39
3-105 DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS UNDERGRADUATE COURSES F426100 Introduction to Aeronautics and Astronautics (1, -) 1) A Brief History of Aeronautics and Astronautics; 2) The Anatomy of the Airplane; 3) The Standard of Atmosphere; 4) Basic Aerodynamics; 5) Airfoil, Wings, and Other Aerodynamic Shapes; 6) Introduction to Stability of a Vehicle; 7) Elements of Airplane Performance; 8) Introduction to Astronautics; 9) Propulsion; 10) Hypersonic Vehicles. (Prof. Dong-Long Sheu) F410100 Engineering Graphics (1, -) 1) Introduction and the Use of Graphic Instruments; 2) Application of the Geometric Graphics; 3) Projection-point and Line Projection; 4) Orthographic Projection; 5) Auxiliary Projection and Multiview Projection; 6) Cross Section; 7) Plane, Solid Projection and Cutting Plane; 8) Development; 9) Graphics Practice-following the Progress of the Course. (Prof. Wei-Hsiang Lai) F411200 Energy Technology (1, -) 1) Basic Combustion; 2) Emission and Pollutants; 3) Global Climate Change: The Ozone Depletion and The Greenhouse Effect; 4) Fossil Fuel Energies; 5) Fuel Cells; 6) Electrical Vehicles and Hybrid Electrical Vehicles; 7) Alternative Fuels; 8) Renewable Energies (Prof. Chih-Yung Wen)

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-105

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS

UNDERGRADUATE COURSES F426100 Introduction to Aeronautics and Astronautics (1, -)

1) A Brief History of Aeronautics and Astronautics; 2) The Anatomy of the Airplane; 3) The Standard of Atmosphere; 4) Basic Aerodynamics; 5) Airfoil, Wings, and Other Aerodynamic Shapes; 6) Introduction to Stability of a Vehicle; 7) Elements of Airplane Performance; 8) Introduction to Astronautics; 9) Propulsion; 10) Hypersonic Vehicles. (Prof. Dong-Long Sheu) F410100 Engineering Graphics (1, -)

1) Introduction and the Use of Graphic Instruments; 2) Application of the Geometric Graphics; 3) Projection-point and Line Projection; 4) Orthographic Projection; 5) Auxiliary Projection and Multiview Projection; 6) Cross Section; 7) Plane, Solid Projection and Cutting Plane; 8) Development; 9) Graphics Practice-following the Progress of the Course. (Prof. Wei-Hsiang Lai) F411200 Energy Technology (1, -)

1) Basic Combustion; 2) Emission and Pollutants; 3) Global Climate Change: The Ozone Depletion and The Greenhouse Effect; 4) Fossil Fuel Energies; 5) Fuel Cells; 6) Electrical Vehicles and Hybrid Electrical Vehicles; 7) Alternative Fuels; 8) Renewable Energies (Prof. Chih-Yung Wen)

Page 2: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-106

F420800 Introduction to Computer (-, 2)

1) An Introduction to Computers: Computer Organization, Computer Languages, Running a Computer Program, Top-Down Design Techniques; 2) An Introduction to FORTRAN Language: Constants and Variables, Arithmetic Operations, Intrinsic Functions, Input and Output Statements, Control Structures - IF Statement and DO Loop, Array Processing, FUNCTION Subprograms SUBROUTINE Subprograms, Complex Data, Data Files; 3) Numerical Applications. (Profs. Le-Chung Shiau, Cheng-Yuan Wang) F420310 Thermodynamics I (3, -)

1) Basic Concepts and Definitions; 2) The First Law of Thermodynamics and the State Postulate; 3) Ideal Gas and Specific Heat; 4) Properties of a Pure, Simple Compressible Substance; 5) Control-volume Energy Analysis; 6) A Macroscopic Viewpoint of the Second Law; 7) Some Consequences of the Second Law; 8) Concept of Availability; 9) A Statistical Viewpoint of Entropy and the Second Law. (Profs. Hsiao-Feng Yuan, Denz Lee) F420320 Thermodynamics II (-, 3)

1) The Second Law of Thermodynamics; 2) Entropy; 3) Second Law Analysis for a Control Volume; 4) Molecular and Statistical Mechanics of Thermodynamics; 5) Power and Refrigeration Cycles; 6) Thermodynamic Relations; 7) Thermodynamic Mixtures; 8) Phase and Chemical Equilibrium. (Profs. Hsiao-Feng Yuan, Muh-Rong Wang)

Page 3: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-107

F421010 Engineering Mechanics I (-, 2)

1) Basic Concepts; 2) Force and Mechanics; 3) Statics of Particles; 4) Equivalent Force System; 5) Distributed Force System; 6) Equilibrium of Rigid Bodies; 7) Truss, Frame, and Machine; 8) Internal Forces; 9) Friction; 10) Method of Virtual Work; 11) Stability. (Profs. Siiu-Tong Choi, Lee-Jen Lee) F421020 Engineering Mechanics II (3, -)

1) Introduction to Dynamics; 2) Kinematics of Particles; 3) Kinetics of Particles; 4) Kinetics of Systems of Particles; 5) Plane Kinematics of Rigid Bodies; 6) Plane Kinetics of Rigid Bodies; 7) Introduction to Three- Dimensional Dynamics of Rigid Bodies; 8) Vibration and Time Response. (Profs. Wen-Bin Young, Hung-Sying Jing) F420500 Mechanical Engineering Drawing (-, 1)

1) Dimensioning; 2) Tolerancing and Surface Qualify; 3) Mechanical Fasteners: Bolts, Nuts, Screws, Keys, Springs & Washers; 4) Permanent Fasteners: Welding & Riveting; 5) Preparation of Production Drawing; 6) Basic Idea of Computers in Engineering & Graphics. (Prof. Wei-Hsiang Lai) F420710-20 Engineering Mathematics I-II (3,3)

(I): 1) First-order Ordinary Differential Equations; 2) Second-Order Linear Ordinary Differential Equations; 3) Higher-Order Linear Ordinary Differential Equations; 4) Series Solutions of Linear Ordinary Differential Equations; 5) Laplace

Page 4: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-108

Transforms; 6) Linear Algebra; 7) Vector Calculus; 8) Fourier Series. (II): 1) Partial Differential Equations; 2) Complex Functions; 3) Power Series, Taylor Series, Laurent Series; 4) Residue Integration Method; 5) Conformal Mapping; 6) Complex Analysis Applied to Potential Theory; 7) Numerical Methods; 8) Optimization; 9) Probability and Statistics. (C.M. Lee, Prof. San-Yih Lin) F420800 Electric Circuits and Electronics (3,-)

1) Circuit theory: The concepts and the basic elements of an electric circuit, Steady state analysis of the direct current (DC) networks, Steady state analysis of the alternating current (AC) networks, Other related topics; 2) Electronics: Semiconductor and the physics of the semiconductor, Diode and diode circuit analysis, Bi-polar transistor (BJT) and the BJT circuits, Filed effect transistor (FET) and the EFT circuit. (Profs. Jenq-Tzong H. Chan, S.M. Ding) F430200 Engineering Materials Science (3,)

1) Introduction; 2) Crystal Structure of Metals; 3) Mechanical Properties of Metals; 4) Dislocations and Strengthening Mechanisms; 5) Failure; 6) Phase Diagrams and Alloys; 7) Composites. (Profs. Wen-Bin Young, Syh-Tsang Jeng) F425900 Mechanics of Materials (-,3)

1) Tension, Compression and Shear; 2) Axially Loaded Members; 3)Torsion; 4) Shear Force and Bending Moment; 5) Stresses in Beams; 6) Analysis of Stress and Strain; 7) Deflections of Beams; 8) Statically Indeterminate Beams; 9) Columns. (Profs. Lee-Jen Lee, Le-Chung Shiau)

