21
ELSEVIER P.hysica D 104 (1997) 127-147 PHYSICA Delay-differential equation versus 1D-map: Application to chaos control * P. Celka 1 Department of Electrical Engineering, Signal Processing Laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland Received 10 June 1996; accepted 18 November 1996 Comm unicated by P. Kolodner Abstract Theoretical and experimental results on the control of chaotic m otion in an electronic circuit modeled by a delay-differential equation are presented. The model is derived from a nonlinear optical system with time-delay feedback. Our control method is based on Pyragas approach and applied to the infinite-dimensional system. Generalized mean Floquet multipliers and mean Lyapunov exponents related to delay-differential equations are introduced in order to compare a discrete-time approximation with the continuous-time equation. This control method is also used to find the so-called isomers related to harmonic periodic solutions predicted by Ikeda and Matsumoto. K~words: Chao s; Delay-differential equations; Control; Lyapunov expon ents; Floquet multipliers 1. Introdu ction It has been reported that nonlinear time-delayed systems can produce a wide variety of behaviors: stable equilib- rium points, periodic solutions [ 1,2] as well as chaotic solutions [3-12]. M any experimental analyses of complex dynamical regimes have been conducted and especially in the context of interferometer-based optical systems [9,13-15].The fundam ental periodic solution which appears after a Hopf bifurcation has a period of about To 2(r + T), where r is the delay introduced in the feedback path and T is the time response of the device. While the model is infinite-dimensional and evolves on an infinite-dimens!onal manifold, the attractor dimension is finite due to the contraction effect of the nonlinear mapping [3,16]. Ikeda and Matsumoto [8,17] have given an esti- mate of the attractor Lyapunov dimension DE for the Ikeda map, and it ranges approximately from 2 to 13 when some bifurcation parameter is varied. Lepri et al. [5] have computed Lyapunov spectra and DL for Bernoulli and logistic map-based delay-differential equations (DDEs) in the case of a large delay. Both Ikeda and Lepri found * This work was partially done at the Chaire des Circuits et Syst~mes at the Swiss Federal Institute of Technology. J Corresp onding autho r. Tel.: 4-41 21 693 26 05; fa x: 4-41 21 693 76 00; e-mail: [email protected]. 0167-2789/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved P II S0167-2789(96)00299-0

Delay-Differential Equation Versus 1D-Map

Embed Size (px)

Citation preview

Page 1: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 1/21

E L S E V I E R P.hysica D 104 (1997) 127-14 7

PH YS I C A

D e l a y - d i f fe r e n t i a l e q u a t i o n v e r s u s 1 D - m a p :

A p p l i c a t i o n t o c h a o s c o n t r o l *

P . C e l k a 1

Department of Electrical Engineering, Signal Processing Laboratory, Swiss Federal Institute of Technology,

1015 Lausanne, Switzerland

Received 10 June 1996; accepted 18 November 1996

Comm unicated by P. Kolodner

A b s t r a c t

Theore t i ca l and expe r imental r e su l ts on t he co n t ro l o f chao t i c m ot ion i n an e l ec t ron i c c i rcu i t mode led by a de l ay-d if fe ren ti a l

equa t ion a re p resent ed . The mod e l i s de rived f rom a non l inea r op t i cal sys t em w i th t ime-de l ay feedback . O ur con t ro l me thod

i s based on Pyragas appro ach and app l i ed t o t he i n fin i te -d imens iona l sys t em. Gene ra l i zed m ean Floque t mul ti pl ie rs and m ean

Lyap unov exponen t s r e l at ed t o de l ay-d i f fe ren t ia l equa t ions a re i n t roduced in o rde r t o com pare a d i sc re t e -t ime app rox ima t ion

wi th t he con t inuous- t ime equa t ion . Th i s co n t ro l me thod i s a l so used to f ind t he so -ca l led i somers re la t ed t o ha rmonic pe r iod i c

so lu t ions p red i c t ed b y Ikeda and Mat sum oto .

