x + hcosθ , y + hsinθ)− f (x , y)

hvalue

h = √(Δx )2+ (Δ y)

2

v = hu

Δ x = hcosθ

Δ y = hsinθ

y

z

x

i

j

k

θu

v = huΔ x

Δ y

h

f (x , y )

f (x+Δ x , y+Δ y )

Δ f

u = cosθ i + sinθ j

Page 13: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 13 Young Won Lim

9/17/12

Computing Directional Derivative (1)

Function of two variables f (x , y)

i = cos0 i + sin0 j

Du f (x , y ) = limh→0

f (x + hcosθ , y + hsinθ)− f (x , y)

hvalue

u = cosθ i + sinθ j

Di f (x , y ) = limh→0

f (x + h, y )− f (x , y )

h=

∂ f∂x

j = cos90 ̊ i + sin90 ̊ j

D j f (x , y) = limh→0

f (x , y + h)− f (x , y)

h=

∂ f∂ y

θ = 0 ̊

θ = 90 ̊ ∇ f (x , y) =∂ f∂x

i +∂ f∂ y

j

∂ f∂x

i

∂ f∂y

j

θ

Page 14: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 14 Young Won Lim

9/17/12

Computing Directional Derivative (2)

Function of two variables f (x , y)

Du f (x , y ) = limh→0

f (x + hcosθ , y + hsinθ)− f (x , y)

hvalue

u = cosθ i + sinθ j

∇ f (x , y) =∂ f∂x

i +∂ f∂ y

j

u ∇ f (x , y )⋅u = Du f (x , y )

∇ f (x , y) =∂ f∂x

i +∂ f∂ y

j

∂ f∂x

i

∂ f∂y

j

∂ f∂x

i

∂ f∂y

j

∇ f (x , y ) =∂ f∂x

i +∂ f∂ y

j u = cosθ i + sinθ j

θθϕ

Page 15: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 15 Young Won Lim

9/17/12

Computing Directional Derivative (3)

Rate of change of f in the u direction

Function of two variables f (x , y)

Du f (x , y ) = ∇ f (x , y )⋅u value

Du f (x , y ) = limh→0

f (x + hcosθ , y + hsinθ)− f (x , y)

hvalue

u = cosθ i + sinθ j

∇ f (x , y) =∂ f∂ x

i +∂ f∂ y

j

u = cosθ i + sinθ j ∇ f (x , y) =∂ f∂x

i +∂ f∂ y

j

u ∇ f (x , y )⋅u = Du f (x , y )

∂ f∂x

i

∂ f∂y

j

ϕ

Page 16: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 16 Young Won Lim

9/17/12

θ

Computing Directional Derivative (4)

Rate of change of f in the u direction

Du f (x , y ) = ∇ f (x , y )⋅u value

∇ f (x , y) =∂ f∂ x

i +∂ f∂ y

j

u = cosθ i + sinθ j

Du f (x , y) = ∥∇ f (x , y )∥∥u∥cosϕ = ∥ ∇ f (x , y)∥cosϕ

−∥∇ f (x , y )∥ ≤ Du f (x , y ) ≤ ∥∇ f (x , y )∥ maxmin

the direction of ∇ f (x , y) Increases most rapidly f (x , y)

∇ f (x , y) =∂ f∂x

i +∂ f∂ y

j

u ∇ f (x , y )⋅u = Du f (x , y )

∂ f∂x

i

∂ f∂y

j

ϕ

Page 17: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 17 Young Won Lim

9/17/12

Gradient Example (1)

f (x) = x2y = f (x )

x −3 −2 −1 0 +1 +2 +3

dfdx

−6 −4 −2 0 +2 +4 +6

+1 +2 +3−1−2−3

d fd x

= 2x

Scaled arrows

+2

+4

+6

Page 18: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 18 Young Won Lim

9/17/12

Gradient Example (2)

x

zy = f (x , y) f (x , y ) = x2 + y2 ∂ f

∂ x= 2x

∂ f∂ y

= 2 y

y

x=−3 x=−2 x=−1 x=0 x=+1 x=+2 x=+3y=−3 −6,−6 −4,−6 −2,−6 0,−6 +2,−6 +4,−6 +6,−6y=−2 −6,−4 −4,−4 −2,−4 0,−4 +2,−4 +4,−4 +6,−4y=−1 −6,−2 −4,−2 −2,−2 0,−2 +2,−2 +4,−2 +6,−2y=0 −6,0 −4,0 −2,0 0,0 +2,0 +4,0 +6,0y=+1 −6,+2 −4,+2 −2,+2 0,+2 +2,+2 +4,+2 +6,+2y=+2 −6,+4 −4,+4 −2,+4 0,+4 +2,+4 +4,+4 +6,+4y=+3 −6,+6 −4,+6 −2,+6 0,+6 +2,+6 +4,+6 +6,+6