Page 5: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-109

F428000 Fluid Mechanics (-,3)

1) Introduction: Definition and Scope of FM, Basic Equations and Methods of Analysis, Dimensions and Units; 2) Fundamental Concepts: Velocity Field, Stress Field, Viscosity and Surface Forces, Speed of Sound, Dimensions and Classification; 3) Fluid Statics: The Standard Atmosphere, Pressure Variation in Static Fluid, Hydrostatic Forces on Submerged Surfaces; 4) Basic Equations in Integral Forms: Basic Laws for a System, Reynolds Transport Relation, Mass Conservation; 5) Differential Analysis of Fluid Mechanics: Stream Function, Fluid Kinematics, Momentum Equation; 6) Incompressible Inviscid Flow: Euler Equation, Bernoulli Equation, Irrotational Flow; 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min Liang) F420600 Aircraft Engines (3,-)

1) History and Introduction; 2) Fundamentals and Basic Engine Theories; 3) Ideal Cycle Analysis; 4) Components and Component Performance; 5) Non-ideal Cycle Analysis and Off-design Performance; 6) Engine Testing; 7) Advanced and Future Engine Trend. (Profs. Wei-Hsiang Lai, Denz Lee) F430310-20 Aerodynamics I-II (3,3)

(I): 1) Introduction to Aerodynamics; 2) Review of the Fundamental Principles and Equations on Fluid Dynamics; 3) Inviscid, Incompressible Flow Theory; 4) Characteristics of Airfoil and Wing Aerodynamics; 5) Incompressible Flow over Airfoils; 6) Incompressible Flow over Finite Wings; 7) Three-Dimensional Incompressible Flow; 8) Some Preliminary Aspects on the

Page 6: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-110

Compressible Flow; 9) Concluding Remarks. (II): 1) Normal Shock Waves and Related Topics; 2) Oblique

Shock and Expansion Waves; 3) Compressible Flow Through Nozzles, Diffusers and Wing Tunnels; 4) Subsonic Compressible Flow over Airfoils: Linear Theory; 5) Linearized Supersonic Flow; 6) Introduction to Numerical Techniques for Nonlinear Supersonic Flow; 7) Elements of Hypersonic Flow; 8) Introduction to the Viscous Flow and Some Special Cases; 9) Introduction to Boundary Layers; 10) Laminar Boundary Layers; 11) Concluding Remarks. (Profs Dartze Pan, Fan-Ming Yu) F431700 Introduction to Control Systems (3,-)

1) Introduction to Control Engineering; 2) Physical Modelling & Dynamic Response; 3) Characteristics of Feedback Control System; 4) Stability Analysis; 5) System Response & Performance; 6) Root Locus Method; 7) Frequency Response Analysis; 8) Controller Design. (Profs. Chieh-Li Chen, Yiing-Yuh Lin) F430410-20 Aircraft Structure I-II (3,2)

(I): 1) Introduction; 2) Statically Determinate Structures; 3) Applied Elasticity; 4) Box Beam Stress Analysis; 5) Load Transfer in Stiffened Panel Structures; 6) Work-Energy Principles; 7) Force Method. (Profs. Siu-Tong Choi, Dar-Yun Chiang)

(II): 1) Force Method: Idealized Thin-Walled Structures; 2) Matrix Displacement Method; 3) Matrix Displacement Method: Trusses and Frames; 4) Matrix Displacement Method: Thin Walled Structures; 5) Structural Stability(Prof. Le-Ching Shiau)

Page 7: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-111

F431600 Structure and Material Laboratory (1,-) 1) Orientation; 2) Strain Gages: Multimeter, Wheatstone Bridge; 3)

Investigation of Stress-Strain Relationships Using Strain Rosettes; 4) Stress-Strain Behavior of Metals in Tension; 5) Torsion Tests of Aluminum, Steel and Cast Iron; 6) Pure Bending and Combined Bending and Shear in an Aluminum Beam; 7) Test of Solid Column; 8) Stress Wave in a Solid Bar. (Prof. Lee-Jen Lee) F431500 Guidance and Control Laboratory (-,1)

1) Analog Simulation; 2) System Sensitivity Analysis; 3) Analog Controller (Phase-lead/lag) Design; 4) DC Servo Motor Control; 5) DC Servo Motor Control (State Feedback); 6) Time-Delay System Control; 7) Temperature Measurement and Control; 8) Pneumatic Servo System Control; 9) Pressure Regulating; 10) Non-linear System Control. (Drs. Jenq-Tzong H. Chan, Chieh-Li Chen) F440200 Flight Mechanics (-,3)

1) Some Aerodynamic Generalities; 2) Introduction to Longitudinal Stability; 3) Steady Flight at Different Speeds; 4) Stick Force and Control-Free Stability; 5) Constant Speed Flight Conditions with Normal Acceleration; 6) Aeroelasticity; 7) Longitudinal Linearized Equations and Derivatives; 8) Characteristic Longitudinal Transients- restricted Degrees of Freedom; 9) Longitudinal Transient and Control Response; 10) Longitudinal Dynamics-Special Problems; 11) Lateral Directional Equations and Derivatives; 12) Lateral Directional Statics; 13) Characteristic Lateral Directional Transients and Control Responses. (Profs. Jenq-Tzong H. Chan, Dong-Long Sheu)

Page 8: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-112

F441200 Heat Transfer (3,-)

1) Introduction to Heat Transfer; 2) Introduction to Conduction; 3) Steady-State Conduction; 4) Transient Conduction; 5) Introduction to Convection; 6) External Flow; 7) Internal Flow; 8) Free Convection; 9) Introduction to Radiation; 10) Radiation Exchange Between Surfaces. (Profs. Cheng-Yuan Wang, Chie Gau) F421000 Thermo-Fluid Laboratory (1,-)

1) Dead Weight Calibration of Pressure Gauge; 2) Measurement of Fluid Viscoisity by using Falling-Sphere Viscometer; 3) Visualization on the Flow Separation and its Control in a Water Table; 4) Measurement on the velocity distribution of a planar Jet; 5) Calibration on the Measurement Device of the Volume Flow Rate of Air; 6) Measurement of the Convective Heat Transfer rate on a Flat Plate, 7) Measurement on the Flame of Bunsen Burner; 8) Application of Laser Schlieren Technique on Flow Visualization; 9) Calibration on the Temperature Measurement Devices. (Prof. Chie Gau) F440410-20 Aircraft Design (2,2)

(I): 1) Introduction to Conceptual Design; 2) Mission Analysis of the Airplane; 3) Take-off Weight Estimate; 4) Wing Loading and Thrust-to-weight Ratio Estimate; 5) Design of Wing Shape and its Aerodynamic Analysis; 6) Design of Body Geometry and its Interior Arrangement; 7) Design of Tail Geometry and its Position; 8) Concluding Remarks.