K ~ w o r d s : Chao s; Delay-differential equations; C ontrol; Lyapuno v expon ents; Floquet multipliers

1 . I n t r o d u c t i o n

I t h a s b e e n r e p o r t e d t h a t n o n l i n e a r t i m e - d e l a y e d s y s t e m s c a n p r o d u c e a w i d e v a r i e ty o f b e h a v i o r s : s t a b le e q u i l ib -

r i u m p o i n t s , p e r i o d i c s o l u t i o n s [ 1 ,2 ] a s w e l l a s c h a o t i c s o l u t i o n s [ 3 - 1 2 ] . M a n y e x p e r i m e n t a l a n a l y s e s o f c o m p l e x

d y n a m i c a l r e g i m e s h a v e b e e n c o n d u c t e d a n d e s p e c i a l l y i n t h e c o n t e x t o f i n t e r f e r o m e t e r - b a s e d o p t i c a l s y s t e m s

[ 9 , 1 3 - 1 5 ] . T h e f u n d a m e n t a l p e r i o d i c s o l u t i o n w h i c h a p p e a r s a f t e r a H o p f b i fu r c a t i o n h a s a p e r i o d o f a b o u t T o

2 ( r + T ) , w h e r e r i s t h e d e l a y i n t r o d u c e d i n th e f e e d b a c k p a t h a n d T i s t h e ti m e r e s p o n s e o f t h e d e v ic e . W h i l e

t h e m o d e l i s i n f in i t e - d im e n s i o n a l a n d e v o l v e s o n a n i n f i n it e - d i m e n s ! o n a l m a n i f o l d , t h e a t t r a c to r d i m e n s i o n i s fi n it e

d u e t o t h e c o n t r a c t io n e f f e c t o f th e n o n l i n e a r m a p p i n g [ 3 , 1 6 ]. I k e d a a n d M a t s u m o t o [ 8 , 1 7 ] h a v e g iv e n a n e s ti -

m a t e o f th e a t tr a c t o r L y a p u n o v d i m e n s i o n D E f o r t h e I k e d a m a p , a n d i t r a n g e s a p p r o x i m a t e l y f r o m 2 t o 1 3 w h e n

s o m e b i f u r c a t i o n p a r a m e t e r i s v a r i e d . L e p r i e t a l . [ 5 ] h a v e c o m p u t e d L y a p u n o v s p e c t r a a n d D L f o r B e r n o u l l i a n d

l o g i s ti c m a p - b a s e d d e l a y - d i f f er e n t i a l e q u a t i o n s ( D D E s ) i n t h e c a s e o f a la r g e d e la y . B o t h I k e d a a n d L e p r i f o u n d

* This w ork w as partially done at the Chaire des C ircuits et Sy st~mes at the Swiss Federal Institute of Technology.

J Corresp onding autho r. Tel.: 4-41 21 693 26 05; fa x: 4-41 21 693 76 00 ; e-mail: [email protected].

0167-2789/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved

P II S 0 1 6 7 - 2 7 8 9 ( 9 6 ) 0 0 2 9 9 - 0

Page 2: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 2/21

128 P. Celka/Physica D 104 (1997) 127--147

h i g h - d i me n s i o n a l a t t ra c t o r s f o r l a r g e d e l a y r a n d v a r i a t io n w i t h a g a i n f a c t o r / z . 2 A s s u m i n g t h e K a p l a n - Y o r k e

c o n j e c t u r e i s v a l id [ 8 , 1 8] , w e c a n s a y t h a t th e H a u s d o r f f d ime n s i o n o f t he a t t ra c t o r s e t i s g r e a t e r o r e q u a l t o D E a n d

t h u s t h e n u mb e r o f d e g r e e s o f f r e e d o m o f t h e s y s t e m m a y b e h i g h . I t is th e r e a s o n w h y d e l a y - d i f f e r e n t i a l s y s t e ms

a r e r e f e r r e d t o a s h i g h - d i me n s i o n a l a n d n o t i n f i n i te - d i me n s i o n a l . I n Se c t i o n 3 , Ch a r a c t e r i s ti c L y a p u n o v s p e c t r a a n d

d i me n s i o n s r e l a t e d t o o u r s y s t e m a r e c o mp u t e d .