+1 +2 +3−1−2−3

−1

−2

−3

+1

+2

+3

x

y

Page 19: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 19 Young Won Lim

9/17/12

Gradient Example (2)

x

zy = f (x , y) f (x , y ) = x2 + y2 ∂ f

∂ x= 2x

∂ f∂ y

= 2 y

y

+1 +2 +3−1−2−3

−1

−2

−3

+1

+2

+3

x

y

Du f (1,1) = ∇ f (1,1)⋅u

u = cosθ i + sinθ j

= 1

√2i + 1

√2j

= (2,2)⋅( 1

√2, 1

√2)

= 2√2

Scaled arrows

+2

+4

+6

Page 20: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 20 Young Won Lim

9/17/12

Gradient Example (3)

x

zy = f (x , y) f (x , y ) = x2 + y2 ∂ f

∂ x= 2x

∂ f∂ y

= 2 y

y

+1 +2 +3−1−2−3

−1

−2

−3

+1

+2

+3

x

y

Du f (3,2) = ∇ f (3,2)⋅u

u = cosθ i + sinθ j

= 1

√2i + 1

√2j

= (6,4)⋅( 1

√2, 1

√2)

= 3√2 + 2√2 = 5√2

Scaled arrows

+2

+4

+6

Page 21: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 21 Young Won Lim

9/17/12

Level Curve (1)

x

zy = f (x , y) f (x , y ) = x2 + y2 ∂ f

∂ x= 2x

∂ f∂ y

= 2 y

y

+1 +2 +3−1−2−3

−1

−2

−3

+1

+2

+3

x

y

f (x , y ) = 3

f (x , y) = 2

f (x , y) = 1f (x , y ) = c

Level Curve

Page 22: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 22 Young Won Lim

9/17/12

Level Curve (2)

x

zy = f (x , y) f (x , y ) = x2 + y2 ∂ f

∂ x= 2x

∂ f∂ y

= 2 y

y

+1 +2 +3−1−2−3

−1

−2

+1

+2

+3

x

y

d fdt

=∂ f∂ x

dxdt

+∂ f∂ y

d ydt

= 0

f (x , y ) = 3

x = 3cost

Level Curve

y = 3sin t

∇ f (x , y) =∂ f∂x

i +∂ f∂ y

j

r '(t ) =dxdt

i +d ydt

j

∇ f (x , y)⋅r ' (t ) = 0

r '(t)r (t )

∇ f (x , y )

Page 23: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 23 Young Won Lim

9/17/12

Level Surface

Function of two variable f (x , y)

Level Curve f (x , y ) = c

x=g(t)

y=h(t)

d fdt

=∂g∂ x

dxdt

+∂h∂ y

d ydt

= 0∇ f (x , y) =

∂ f∂x

i +∂ f∂ y

j

r '(t ) =dxdt

i +d ydt

j

∇ f (x , y)⋅r '(t ) = 0

Function of three variable F (x , y , z )

Level Surface F (x , y , z) = c

x= f (t )

y=g (t )

dFdt

= 0∇ F (x, y , z ) =

∂F∂x

i +∂F∂y

j +∂F∂ z

k

r '(t) =dxdt

i +d ydt

j +dzdt

k

∇ F (x , y , z)⋅r '(t ) = 0

z=h(t ) ∂ f∂ x

dxdt

+∂g∂ y

d ydt

+∂h∂ z

dzdt

= 0

∇ f orthogonal to the level curve at P

∇ F normal to the level surface at P

Page 24: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 24 Young Won Lim

9/17/12

Tangent Plane

Function of three variable F (x , y , z )

Level Surface F (x , y , z) = c

P0 F (x0 , y0, z0) = c

∇ F (x0 , y0, z0)⋅(r − r0) = 0

∂ F∂x

(x0 , y0, z0)(x − x0) +∂F∂ y

(x0 , y0, z0)(y − y0) +∂F∂ z

(x0 , y0, z0)(z − z0) = 0

Page 25: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Vector Calculus (2A)Derivatives 25 Young Won Lim

9/17/12

Chain Rule

Function of two variable y = f (u, v )

u = g(x , y ) v = h(x , y )

Page 26: Derivatives (2A) - Wikimedia · Derivatives (2A) Partial ... Computing Directional Derivative (3) Rate of change of f in the u direction Function of two variables f (x, y) Du f (x,y)

Young Won Lim9/17/12

References

[1] http://en.wikipedia.org/[2] http://planetmath.org/[3] M.L. Boas, “Mathematical Methods in the Physical Sciences”[4] D.G. Zill, “Advanced Engineering Mathematics”