(II): 1) Preliminary Sizing of the Vertical and Horizontal Tails; 2) Transonic and Supersonic Wing-Body Drag (Ares Ruling); 3)

Page 9: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-113

Turbine Engine Fundamentals, Engine Sizing, Inlet Design; 4) Corrections to Propulsion System Data; 5) Propeller Propulsion Systems; 6) Static Stability and Control; 7) Trim Drags and Maneuvering; 8) Control surface Sizing Criteria; 9) Material Selection; 10) Design for Mankind; 11) Concluding Remarks. (Profs. Dong-Long Sheu, Fan-Ming Yu) F411300 Aircraft System and Maintenance (-,3)

1) Aircraft Structure Introduction; 2) Aircraft System Familiarization & Troubles Shooting; 3) Engines & Systems Familiarization, Major in the Turbo-fan & Turbo-prop. Engines; 4) Aircraft Propellers for Aircraft Installed with Turbo-prop. Engines only; 5) Aircraft Turbine Engines Installation, Ground Operation, Adjustment and Troubles Shooting; 6) Aircraft Maintenance Basic Idea: 7) Aircraft & Engines Inspection Techniques & Practices; 8) Materials Processing; 9) Federal Aviation Regulation; 10) F.O.D. Prevention & Safety; 11) Hand Tooling & Special Tooling. (Yuh-Yi Wu) F421200 Digital Electronics (3,-)

1) Number Systems and Conversion, Boolean; 2) Algebra. Algebraic Simplification, Applications of Boolean Algebra; 3) Karnaugh Maps, Quine-McCluskey Method, NAND and NOR Gates; 4) Multiplexers, Decoders, Read-Only Memories, and Programmable Logic Arrays; 5) Combinational Network Design, Flip-Flops; 6) Analysis of Clocked Sequential Networks; 7) Derivation of State Graphs and Tables, Reduction of State Tables; 8) Sequential Network Design, Iterative Networks; 9) MSI Integrated Circuits in Sequential

Page 10: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-114

Network Design; 10) SPICE Simulation. F425800 Mechanism (3,-)

1) Degrees of Freedom and Constraints, Mechanisms, Structures, Machines, Machine Members; 2) Kinds of Mechanisms; 3) Kinematic Analysis: Graphic Methods, Vector Loops, Position, Displacement, Velocity, Accelerations; 4) Dynamic Analysis. (Prof. Wen-Bin Young,) F430900 C Programming Language and the Basic Computer Interface (3,-)

1) Computing concept; 2) The concept of address; 3) The concept of interrupt (How DOS and Windows O.S. handle interrupt) Introduction to C. Program Control. Functions. Arrays. Pointers. Characters and Strings. Formatted I/O. Structures, Unions, Bit Manipulations. File Processing. The Preprocessor. Interrupt service routine. (Prof. Chen Hsieh) F431200 Computer Aided Engineering Drawing (3,-)

1) Basic concepts in engineering drawing; 2) How to use Chinese National Standard; 3) AutoCAD R12 software - a) Introduction of AutoCAD software; b) AutoCAD R12 getting start and interface; c) Entities draw commands; d) Edit and Inquiry commands; e) Display control; f) Entities properties; g) Dimensioning and Drawing aids; f) Crosshatching and Pattern filling; 4) AutoCAD R12 practice - a) PC and interfaces, operation; b) Topics are designed to follow course contents. (Prof. Wei-Hsiang Lai)

Page 11: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-115

F421100 3-D Modeling Design and Rapid Prototyping (-,3) 1) Introduction to Enginering Design; 2) Planning of Design

Process; 3) Embodiment Design-Design for a Special Purpose; 4) Design Tool-Selecting and practicing from one of CAD tool from CATIA or PRO/ENGINEER or SOLID WORK or AutoCAD 2000 for 3-D modeling; 5) Transformation to *.stl for 3-D Printer; 6) Rapid Prototyping; 7) Example of Design and Rapid prototyping; 8) Design Project and Presentation. (Wei-Hsiang Lai) F435300 Aircraft Materials (-,3)

1) Introduction to Materials; 2) Atomic Bonding and coordination; 3) Atomic Order and Disorder in Solids; 4) Phase Equilibria and Reaction Rates; 5) Deformation and Fracture; 6) Strengthening and Toughening Processes; 7) Polymer and Composites; 8) Conduction and magnetic Properties of Materials; 9) Aluminum Alloys; 10) Corrosion of Metals; 11) Mechanical Testing of Composites. (Prof. Syh-Tsang Jeng) F420730 Engineering Mathematics III (3,-)

1) Calculus of Variation; 2) Partial Differential Equation: Separation of Variable; Integral Transfer; 3) Vector Analysis: Divergence Theory; Stokes Theory; Green Theory; 4) Difference Equation: Digital Processing; Z Transform; 5) Numerical Analysis. (Dr. C.M. Lee) F440900 Introduction of Guidance and Navigation (3,-)

1) Introduction of Flight; 2) Review of Flight Guidance; 3) Introduction of Navigation; 4)Terrestrial Radio-Navigation Systems;

Page 12: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-116

5) Independent Navigation Systems; 6) Air Data Navigation Systems; 7) Satellite Radio-Navigation Systems; 8) Landing Systems. (Prof. Ching-Shun Ho) F431300 System Dynamics Analysis (-,3)

1) Introduction to System Concepts; 2) Modeling of Lumped Systems; 3) Solution Techniques and System Responses; 4) Design Oriented Approach to Input Specifications; 5) Modeling of Higher Order Systems; 6) Compensation and Design of Control Systems. (Dr. Yiing-Yuh Lin) F440500 Applied Linear Algebra(-,3)

1) Matrix Algebra; 2) Matrix Calculus; 3) The Theory of Linear Equations; 4) Eigensystems of General Matrices; 5) Diagonalization and Cayley-Hamilton Theorem; 6) The Jordan Canonical Form; 7) Functions of Square Matrices; 8) Quadratic forms and Variational Characterizations of Eigenvalues; 9) Singular Value Decomposition; 10) Abstract Vector Spaces; 11) Linear Transformation; 12) Linear Programming. (C.M. Lee) F441700 Introduction to Combustion (-,3)

1) Introduction and Review: History of Combustion, Chemistry and Physics. Chemical Thermodynamics: Properties, Heat of Reaction and Dormation, Adiabatic Flame, Temperature, Free Energy, Equilibrium Constant; 2) Chemical Kinetics: Reaction Rate, Radicals, Explosion, Global Kinetics; 3) Premixed Flame: Hugoniot, Laminar Flame, Deflagration, Detonation, Stirred Reactor; 4) Ignition: Thermal

Page 13: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-117

Ignition, Spark Ignition; 5) Diffusion Flames: Gaseous Jets, Droplet Burning; 6) Flame Stabilization: Afterburner, Ramjet, Gas Turbine; 7) Modern Measurements in Combustion, Laser Velocimetry, Rayleigh Scattering: Raman Spectroscopy, Laser Induced Fluorescence. (Prof. Hsiao-Feng Yuan) F447600 Space Mechanics (-,3)

1) Overview; 2) Particle Dynamics; 3) The Two-Body Problem; 4) Earth Satellite Operations; 5) Rigid-Body Dynamics; 6) Satellite Attitude Dynamics; 7) Gyroscopic Instruments; 8) Rocket Performance; 9) Interplanetary Trajectories; 10) Conclusion Remarks. (Dr. Ching-Shun Ho) F430210 Special Topics on Aerospace Implementation I (3,-)

1) Requirement of the Special Topics issued from the teachers; 2) Developing process of Industrial Products; 3) System Engineering and project guide; 4) Project Structure and Work Breakdown; 5) Information Collection; 6) Machine shop and warehouse training; 7) Progress discussion and design review; 8) Establish Prototyping; 9) Functional verification of prototyping; 10) Report and presentation. (Prof. Wei-Hsiang Lai) F430220 Special Topics on Aerospace Implementation II (3,-)

1) Unmanned Aerial Vehicle Design; 2) Small Turbo Jet Engine Design; 3) Automatic Wind Tunnel Design. (Prof. Shieh, Chen) F442000 Combustion Pollution Control (-,3)

1) Introduction ; 2) National Legislation; 3) Combustion of

Page 14: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-118

Hydrocarbon Fuels; 4) Emissions from Combustion Processes; 5) Dispersion of Pollutants in the Atmosphere; 6) Control of Pollutant Emissions; 7) Incineration Applications. (Prof. Keh-Chin Chang) F448100 Theory of Vibrations (3,-)

