34
Institut für Radiotherapie Delivery and verification Peter Cossmann, PhD Head of Medical Physics Institute for Radiotherapy Radiotherapy Hirslanden AG Aarau&Zürich/Switzerland

Delivery and verification - SASRO

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Delivery and verification - SASRO

Institut für Radiotherapie

Delivery and verification

Peter Cossmann, PhDHead of Medical PhysicsInstitute for RadiotherapyRadiotherapy Hirslanden AGAarau&Zürich/Switzerland

Page 2: Delivery and verification - SASRO

2

Institut für Radiotherapie

Contents

� Historical milestones

� Delivery systems

� LINAC – the workhorse

� Respiration controlled delivery

� Verification approaches

� The use in clinical routine

� Current IGRT approaches

� Clinical Examples

Page 3: Delivery and verification - SASRO

3

Institut für Radiotherapie

1895 Discovery of x-rays - called Röntgen-Rays - by W. C. Röntgen

1896 First treatment of a bathing trunk nevus by Prof Freund, Wien

1898 First application of x-rays for the treatment of sk intumors

1914 First full-rotation treatment

1930 Development of the first linear accelerator by R. Wideröe in Zurich

1948 First clinical use of a Betatron (Electron cyclot ron)

1949 First clinical use of a linear accelerator

1952 First use of a cobalt unit

Historical milestones

Page 4: Delivery and verification - SASRO

4

Institut für Radiotherapie

1. X-ray unit

2. Cobalt unit

3. Linear accelerator

4. Intraoperative unit

5. Brachytherapy unit

6. Radioactive implants

Delivery approaches

Page 5: Delivery and verification - SASRO

5

Institut für Radiotherapie

Siemens Stabilivolt, 1919

Siemens Dermopan, 1967

Philips RT 250, 1953

X-ray units I: First systems

Page 6: Delivery and verification - SASRO

6

Institut für Radiotherapie

X-ray units II: Modern systems

Gulmay XStrahl 100 & 300

WoMed T300

Page 7: Delivery and verification - SASRO

7

Institut für Radiotherapie

Cobalt unit

MDS NordionTheratronPhoenix(1980)

MDS Nordion TheratronEquinox(2006)

UJP Teragam K01(2003)

Page 8: Delivery and verification - SASRO

8

Institut für Radiotherapie

Ring accelerator/CyclotronSiemens Betatron (1956)

BBC Asklepitron (1962)

Page 9: Delivery and verification - SASRO

9

Institut für Radiotherapie

Siemens Mevatron, 1974

Varian Clinac, 1978

Linear accelerator

Page 10: Delivery and verification - SASRO

10

Institut für Radiotherapie

A modern linear accelerator (LINAC)

Varian Clinac EX

Page 11: Delivery and verification - SASRO

11

Institut für Radiotherapie

Intraoperative unit I

Zeiss Intrabeam

Page 12: Delivery and verification - SASRO

12

Institut für Radiotherapie

Intraoperative unit II

Accent Xoft

Page 13: Delivery and verification - SASRO

13

Institut für Radiotherapie

Bebig Multisource Ir,Co (1991)

Bebig Curietron Cs (1983)

Sauerwein Gammamed Ir (1989)

HDR Afterloading

Page 14: Delivery and verification - SASRO

14

Institut für Radiotherapie

A modern HDR afterloading unit

Varian Gammamed Plus

Page 15: Delivery and verification - SASRO

15

Institut für Radiotherapie

Radioactive implants

Ruthenium-106

Iodine-125 for Prostate LDR

Page 16: Delivery and verification - SASRO

16

Institut für Radiotherapie

4Ergonomic

40.7 Sek. min beam activation time

4High dose rate: up to 1000/Min

4Fast & acurate beam steering

4Optimized movement controls

4Beam/dose stability

4Integrated system

Precision and stability of a LINAC

Page 17: Delivery and verification - SASRO

17

Institut für Radiotherapie

Gantryaccelerating section

Modulator standElectronics, Klystron

Analog indicator for collimator rotationcollimator position 0-360E°

Accessory trayElectron appl., blocks and

compensatorCollimator

variable positioning of jaws and MLC

Digital position indicationsshowing gantry parameters/visual control

PVI armRemotely retractable arm

PortalVision KassetteDigital cassette for digital port films

Manual table controlDirect

Patient couch4 axes (3 translation, 1 rotation)

Visible parts of a LINAC

Page 18: Delivery and verification - SASRO

18

Institut für Radiotherapie

Table rotation (360°E)IEC scale

Longitudinal (Y)

Lateral (X)

Isozentrum

Gantry rotation (360°E)IEC scale

collimator rotation (360°E)IEC scale

Vertical (Z)

Possible movements of a LINAC

Page 19: Delivery and verification - SASRO

19

Institut für Radiotherapie

Components of a LINAC

Page 20: Delivery and verification - SASRO

20

Institut für Radiotherapie

Monitor chambers

Energyswitch

Caroussel Electron gun

Beam/Bending Magnet

Real time Beam steering

Standing wave accelerating section

Target

Flattening filters andscatter foils

Asymmetricblades

A look into more detail

Multileaf collimator

Page 21: Delivery and verification - SASRO

21

Institut für Radiotherapie

4Digital dose rate control4Highly precise: electrons are injected puls controlled, i.e. only when HF wave is stable.