I t h a s b e e n me n t i o n e d t h a t s e v e r a l c o - e x i s ti n g a t t r a c to r s , b e l o n g i n g t o d i f f e r e n t b i f u r c a t i o n b r a n c h e s , c a n b e f o u n din these sy s t em s [7 ,8 ,14]. T he fund am enta l so lu t ion evo lves th rough a per iod do ub l ing To ~ 2T0 • - • - -+ 2 N To , as

o n e p a r a m e t e r i s v a r ie d , a n d w e w i l l c a ll t h is t h e f u n d a m e n t a l b r a nc h . T h e s e s o l u t i o n s a r e c a l l e d 2N r - - p e r i o d i c a n d

t h e c a s c a d e a c c u m u l a t e s a t th e Fe i g e n b a u m p o i n t . I k e d a a n d Ma t s u m o t o [ 8] h a v e d i s c o v e r e d t h e e x is t e n c e o f o t h e r

c o - e x i s t i n g p e r i o d i c s o l u t io n s a n d c a l l e d t h e m h a r m o n i c s a n d i s o m e r s o f t h e s e h a r mo n i c s . Se v e r a l t y p e o f i so me r s

e x i s t a n d t h e y a r e a l l d i ff e r e n t in s h a p e . E a c h b r a n c h f o l l o w s a p e r i o d - d o u b l i n g c a s c a d e . T h e s e s o l u ti o n s a r e mo s t l y

p e r i o d i c b e l o w t h e Fe i g e n b a u m p o i n t , b u t w h e n t h e b i f u r c a t i o n p a r a me t e r i s v a r i e d t o w a r d s t h e f u l l y d e v e l o p e d

c h a o t i c r e g i o n , e a c h b r a n c h e v o l v e s i n d e p e n d e n t l y w i t h i n a g i v e n p a r a me t e r r e g io n , a n d g i v e s r is e t o d i f f e re n t s t a b le

o r u n s t a b l e p e r i o d i c o r c h a o t i c s o l u t io n s . A me r g i n g p r o c e s s o c c u r s f o r h i g h e r v a l u e s o f t h e p a r a me t e r , y i e l d in g a

f ina l merger and a un ique chao t i c a t t rac to r [7 ,8 ,13 ,14] .

Fo r s e v e r a l y e a r s , r e s e a r c h e r s h a v e p r o p o s e d n u m e r o u s c o n t r o l 3 t e c h n i q u e s [ 1 9 - 2 6 ] a n d a p p l i e d t h e m i n d i f f e r e n tc o n t e x t s: e l e c t r o n i c c ir c u i ts [ 2 7 ,2 8 ] , l a s e r - b a s e d ( N M R o r CO 2 l a s e r s ) [ 2 9 - 3 3 ] o r c h e mi c a l s y s t e ms [ 3 4 ]. T h e c o n t r o l

c a n b e p e r f o r m e d o f f l in e w i t h t h e h e l p o f c o mp u t e r s , b u t it r e q u ir e s l o t s o f c o mp u t a t i o n a n d o f t e n a p r i o r i k n o w l e d g e

o f t h e s y s t e m mo d e l ( o r o f a d u p l i c a t e o f t h e s y s t e m ) [ 1 9 , 21 , 2 5, 2 6] . O n t h e o t h e r h a n d , t h e c o n t r o l c a n b e c o n s i d e r e d

u s e f u l i f i t c a n b e p e r f o r me d o n l i n e , w h i l e c o n s i d e r i n g t h e s y s t e m mo r e o r l e s s a s a b l a c k b o x . T h e c o n t i n u o u s

c o n t r o l me t h o d w h i c h w e h a v e i n v e s t i g a t e d w a s f i r s t p r o p o s e d b y Py r a g a s [ 2 3 ] a n d h a s b e e n a p p l i e d l a t e r i n

d i f f e r e n t c o n t e x t s [ 2 8 , 3 4 - 3 8 ] . T h i s c o n t r o l me t h o d , b a s e d o n t h e e r r o r f e e d b a c k c o n tr o l s c h e m e u s i n g d e l a y e d

o u t p u t s i g n a l s , w a s e mp l o y e d t o s t a b i l i z e u n s t a b l e p e r i o d i c o r b i t s ( U PO s ) e mb e d d e d i n t h e c h a o t i c a t t r a c t o r t o

b e c o n t r o l l e d [ 2 3 , 3 9 , 4 0 ] . W h i l e c h a o s c o n t r o l o f l o w - d i me n s i o n a l s y s t e ms h a s b e e n d e v e l o p e d f o r ma n y y e a r s ,

c o n t r o l l in g h i g h - d i me n s i o n a l c h a o t i c s y s t e ms i s a r a t h e r n e w f i el d o f r e s e a r c h [ 3 7, 3 9- - 42 ] .