1) Introduction; 2) Equation of Motion; 3) Free Vibration of SDOF Systems; 4) Forced Vibration of SDOF Systems: Harmonic Force, General Force; 5) Multi-degree of Freedom Systems; 6) MDOF Systems: Matrix Methods; 7) Continuous Systems: Cable, Bar, Shaft, Beam, Membrane; 8) Numerical Methods in Vibration Analysis; 9) Vibration Measurement. (Dr. Siu-Tong Choi) F448300 Control System Design (3,-)

1) Time-Domain Design; 2) Frequency-Domain Design; 3) State-Space Design; 4) Optimal Control Design; 5) Tracking System Design; 6) Nonlinear System Design. (C.M. Lee) F435700 Gasdynamics (3,-)

1) Fundamental of fluid dynamics; 2) Introduction to compressible flow; 3) Isentropic flow; 4) Normal shock waves; 5) Frictional flow in constant-area; 6) Flow in constant area ducts with heat transfer; 7) Steady and two-dimensional supersonic flows. (Prof. Shen-Min Liang) F435700 Gasdynamics (3,-)

1) Fundamental Concepts and Definitions; 2) Integral Forms of the Conservation Equations; 3) One-Dimensional Flows; 4) Oblique Shock Waves and Expansion Waves; 5) Quasi-One-dimensional

Page 15: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-119

Flow; 6) Differential Forms of the Conservation Equations; 7) Unsteady Wave Motion; 8) Linearized Flow; 9) Methods of Characteristics in Two-Dimensional Flows (Prof. Chih-Yung Wen) F441400 Computer Control of Feedback System (-,3) 1) Difference Equation and z transform; 2) Mathematical Model of Computer Control System; 3) Time Response and Stability; 4) Design of Discrete Controllers; 5) Closed-loop Computer Control; 6) State Space analysis of Discrete Systems. (Dr. J. M. Lee)

Page 16: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-120

Graduate Part: P440900 Aviation Safety (3,-)

1) Flight Safety Introduction; 2) Relevant Laws & Regulation; 3) Aircraft System; 4) Flight Operations; 5) Engineering and Maintenance; 5) Aircraft Traffic Control; 6) Weather; 7) Airport Infrastructure; 8) Site Visit; 9) Cabin Safety; 10) Aviation Physiology; 11) Human Factors; 12) Flight Safety Management and Information System; 13) FOQA; 14) Helicopter Principles and Flight Safety.(Prof. Kay Yong) P450110-20 Advanced Engineering Mathematics I-II (3,3)

1) Vector Analysis; 2) Ordinary Differential Equation and Series Analysis; 3) Partial Differential Equation; 4) Complex Analysis; 5) Fourier Transform; 6) Linear Algebra. (Profs. San-Yih Lin, Cheng-Yuan Wang) P451010-20 Engineering Acoustics I-II (3,3)

(I): 1) Introduction; 2) Wave Equation and the Related Topics; 3) Sound Radiation; 4) Reflection and Refraction; 5) Duct Acoustics; 6) Dispersion Phenomena; 7) Acoustics with Flow. (II): 1) Duct Acoustics; 2) Dispersion Phenomena; 3) Acoustics with Flow; 4) Radiation Problems; 5) Scattering and Diffraction; 6) Geometric Acoustics; 7) Room Acoustics; 8) Special Topics. (Prof. Muh-Rong Wang) P451700 Turbulence (3,-)

Page 17: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-121

1) Introduction to turbulence; 2) Statistical Description of Turbulence; 3) Turbulent Transport Equation; 4) Dynamics of Turbulence; 5) Transport Processes in Turbulent Flows; 6) Homogeneous Isotropic Turbulence. (Prof. Jiun-Jih Miau) P452210-20 Computational Fluid Dynamics I-II (3,3)

1) Introduction; 2) Review of Governing Equations of Fluid Dynamics; 3) Mathematical Nature of the Flow Equations and their Boundary Conditions; 4) Conservation Law and Discretizations; 5) Analysis of Numerical Schemes, Consistence, Stability, and Convergence; 6) Potential Flow Computation, Subsonic and Supersonic Flow. (Prof. Dartzi Pan) P453200 Advanced Thermodynamics (3,-)

1) Classical Thermodynamics: Basic Concept of Thermodynamics, 1st Law of Thermodynamics, 2nd Law of Thermodynamics, Availability Concept in Open or Closed System, Fundamental Equation for Both Pur Substance and Mixture, Maxwell Relation for Mixture, Legendre Transformation, Equilibrium Criterion, Partial Modal Properties, Ideal Gas Mixture, Equation of State for Mixture, Thermodynamic Relationship Between Measurable and Nonmeasureable Properties for Mixture, Fugacity for Pure Substance and Mixture, Conservation of Energy for Reacting Mixture, Reaction Equilibriuim. 2) Statistical Thermodynamics: Kinetic Theory of an Ideal Gas, Distribution of Molecular Velocities, Transport Phenomena, Quantum Mechanics, Base-Einsten Statistics, Fermi-Dirc Statistics, Partition Function, Molecular View Point of Thermodynamic Properties (Prof. Chie Gau)

Page 18: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-122

P453310-20 Combustion Theory I-II (3,3)

1) Thermochemistry, Mistures, Chemical Equilibrium Adiabatic Flame Temperature; 2) Chemical Kinetics; 3) Combustion Waves, Detonation, Hugoniot Curves, C-J Conditions; 4) Laminar Flames, Turbulent Flames, Flame Stabilization; 5) Governing Equations for Multicomponent, Reacting System. (Prof. T.L. Jiang) P454300 Conduction Heat Transfer (3,-)

1) Fundamentals of Heat Conduction; 2) Separation of Variable; 3) Finite- Difference Method; 4) Superposition and Complex Combination of Heat Conduction Problems; 5) Laplace Transform 6) Nonlinear Problems; 7) Phase- Change Problems. (Prof. Keh-Chin Chang) P455700 Structural Dynamics (3,-)

1) Overview of Structural Dynamics:Part I Single-Degree-of-Freedom Systems, 2)Analysis of Free Vibrations, 3)Response to Harmonic Loading, 4)Response to Periodic Loading, 5)Response to Impulsive Loading, 6)Response to General Dynamic Loading: Superposition Methods, 7)Response to General Dynamic Loading: Step-by-Step Methods, 8)Generalized Single-Degree-of-Freedom Systems: Part II Multi-Degree-of-Freedom Systems, 9)Formulation of the MDOF Equations of Motion, 10)Evaluation of Structural-Property Matrices, 11)Undamped Free Vibration, 12)Analysis of Dynamic Response—Using Superposition, 13)Vibration Analysis by Matrix Iteration, 14)Selection of Dynamic Degree of Freedom, 15)Analysis

Page 19: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-123

of MDOF Dynamic Response: Step-by-Step Methods, 16)Variational Formulation of Equations of Motion: Part III Distributed-Parameter Systems, 17)Partial Differential Equation of Motion, 18)Analysis of Undamped Free Vibrations, 19)Analysis of Dynamic Response. (Prof. Hung-Sying Jing) P455500 Finite Element Methods in Structures (3, -)

1) Matrix and Linear Algebra; 2) Truss and Beam Elements; 3) Plane Stress and Plane Strain Elements; 4) Axisymmetric and Solid Elements; 5) Numerical Integration and Curved Isoparametric Elements; 6) Plate Elements; 7) Application of FEM on Structural Dynamics. (Prof. Le-Chung Shiau) P455800 Optimal Filtering Theory and Its Application (3, -)

1) Introduction; 2) Fundamentals of Vector and Matrix Operations; 3) Least Squares Techniques and Batch Processing Filters; 4) Linear Dynamical System and Recursive Processing; 5) Stochastic Process and Optimal Linear Filters 6) Nonlinear Estimation; 7) Concluding Remarks. (Dr. Ching-Shun Ho) P456700 Elasticity (3,-) 1) Introduction to Tensor Analysis; 2) Continuum Mechanics (Cartesian and general curvilinear coordinates); 3) Nonlinear Elasticity: General Equations: Stress-strain relations, etc.; 4) Linear Elasticity: Uniqueness of solution, Methods of solutions, Plane stress and strain problems, Contact problems, Indention and crack problems; 5) Waves in Elastic Solids; 6) Variational Theorems. (Prof. Lee-Jen Lee)