4Energy switch4Selection between two photon energies.

4Standing wave accelerating section4Electrons are linearly accelerated on a HF wave.4Hollow wave guide, ultra high vacuum. Series of hollow cylinders = cavities.

4Target4Electrons hit target: production of Bremsstrahlung radiation (photons)

4Real-time beam steering4Symmetry and intensity are stabilized.

4Beam/Bending Magnet4Beam bending, energy control.

4Caroussel4Holds flattening filter and scatter foils

4Flattening filter and scatter foils4Broadening of the beam.

4Unvented monitor chambers4Energy-, dose- and symmetry control

4Asymmetric jaws4Field size definition, EDW

Components

Page 22: Delivery and verification - SASRO

22

Institut für Radiotherapie

Accelerating section

Page 23: Delivery and verification - SASRO

23

Institut für Radiotherapie

Accelerating section with gun and target

Magnetron

Standard head

HF-Generator

Clinac 600 (Single energy-CLINAC)

Page 24: Delivery and verification - SASRO

24

Institut für Radiotherapie

Positiv

NegativE Maximum

λ

Time

t1

t3

t2

Vorwärts

Vorwärts

Vorwärts

Rückwärts

Rückwärts

Rückwärts

Standing wave acceleration

Page 25: Delivery and verification - SASRO

25

Institut für Radiotherapie

Beam Flatness und Symmetry control

Beam stability control - Underdose- Overdose- Energy per puls

MLC Position control.Beam off, if leaf deviation 1mm from defined position

≈Beam monitoring

Page 26: Delivery and verification - SASRO

26

Institut für Radiotherapie

ElektronenQuelle

Elektronen

Photonen

TransversalKorrektur

Target

1.) Energie Detector

2.) Vertikal Abweichung

3.) Transversal Abweichung

4.) Dosis Anzeige am Monitor

5.) Dosis Anzeige am Monitor

<

<

<

<

VerticalKorrektur

1

3

5

4

2

Dose and symmetry control I

Page 27: Delivery and verification - SASRO

27

Institut für Radiotherapie

E

B

A

F

G

C

D

H

e

Target

Transversal rechts

Transversal links

Im Strahlengang nach vornegerichtet

Im Strahlengang nach hintengerichtet

Dose and symmetry control II

Page 28: Delivery and verification - SASRO

28

Institut für Radiotherapie

41.5cm/sec leaf speed for dynamic treatments

41 cm leaf width at isocenter

42 x 40 leafs = 40 x 40 cm field size

4Add-on completely integrated and verified

Multileaf collimator (MLC)

Page 29: Delivery and verification - SASRO

29

Institut für Radiotherapie

Dose distributionMultileaf field

Dose distributionCerrobend block

TransmissionMultileaf field

Transmission Cerrobend block

MLC vs. block

Page 30: Delivery and verification - SASRO

30

Institut für Radiotherapie

45 mm leaf width around isocenter for 20 cm

440x40 field, 120 leafs, 80 @ 5 mm & 40 @ 10 mm

4All leafs are additionally backupped by the primary collimator

4All leafs can be moved over the field center (for IRMT).

120-leaf MLC

Page 31: Delivery and verification - SASRO

31

Institut für Radiotherapie

Monitor chamber

Collimator bladesY1,Y2

Collimator bladesX1,X2

MLC

Linac with MLC

Page 32: Delivery and verification - SASRO

32

Institut für Radiotherapie

2300CD, 5cm, Low ResLINAC: 2300 CDPhoton energy: 6 MVTarget film distance: 100 cmWater depth: 5.0 cmLeaf width: 1.0 cm x 1.0 cm

5.0 mm

9.5 mm

MLC-80 measurements

lower collimator

Multi-Leaf collimator

uppe

r co

llim

ator

Page 33: Delivery and verification - SASRO

33

Institut für Radiotherapie

5.0 mm

MLC-120 measurements

LINAC: 2300 EXPhoton energy: 6 MVTarget film distance: 100 cmWater depth: 5.0 cmLeaf width: 0.5 cm x 0.5 cm

uppe

r co

llim

ator

6.0 mm

lower collimator

Multi-Leaf collimator

Page 34: Delivery and verification - SASRO

34

Institut für Radiotherapie

4only possible with upper jaws

4same functionality as conventional hard wedges

4integrated and verified

4Similar approach: Siemens Virtual Wedge

Enhanced dynamic wedge (EDW)