W e d e v e l o p t h e s a m e c o n t r o l t e c h n i q u e a s Py r a g a s b u t f o r a r a t h e r d i f f e r e n t o b j e c ti v e a n d i n t h e c a s e o f a n o n l i n e a r

M a c h - Z e h n d e r o p t i c a l t i me - d e l a y e d f e e d b a c k s y s t e m [ 1 5,3 6] . W i t h in t h i s i n f in i t e - d ime n s i o n a l c o n t e x t , th e me a n i n g

o f c h a o s c o n t r o l h a s t o b e r e v i s it e d . I n f a c t , a s s e v e r a l k i n d s o f a t t ra c t o r s c o - e x i s t f o r a g i v e n s e t o f p a r a m e t e r v a l u e s ,

t h e c o n t r o l p r o c e s s ma y b e u n d e r s t o o d a s f o ll o w s :

- Co n t r o l t h e s y t e m t o w a r d s o n e o f t h e s t a b le f u n d a m e n t a l p e r i o d i c s o l u t i o n s o r e q u i li b r iu m p o i n t s o f th e u n c o n -

t r o l le d s y s t e m.

- Co n t r o l t h e s y s t e m t o w a r d s o n e o f th e s t a b l e p e r i o d i c b r a n c h e s , e i th e r a h a r mo n i c o n e o r a n i s o me r o n e .

- Co n t r o l t h e s y s t e m t o w a r d s o n e o f t h e u n s t a b l e p e r i o d i c o r b i t s e mb e d d e d i n th e c h a o t i c a t t ra c t o r.

W e wi l l focus on the f i r s t two po in t s a s the th i rd one h as a l read y been the sub jec t o f severa l s tud ies [23 ,28 ,39 ,43 ,44] .

I t h a s b e e n s h o w n t h a t i n s o me s i t u a ti o n s a d i s c r e t e - t ime a p p r o x i m a t i o n o f th e D D E m o d e l q u i t e a c c u r a t e l y mo d e l s

e q u i l i b r i u m p o i n t s a n d p e r i o d i c s o l u t i o n s [ 8 , 1 5 , 3 6 ] . W e w i l l e x t e n d t h i s a p p r o a c h a n d d e f i n e g e n e r a l i z e d me a n

F l o q u e t mu l t i p l i e r s ( MFMs ) a n d me a n L y a p u n o v E x p o n e n t s ( ML E s ) r e l a t e d t o t h e D D E s , a n d s h o w h o w t h e s en e w c o n c e p t s h e l p u s t o d e s i g n a c o n t r o l s c h e me . W e w i l l mo v e b e t w e e n c o n t i n u o u s a n d d i s c r e t e - t i me c o n c e p t s

t h r o u g h o u t t h i s p a p e r , s o, i n o r d e r to d i s ti n g u i s h b e t w e e n t h e t w o c a s e s , w e u s e r s u b s c r i p ts f o r c o n t i n u o u s - t i me

q u a n t i ti e s w h e n n e c e s s a r y .

Se c t i o n 2 i s d e v o t e d t o a g e n e r a l d e s c r i p t i o n o f t h e s y s t e m s t a te e q u a t i o n a n d i t s e x p e r i me n t a l r e a l i z a ti o n , Se c t i o n 3

i n t r o d u c e s a d e e p e r u n d e r s t a n d i n g o f t h e r e l a ti o n s h i p b e t w e e n t h e c o n t i n u o u s - a n d d i s c r e t e - t i me e q u a t io n s . S e c t i o n 4