Page 20: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-124

P457700 Principles of Instrumentation Control(3,-) 1) Introduction to Avionics Systems; 2) Description of Flight Motion; 3) Flight Dynamic Response and Stability Augmented Control; 4) Flight by Wire Control; 5) Air Data Measurement and Computation; 6) Flight Motion Sensor; 7) Inertial Navigation Systems; 8) Principles of Global Position system (GPS); 9) Combination of Different Navigation Techniques; 10) Principles of Autopilot; 11) Auto-Landing Techniques. (Prof. Ciann-Dong Yang) P459200 Turbo Engine Principles (3,-) 1) Introduction: Single-shaft, Twin-shaft and Multi-spool Arrangements, Open and Closed Cycles, Aircraft and Industrial Applications, Enviromental and Future Issues; 2) Shaft Power Cycle: Ideal and Real Cycles, Performance Calculations, Closed-Cycle Gas Turbines; 3) Gas Turbines for Aircraft Propulsion: Turbojet Engine, Burbofan Engine, Turboprop Engine, Trust Augmentation; 4) Turbomachine: Centrifugal Compressors, Axial-Flow Compressors, Turbine. (Prof. Chii-Jong Hwang) P459500 Laser Engineering (3,-) 1) Fundamental Principle of Laser; 2) Quantum Optical Principle of Laser; 3) Various Lasers; 4) Application of Lasers. (Prof. Sheng-Mao-Tieng) P460500 Aerodynamics (3,-)

1) Review of Fundamentals of Fluid Mechanics; 2) Classical Theories of Inviscid Incompressible Flow; 4) 2D Thin Wing Theory in Subsonic and Supersonic Flows; 5) 3D Lifting-Line and

Page 21: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-125

Lifting-Surface Theories; 6) Slender Body Theory. (Prof. Fei-Bin Shiao) P460800 Introduction to Propulsion (3,-)

1) Introduction and Review of Fundamental Sciences: Jet propulsion principle, Mechanics and thermodynamics of fluid Flow, Steady one-dimensional flow of a perfect gas, Boundary layer mechanics and heat transfer; 2) Air-Breathing Engines: Thermodynamics of aircraft jet Engines, Aerothermodynamics of inlets, combustors and nozzles, Axial compressors, Axial Turbines, Centrifugal compressors. (Prof. T.L. Jiang) P460900 Fluid Dynamics (4,-)

1) Fundamentals of continuum mechanics and kinematics; 2) Equation of motion of Newtonian fluids; 3) Hydrostatics; 4) Laminar unidirectional flows; 5) Fundamentals of turbulent flow; 6) Potential flows; 7) Supersonic flows; 8) Boundary layer theory. (Prof. Chii-Jong Hwang) P462500 Introduction to Biomedical Fluid (3,-) 1) Human Fluid Dynamic System; 2) Basic concepts of Fluid Dynamics; 3) Blood, Vessels and Blood Flows; 4) Body Fluids, Cell Membranes, Transport Phynomena; 5) Micro-channel Flows. (Prof. Denz Lee) P463600 Dynamic Fluid Mechanics Measurements (3,-)

1) General Considerations in Physical Data and Data Processing; 2) Review of Stationary Random Processes Theory; 3) Basic

Page 22: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-126

Non-optical Flow visualization and Measurements; 4) Review of Principles of Optics and Optical Systems; 5) Basic Principles of Laser-Doppler Velocimetry (LDV); 6) LDV Optical Components; 7) LDV Signal processing; 8) Principles of Particle Image Velocimetry (PIV); 9) Image Processing; 10) Other Flow Measurements Systems. (Prof. Yei-Chin Chao) P463800 Quantum Fluid Dynamics Theory and Application (3,-)

1) Fundamentals of quantum mechanics; 2) Equivalence principles and fluid dynamic representation of Schrodinger liner and non-liner quantum systems. Hamilton-Jacobi, Madelung, Bohm, Chiu formalisms; 3) Basic theorems of non-relativistic quantum fluid dynamics. Quantum Bernoulli’s equation, laws of quantum vorticies, quantum hydrodynamic and gasdynamic discontinuities; 4) Quantum subsonic, supersonic and hypersonic flows in many-particle non-linear Scrodinger systems; 5) Quantum vortex dynamics and superfluidities; 6) Fluid dynamics of quantum structures: quantum dots, channels, circuirts and slabs; 7) Fluid dynamics of models of artificial atoms and molecules; 8) Quantum transport processes and flow structures; quantum tunneling phenomena; 9) Quantum electro-magneto hydrodynamics; 10) Superconductivity phenomena; 11) Applications: Nano-particle, nano-jet, nano-st ructures, neon-electronics and quantum circuits. (Prof. H.H. Chiu) P468300 Orbital Mechanics (3,-)

1) Introduction; 2) Two-Body Orbital Mechanics; 3) Orbit Determination; 4) Time of Flight; 5) The Gauss Problem; 6) Ballistic Missile Trajectories; 7) Lunar Trajectories; 8) Interplanetary

Page 23: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-127

Trajectories; 9) Three-Body Orbits; 10) Perturbations. (Prof. Dong-Long Sheu) P470200 Picosat System Engineering (3,-)

1) System Engineering Process and Requirements; 2)Spacecraft Mission Design; 3) Space Powers; 4) Communication; 5) Configuration and Structural Design; 6) Attitude Determination and Control; 7) Thermal Control; 8) Flight Software; 9) Launch Vehicle. (Prof. Yiing-Yuh Lin) P473800 Experimental Stress Analysis (3,-)

1) Review of stress, strain and stress-strain relationship; 2) Basic equations and plane-elasticity theory; 3) Elementary fracture mechanics; 4) Strain measurement methods and related instrumentation; 5) Optical methods of stress analysis; 6) Testing methods for composite materials. (Prof. Syh-Tsang Jeng) P474100 Structural Mechanics of Flight Vehicles (3,-)

1) Characteristics of Aircraft Structures; 2) Introduction to Elasticity; 3) Torsion; 4) Bending and Flexural; 5) Shear Flow and Deflection; 6) Failure Criteria For Materials; 7) Buckling; 8) Analysis of Composite Laminates. (Prof. Dar-Yun Chiang) P476600 Plates and Shells (3, -)

1) Classical Plate Theory; 2) Rectangular Plates; 3) Circular Plates; 4) Plates of Various Geometrical Forms; 5) Plates Bending By Numerical Methods; 6) Orthotropic Plates; 7) Platles Under Combined Lateral and Directed Loads; 8) Refined Plate Theory; 9) Thermal Stresses in Plates; 10) Dynsmic Analysis of Plates; 11)

Page 24: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-128

Differential Geometry; 12) Thin Elastic Shells; 13) Membrane Stresses in Shells; 14) Bending Stresses in Shells. (Prof. Chyanbin Hwu) P477300 Linear System Theory (3, -)

The purpose is to characterize the dynamics of linear system and its application to control problems. The contents, therefore, include mathematic fundamentals such as Real Analysis, Linear Algebra and Ordinary Differential Equation; State-space Representation (SSR); Controllability, Observability; Realization and Singular Value Decomposition (SVD). For stability, we discuss aspects like Bounded-imput-bounded-output (BIBO) and Lyapnnov Theory. All these are, then, applied to the optimal feedback control design. (Prof. Jiun-Haur Tarn) P477400 Optimal Control Theory (3, -)

1) Static Optimization-Linear and Nonlinear Programming; 2) Introduction to Calculus of Variations; 3) Optimal Control Theory-Variational Approach; 4) Linear Optimal Control Problems; 5) Neighboring Extremals and Second-Order Variations; 6) Optimal State Estimation and LQG Control Problems; 7) Pontryagin's Maximum Principle and Dynamic Programming; 8) Constraints and Optimization Techniques; 9) Introduction to Singular Control Problems. (Prof. Yiing-Yuh Lin) P484300 Analysis of Aircraft Performance (3,-)

1) The evolution of the airplane and its performance; 2) Aerodynamics of the airplane; 3) Some propulsion characteristics; 4) Equations of motion; 5) Aircraft performance: steady flight; 6)

Page 25: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-129

Aircraft performance: Accelerated flight.(Prof. Fei-Bin Shiao) P484600 Reinforcement Learning Theory and Application (3,-)

1) Introduction to reinforcement learning; 2) Markov Decision Process; 3) Dynamic Programming; 4) Temporal-difference; 5) Monte Carlo methods; 6) Eligibility traces; 7) Networks Theory; 8) Integration of learning, planning and their applications. (Prof. Jiun-Haur Tarn) P484700 Aircraft Dynamics(3,-)

1) A. Review of dynamics; 2) Longitudinal motion analysis: Static longitudinal analysis; 3) Lateral motion analysis: Linearization of the lateral analysis, Static lateral analysis, Lateral dynamic equations, Dynamic lateral analysis; 4) A/C response to atmospheric gusts: Rederive the longitudinal equations, Longitudinal response to vertical gusts, Longitudinal response to horizontal gusts.(Prof. Jenq-Tzong H. Chan) P491800 Introduction to Microfabrication and MEMS (3,-)

1) Introduction to physical phenomena in microscale; 2) Scaling rules: What happen in small work?; 3) Basics of microfabrication process: Photolithography, thin film deposition, etching, LPCVD etc. 4) Fundamentals of bulk micromachining and examples: isotropic and anisotropic etching, dry etching; 5) Surface micromachining and examples: sacrificial layers, thin-film deposition, etching and releasing; 6) Combination of surface and bulk processing. (Prof. Tzong-Shyng Leu)

Page 26: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-130

P431500 Theory and Experiment of Navigation with Satellites (-.3)

1) History of Navigation; 2) Introduction of Satellite Navigation; 3) Observation Measurement Model of GPS; 4) GPS Satellite Orbit; 5) GPS pseudo-Range Data processing; 6) Introduction of GPS RINEX Data Format; 7) Navigation Solution Downloading and Analysis; 8) Raw Data Processing and Analysis; 9) Model Testing. (Prof. Ching-Shun Ho) P442800 Airline Operation and Management (-,3) 1) Airline Fundamental; 2) Launch a New Route; 3) Marketing Action Plan and Revenue Projection; 4) Airline Industry Characteristics and Marketing Trends; 5) Media Relation and Crisis Management; 6) Staff Career Development and Management Trainee Program; 7) Wrap-up Discussion. (Dr. J. M. Lee) P442900 Aviation Human Factor Engineering (-,3)

1) Aviation Psychology: Cognition in Aviation; Stress and its Management; Pilot Selection; Pilot Training; Special Topics, 2) Aviation Physiology: Flight Environment; Acceleration Physiology; Spatial Disorientation; Stress and its Management; Special Topics; 3) Human Factors in Aviation: Pilot Dynamics; Aircraft-Pilot Coupling; Aviation Display; Cockpit Automation; Air Traffic Control; Maintenance.(Prof. Huang-Sying Jing) P443400 Neural Networks (-,3)

1) Introduction; 2) Learning Processes; 3) Single Layer Perceptrons; 4) Multilayer Perceptrons; 5) Radial-Basis Function

Page 27: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-131

Networks; 6) Support Vector Machines; 7) Committee Machines; 8) Principal Components Analysis; 9) Self- Organizing Maps; 10) Information-Theoretic Models; 11) Stochastic Machines And Their Approximates Rooted In Statistical Mechanics; 12) Meurodynamic Programming; 13) Temporal Processing Using Feedforward Networks; 14) Neurodynamics; 15) Dynamically Driven Recurrent Networks. (Prof. Hung-Sying Jing) P451500 Boundary Layer Phenomena (-,3)

1) Introduction: boundary layer phynomenon, boundary layer assumption, and boundary layer equation; 2) Laminar boundary layer: similarity solutions (Blasius solution, Falkner-Skan solutions); 3) Integral method for boundary layer equation; 4) Turbulent boundary layer: inner and outer layers characteristics, log region, coherent structures in turbulent boundary layer; 5) Free shear layers: mean flow and turbulent fluctuations, characteristics of jet, wake and mixing layer; 6) Introduction of compressible boundary layer; 7) A term project of wind-tunnel experiment. (Prof. Chii-Jong Hwang) P453000 Rocket Propulsion (-,3)

1) Introduction to Rocket Propulsion; 2) Performance of Rocket Vehicles; 3) Chemical Rocket Thrust Chambers; 4) Chemical Rocket Propellant Performance; 5) Pumps and Turbines for Liquid-Propellant Rockets; 6) Electric Rocket Propulsion. (Prof. Tsung Leo Jiang) P453300 Satellite Technology and Its Applications (-,3)

1) Overview of Satellite Systems; 2) Orbits and Landing Methods; 3) The Space and Earth Segment; 4) Spacecraft Structure; 5) Attitude

Page 28: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-132

Control System; 6) TT&C; 7) Propulsion System; 8) Thermal Control System; 9) Spacecraft Testing; 10) Satellite Applications. (Prof. Fei-Bin Hsiao) P453600 Physical Gas Dynamics (-, 3)

1) Introductory Kinetic Theory; 2) Equilibrium Kinetic Theory; 3) Nonequilibrium Kinetic Theory; 4) Real Gas Effects and Properties of High Temperature; 5) Equilibrium and Frozen Flow (Prof. Yei-Chin Chao) P454400 Convection Heat Transfer (-, 3)

1) Basic Concept and Constitutive Equations; 2) General Conservation Equations; 3) Conservation Equations in Real Gas; 4) Vorticity Transport Equation; 5) Conservation Equations for Turbulent Flow; 6) Boundary Layer Approximation; 7) Similarity Solutions; 8) Similarity Solution for Special Cases; 9) Integral Method; 10) Similarity Solution for Variable Fluid Properties; 11) Internal Flow; 12) Turbulent Flow and Turbulent Viscosity Concept; 13) Prandtl Mixing Length Model; 14) General Velocity and Temperature Distribution; 15) One Equation Model; 16) Two Equation Model; 17) Turbulent Convection in Tubes; 18) Heat Transfer at High Velocity; 19) Natural Convection; 20) Combined Natural and Forced Convection. (Prof. Cheng-Yuan Wang) P454500 Radiation Heat Transfer (-,3)

1) Introduction and Basic Issues; 2) Radiation Exchange in an Enclosure; 3) Radiation in the Presence of Other Modes of Energy Transfer; 4) Radiation in Absorbing, Emitting, and Scattering Media;

Page 29: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-133

5) Approximate Solutions of the Equations of Radiative Transfer; 6) Gas Radiation in Enclosures. (Prof. Chie Gau) P454600 Numerical Heat Transfer (-, 3)

1) Introduction; 2) Discretization Methods; 3) Direct and Iterative Methods; 4) SIMPLE Algorithm; 5) Curvilinear Coordinate Equations; 6) Gridding Techniques; 7) Physical Modelings. (Prof. Denz Lee) P457900 Digital Control of Dynamic Systems (-, 3)

1) Introduction; 2) Z-transform; 3) Sampling and Reconstruction; 4) Open Loop Analysis; 5) Stability Analysis; 6) Digital Controller Design; 7) State Space Analysis; 8) Linear Quadratic Optimal Control. (Prof. Chen Hsieh) P458100 System Identification (-, 3)