2 Ikeda et al. ha ve founded the empirical expression D L ~ ( 1 . 1 -t- 0.05) r/z.

3 We w ill use the word con trol and stabilization indifferently throughout this paper.

Page 3: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 3/21

P Celka/Physica D 104 (1997) 127-147 129

p r e s e n t s th e o r e t i c a l r es u l t s o n th e c o n t r o l me t h o d r e l a t e d t o t he p r e v i o u s l y d e f in e d MF M a n d ML E , a n d e x p e r i me n t a l

r e s u l t s o n c o n t r o l l i n g a n i n f i n i t e - d i me n s i o n a l s y s t e m i mp l e me n t e d w i t h a n e l e c t r o n i c c i r c u i t . W e e mp h a s i z e t h i s

e x p e r i me n t a l a p p r o a c h b e c a u s e n u me r i c a l s i mu l a t i o n s o n c h a o s c o n t r o l ma y n o t b e r e l i a b l e e n o u g h , t h e mo r e

s o i n t h e c a s e o f a n i n f i n i t e - d i me n s i o n a l s y s t e m w h e r e n u me r i c a l s i mu l a t i o n r e d u c e s i t t o a f i n i t e - d i me n s i o n a l

s i mu l a t i o n . T h e d y n a mi c a l s t a t e e q u a t i o n o f t h e e l e c t r o n i c c i r c u i t i s v e r y s i m i l a r t o t h e o p t i c a l s y s t e m w e h a v e

a l ready s tud ied ] 15 ,36] bu t the var ious para me ters a re eas i ly acces s ib le in th i s e l ec t ron ic m odel , m ak in g exper im en t smore f l ex ib le .

2 . T h e d y n a m i c a l s y s t e m

The n on l inear e l em ent in an op t i ca l r ing cav i ty has a s inuso ida l t rans fe r charac te r i s t i c f (x ) = ½ 1 - s in (x - cp0)) .

I n t h e c a s e o f t h e M a c h - Z e h n d e r i n t e r f e r o me t e r [ 15 ], t h e s t a te v a r i a b l e x i s e i t h e r t he i n t e n s i t y o f t he e l e c t r o m a g n e t i c

w a v e v e c t o r o r e q u i v a l e n tl y t h e p h a s e i n d u c e d b y a n e l e c t r o - o p t i c a l e f f e c t v i a t he e l e c t r o d e o f t h e d e v i c e , a s t h ey

a r e b o t h r e l a t e d b y a l i n e a r t r a n s f o r m. T h e d y n a mi c a l s y s t e m i s u s u a l l y d e s c r i b e d b y t h e n o n l i n e a r ma p f ( x ) , a n

n t h - o r d e r l i n e a r l o w - p a s s f il te r mo d e l e d b y t h e t r a n s f e r f u n c t i o n H ( p ) i n th e L a p l a c e d o ma i n , a n d a s e t o f b if u r c a t i o n

p a r a m e t e r s {m, ~P0, r , - . . }

1H ( p ) - - l )

1 + P n ( P )

with Pn (P) = Y~'~= a k p k an d ak = otk T k . In op t i ca l sys t em s , the time cons tan t T o f the low-pass f i l t e r i s de te rm ined

by the sma l l es t bandwid th va lue o f a ll the dev ic es in the sys t e m and the o rde r n i s usua l ly t aken to be equa l to

one . W i th in th i s op t i ca l con tex t , i t m ay b e eas i e r t o use the pha se qg0 par am eter as a b i fu rca t ion fa c to r and ke ep

t h e g a in m f ix e d , w h i c h i s p r o d u c e d e i t h e r b y a n e l e c t r o n i c c i rc u i t ( i n tr o d u c i n g a s u p p l e m e n t a r y l o w - p a s s e l e me n t )

o r b y i n c r e a s i n g t h e l a s e r p o w e r ( i n t ro d u c i n g m o r e c o mp l e x s o l u t i o n s a s t h e l a s e r o r t h e n o n l i n e a r o p t i c a l e l e me n t

c h a n g e s t h e i r f u n d a me n t a l c h a r a c t e r i s t ic w i t h p o w e r ) . I n t h e c a s e o f a n e l e c t r o n ic c i r c u it , t h e t i me c o n s t a n t T i s

p ropor t iona l to the R C charac te r i s t i c and the parameter m i s an eas i ly e l ec t ron ica l ly ad jus t ab le ga in fac to r . Thus ,

th i s l as t so lu t ion i s p referab le to the op t i ca l one i f we a re on ly in t e res t ed in exp lo r ing exper imen ta l ly the behav io r

o f a D D E . L e t x b e t h e s ta t e v a r i a b le o f th e s y s t e m a n d X i ts L a p l a c e t r a n s f o r m; t h e d y n a mi c a l e q u a t i o n i s g i v e n b y

X ( p t = m H ( p ) Y ( p ) e - r p , (2 )

w h e r e Y ( p ) = £ [ y ( t ) ] i s t h e L a p l a c e t ra n s f o r m o f th e o u tp u t v a r i a b le y ( t ) = f ( x ( t ) ) o f t h e n o n l i n e a r e l e me n t f .