1) Introduction; 2) System Modeling; 3) Parameter Estimation; 4) Model Validations; 5) Filtering Theories; 6) Modal Parameter Identification; 7) Inverse Eigenvalue Problems; 8) Special Topics. (Prof. Dar-Yun Chiang) P458200 Nonlinear Control (-,3)

1) Introduction to Nonlinear Systems; 2) Phase-Plane Analysis; Lyapunov Theory; 4) Advanced Stability Analysis; 5) Describing Function Analysis; 6) Feedback Linearization; 7) Sliding Control; 8) Adaptive Control; 9) Nonlinear Robust Control and its Applications. (Prof. Ciann-Dong Yang)

Page 30: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-134

P460200 Compressible Flow Theory and Experiments (-,3)

1) Review of the thermodynamics; 2) Conservation equations in integral and differential forms, the shock equations and the lift and drag of a body; 3) Steady one-dimensional flow theory with and without shock; 4) Linear propagation of waves; 5) Non-linear wave phenomena; 6) Linearized Two-Dimensional steady flow; 7) Non-linearized Two-Dimensional steady flow; 8) Measurement of pressure, temperature and velocity and observation flow field; 9) Engineering and applications: pressure-exchangers and pulsed combustors; 10) Concluding Remarks. (Dr. Fan-Ming Yu) P460400 Shock Dynamics (-,3)

1) One-dimensional Unsteady Gasdynamics; 2) Steady/Unsteady Shock Waves; 2) Steady/Unsteady Shock Waves; 3) The Basics of Shock Dynamics-CCW Relation; 4) Two-dimensional Equations of Shock Dynamics; 5) Reflections of Shock Waves. (Prof. Chih-Yung Wen)

P461900 Experimental Fluid Dynamics (-,3)

1) The role of experiments in fluid dynamics research; 2) Introduction of experimental facilities; 3) Introduction of instrumentation and data acquisition; 4) Describing the experimental uncertainties; 5) Flow visualization: dye visualization for the phenomenon of Karman vortex street; dye visualization of limiting streamline pattern on a 3-D body; 6) Velocity measurements in a wake using a pitot tube and hot-wire anemometers; 7) Drag

Page 31: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-135

measurement of flow over a circular cylinder; 8) Lift measurement of an aerodynamic body in transonic flow. (Prof. Jiun-Jih Miau) P465800 Optimum Structural Design (-,3)

1)Introduction to Optimization; 2) Classical Optimization Techniques; 3) Linear Programming; 4) Quadratic Programming; 5) Nonlinear Programming; 6) Structural Optimization; 7) Further Topics in Optimization. (Prof. Chyanbin Hwu) P468400 Advanced Topics on Control System Design (-,3) 1) Robust Control System Analysis & Design; 2) Intelligent Control System; 3) Genetic Algorithm and Optimization of Control Systems. (Prof. Chieh-Li Chen) P466200 H∞-Control Theory and Design (-,3)

1) Introduction to Control System; 2) Measurement of Signals & Systems; 3) Basic Concept of Control; 4) Uncertainty & Robustness; 5) Stability & Stabilization; 6) Mathematical Algorithm: A State-Space Approach; 7) Stabilizing Co F441700 Introduction to Combustion (-,3)

1) Introduction and Review: History of Combustion, Chemistry and Physics. Chemical Thermodynamics: Properties, Heat of Reaction and Dormation, Adiabatic Flame, Temperature, Free Energy, Equilibrium Constant; 2) Chemical Kinetics: Reaction Rate, Radicals, Explosion, Global Kinetics; 3) Premixed Flame: Hugoniot, Laminar Flame, Deflagration, Detonation, Stirred Reactor; 4) Ignition: Thermal Ignition, Spark Ignition; 5) Diffusion Flames: Gaseous Jets,

Page 32: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-136

Droplet Burning; 6) Flame Stabilization: Afterburner, Ramjet, Gas Turbine; 7) Modern Measurements in Combustion, Laser Velocimetry, Rayleigh Scattering: Raman Spectroscopy, Laser Induced Fluorescence. (Prof. Hsiao-Feng Yuan)

ntroller; 8) Linear Factorization Transformation; 9) Riccati Equation and Spectral Factorization; 10) Synthesis of H∞Controller; 11) Selection of Weighting Function; 12) Case Study. (Prof. Ciann-Dong Yang) P466200 H∞-Control Theory and Design (-,3) 1) Introduction to Control System; 2) Measurement of Signals & Systems; 3) Basic Concept of Control; 4) Uncertainty & Robustness; 5) Stability & Stabilization; 6) Mathematical Algorithm: A State-Space Approach; 7) Stabilizing Controller; 8) Linear Factorization Transformation; 9) Riccati Equation and Spectral Factorization; 10) Synthesis of H¥ Controller; 11) Selection of Weighting Function; 12) Case Study. (Prof. Ciann-Dong Yang) P457500 Aircraft Stability and Control (-, 3)

1) Longitudinal Autopilots: Displacement Autopilots, Pitch Orientation Control Systems, Acceleration Control Systems, Glide Slope Coupler and Automatic Flare Control, Flight Path Stabilization Systems; 2) Lateral Autopilots: Damping of the Dutch Roll, Yaw Orientation Control Systems, Other Lateral Autopilots, Turn Compensation, Automatic Lateral Beam Guidance; 3) Further Discussions: Effects of High Roll Rate, Aircraft Stability Argumentation of Aircraft with Inertial Cross-Coupling. (Prof. Jenq-Tzong H. Chan)

Page 33: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-137

P468400 Advanced Topics on Control System Design (-,3)

1) Aims of multivariable control; 2) Basic control system structures; 3) Control problem formulation; 4) LQG/LTR method; 5) Sliding mode control system; 6) Fuzzy control; 7) Introduction to genetic algorithm. (Prof. Chieh-Li Chen) P471300 Gasdynamics (-,3)

1) Fundamental Principle and Governing Equations for Compressible Flow; 2) Steady One-Dimensional Flow; 3) Shock Waves and Expansion Waves; 4) Generalized Steady One-Dimensional Flow; 5) Steady, Inviscid, Multidimensional Adiabatic Flow; 6) Flow with Small Perturbations; 7) Method of Characteristics. (Prof. Chii-Jong Hwang) P472010 Engineering Quantum Mechanics (-.3)

1) Review of Classical Hamilton Mechanics; 2) Transition from Classical Mechanics to Quantum Mechanics; 3) Establish Quantum Hamilton Mechanics from Schrodinger’s Wave Mechanics; 4) Analyze Particle’s Quantum Motion in Simple Potentials; 5) Analyze Tunneling Quantum Motions; 6) Quantum Dynamics in Diatomic Molecules; 7) Definitions and Conservation of Orbital and Spin Angular Momentum; 8) Perturbation Theory and the Approximate Solution of the Schrodinger Equation; 9) Electronic Quantum Motions in Hydrogen Atoms; 10) Using Engineering Mechanics to Establish Feynman’s Path-Integral Formulation of Quantum Mechanics; 11) Quantum Dynamics in Electromagnetic Fields; 12) Electronic Quantum Motions in Quantum Wires and Quantum Dots.

Page 34: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-138

(Prof, Ciann-Dong Yang)

P476900 Mechanics of Composite Materials (-, 3)

1) Introduction to Composite Materials; 2) Macromechanical Behavior of a Lamina; 3) Micromechanical Behavior of a Lamina; 4) Macromechanical Behavior of a Laminate. (Prof. Syh-Tsang Jeng) P481200 Spacecraft Attitude Dynamics (-,3) 1) Mathematics(summation convention); 2) Kinematics of Attitude; 3) Gravitational Force; 4) Dynamics of Attitude; 5) Satellite Dynamics. Prof. Shieh, Chen) P484500 Theory of System Engineering and Application (-,3)

1) Systems Engineering Fundamentals; 2) Aircraft Systems; 3) Aircraft Systems Engineering; 4) Programmatic Applications with Demos. (Prof. Jiun-Haur Tarn) P487200 Optimal Trajectories in Atmospheric (-, 3)

1) Introduction; 2) Equations of Motion; 3) Necessary Conditions of Optimal Trajectories; 4) Horizontal Minimum-Fuel to Turn; 5) Minimum-Time to Climb; 6) Maximum-Range Trajectories; 7) Minimum-Time Interceptions; 8) Application of Singular Perturbation to Solve Optimal Trajectory Problems. (Prof. Dong-Long Sheu) P490200 Experimental Methods in Aeronautical & Astronautical Engineering (-,3)

1) Experiment on Electronical Fundamental Techniques and Its

Page 35: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-139

Related Instruments; 2) Electronical Technique Used in Hot-wire Measurement; 3) Optical Counting Technique Used in LDV Measurement; 4) Optical Communication Technique; 5) Thermal Couple Measurement; 6) Pulse Generation and Its Decay Technique Used in Shock-tube and Wind Tunnel Experiments. (Prof. Sheng-Mao-Tieng) P491300 Numerical Analysis (3, -)

1) Solution of Equations in one Variable; 2) Interpolation and Polynomial Approximation; 3) Numerical Differentiation and Integration; 4) Numerical Methods for Ordinary Differential Equations; 5) Numerical Methods for Partial Differential Equations. (Prof. San-Yih Lin) P450500 System Engineering and Management (-,3)

1) Systems, Projects, and Management; 2) Introduction to System Engineering; 3) The System Engineering Process; 4) System Design Requirements; 5) Engineering Design Methods and Tools; 6) Design Review and Evaluation; 7) System Engineering Management Plan; 8) Organization for System Engineering; 9) Case Study. (Prof. Fei-Bin Shiao) P455100 Advanced Dynamics (-,3)

1) Kinematics of a Particle; 2) Relative Motion; 3) Kinematics of Rigid Body; 4) Kinetics of Rigid Body; 5) Introduction to Analytical Mechanics; 6) Hamilton's Principle and Euler-Lagrange's Equations; 7) Constrained Generalized Coordinates; 8) Gyroscopic. (Prof. Shih-Ming Yang)

Page 36: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-140

P459600 Optronics Engineering (-, 3) 1) Modulation of Laser Beam; 2) Phtodetectors; 3) Holography

and Its Application; 4) Interferometry and Its Application; 5) Optical Communication; 6) Laser Spectroscopy; 7) Laser Applications in Aeronautic Research. (Prof. Sheng-Mao-Tieng) P493700 Micro Sensors (3,-)

1) Introduction to Sensors; 2) Introduction to Micromachining; 3) Basic Principles of Sensors; 4) Micro mechanical Sensors: Strain, gauge, Micro pressure sensor, Micro accelerometer; 5) Micro acoustic sensors: SAW; 6) Micro thermal/flow sensors: Micro temperature sensor, Micro mass-flow sensor, Micro shear stress sensor; 7) Micro biosensors. (Prof. Tzong-Shyng Leu) P493600 Microelectromechanical System Design (-,3)

1) Introduction of MEMS; 2) Design methods; 3) MEMS foundry service and their design rules: MCNC, MOSIS 4) Micro motor design; 5) Micro accelerometer design; 6) Micro pressure sensor design; 7) Micro flow sensor design; 8) Micro thermal sensor design; 9) Micro gripper design; 10) Micro structure design. (Prof. Tzong-Shyng Leu) P493800 Signal Processing System (-,3)

1) Fourier Series in Spectral Analyses; 2) The Time and Discrete Frequency Domains; 3) Fourier and Laplace Transform (with Matlab simulation); 4) Designs of Analog Filters (with Matlab simulation); 5) Digitization of Analog Signals (with Matlab simulation); 6) Sampling, Interpolation and Sampling Theorem; 7) Window and

Page 37: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-141

Windowing; 8) Digital Filter simulation with Matlab; 9) Architectures of DSP Micro-processor ; 10) Instructions of DSP Micro-processor ; 11) Designs of FIR Digital Filters with DSP Micro-processor; 11) Designs of IIR Digital Filters with DSP Micro-processor; 13) Implementation of DSP Structures with DSP Micro-processor. P493900 Special Topics on Microfluidic Devices (-,3)

1) Introduction of microfluidic devices; 2) Special topics: Thermal bubble inkjet printhead, Basic thermodynamics for thermal bubble inkjet printhead, Basic hydrodynamics instability theory for droplet ejection, Basic microchannel flow theory for repetition rate analysis; 3) Inkjet printhead fabrication; 4) Inkjet printhead performance test. (Prof. Tzong-Shyng Leu) P494000 Principles of Numerical Control Machining (-,3)

1) Introduction; 2) Feature of Numerical Control (NC) Machine Tools; 3) NC Code Systems; 4) Interpolations for Manufacturing systems; CNC Devices and Hardware; 6) Control Loop of NC Systems; 7) Tooling for NC; 8) Workholding for NC; 9) Machining Parameters; 10) Programming for Milling Process; 11) Introduction to CAD/CAM Software (Pro-E). (Profs. Wen-Bin Young, Chieh-Li Chen) P495100 Engineering Analysis (-,3) 1) Vector Analysis; 2) Linear Algebra; 3) Ordinary Differential Equations; 4) Partial Differential Equations. (Prof. Keh-Chin Chang)

Page 38: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-142

P499800 Dynamic Analysis of Rotor-Bearing Systems(-,3) 1) Introduction; 2) Analysis of Rotor Motion; 3) Single-mass

Rotordynamics; 4) Systems with Many D.O.F.; 5) Torsional Vibrations; 6) Instability in Rotating Machines; 7) Balancing of Rotors; 8) Bearings and Dampers; 9) Measurements and Diagnostics; 10) Rotordynamics Software. (Prof. Siu-Tong Choi)

P474200 Sources of Vorticity

1.1 The continuity equation; 2) The momentum equation; 3) Rotation imparted to material element by stresses; 4) The baroclinic torque; 5) The vorticity transport equataion; 6) Special material properties; 7) Accelerated frames of references, body forces; 8) Vorticity sources in numerically computed flows; 9) Merging flows; 10) Separation; 11) Miscellaneous example (Prof. Chih-Yung Wen)

P474400 Theory and Practice of Fuel Cell (3,-)

1) Fundamentals of fuel cells, 2) Thermodynamic and electrochemical theories of fuel cells, 3) Different types of fuel cells and their characteristics (PEMFC, DMFC, RMFC, SOFC, etc.), 4) Design and manufacturing of key compon ents, 5) Fuel cell performance test, 6) Modeling and numerical simulation, 7) System integration, 8) Hydrogen production, safety, and storage, 9) Micro fuel cells. (Prof. Chin-Hsiang Cheng) P474400 Molecular Dynamics (-,3)

Page 39: DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS … · 2007-10-23 · 7) Dimensional Analysis: Buckingham Pi Theory, Flow Similarity and Model Studies. (Profs. Jiun-Jih Miau, Shen-Min

3-143

1) Micro- and macro-scale systems, 2) Kinetic theory and statistical physics, 3) Boltzmann equation, 4) Hard-sphere model, 5) Molecular dynamics method (MD), 6) Monte Carlo method (MC), 7) Time-integration of equation of motion and ensemble average, 8) Programming and computer simulation, 9) Equilibrium and non-equilibrium analysis, 9) Special topics (nano-scale phase transition, nanoimprint, carbon fullerene, sputtering, vacuum, etc.) (Prof. Chin-Hsiang Cheng)