The non l inear func t ion i s usua l ly a un imodal map [45] such as the Ikeda , l og i s t i c o r t en t map . We have chosen to

s y n t h e t i z e th e l i n e a r p a r t o f th e s y s t e m a s a s e c o n d - o r d e r ( n = 2 ) l o w - p a s s f i l te r a n d t o i mp l e m e n t a t e n t ma p a s

t h e n o n l i n e a r e l e me n t . T h e s t a te e q u a t i o n o f t h e s y s t e m i s t h u s g i v e n b y

T 2 d 2 x ( t ) d x ( t )c e 2 - - d ~ + T oil -dt + x ( t ) = m f ( x ( t - r ) ) ( 3 )

and Fig . 1 show s a schema t i c c i rcu i t rea l i za t ion o f (3 ) toge the r wi th the non l inear su bsys tem wh ich i s supposed to

i mp l e me n t t h e n o n l i n e a r ma p .

T h e p a r a m e t e r s o f t h e c i r c u it a r e r e la t e d t o t h o s e o f th e n o r m a l i z e d e q u a t i o n ( 3 ) b y : T 2 ~2 = L C a n d T o q = R C .

The va lue o f or2 wi l l be f ixed to un i ty th rough ou t the paper . Th e t im e cons tan t T i s con t ro l l ab le by the va lues o f

t h e i n d u c t a n c e L , c a p a c i t a n c e C a n d l i n e a r p o s it i v e r e s i s t a n c e R . T h e d e l a y r i s o b t a i n e d w i t h a n a n a l o g d e l a y l i n e

RD I 0 7 , w h i c h c a n p r o d u c e d e l a y s w i t h in t h e r a n g e 1 ms t o mo r e t h a n 2 s , a n d r = 1 02 4/ Vc w h e r e V c is th e c l o c k

Page 4: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 4/21

130 P C e l k a / P h y s i c a D 1 0 4 ( 1 9 9 7 ) 1 2 7 - 1 4 7

L R

~ + + 0

m f s ( V ( t - x ) ) V ( t ) v

_ I _ - - L _

a , b ,

R1 T

R2Re

Re~ +

- - R , f s ( V )

2RI "

F i g . 1 . ( a ) C i r c u i t r e a l i z a t io n o f ( 3 ) w i t h a v o l t a g e c o n t r o l l e d v o l t a g e s o u r c e . ( b ) T h e n o n l i n e a r s u b s y s t e m w i t h Re = 1O0 k~2.

T a b l e 1

P a r a m e t e r v a l u e s

R (92 ) L (m H) C (nF ) T ( l~ s ) r (ms ) a 2 c t 1

303 18 330 76.8 1 .28 1 1 .3

f r e q u e n c y o f th e RD 1 0 7 c i r cu i t. T h e a c t u a l v a l u e s f o r t h e c i rc u i t a n d n o r ma l i z e d p a r a me t e r o f ( 3 ) a re s u m ma r i z e d

in Tab le 1 .

T h e a c t u a l v a l u e s o f r a n d T g i v e u s r / T ~ . 1 6. 6. T h e b i f u r c a t i o n p a r a me t e r m i s f i x e d b y a n a d j u s ta b l e o p e r a t io n a l

a mp l i f i e r ( L M7 4 1 ) b a s e d g a i n c i r c u i t f o r w h i c h m = 1 + Rl/ R2 . This s imp le c i rcu i t is no t shown in F ig . 1 . Du e to

t h e l o w - p a s s e f f e c t o f t h e o p e r a t i o n a l a mp l i f ie r s , th e h a t o f th e t e n t ma p f ( x ) - - 1 - 0 .5 1 x l, w h i c h w e w i l l r e f e r to

as the standard tent map, i s s mo o t h e d . A c t u a l ly , t h e h a r d w a r e i m p l e m e n t a t i o n o f t he t e n t ma p c a n b e mo d e l e d b y

f s ( V ) =

VDc -- f l (3 j v j ° )( V / 8 )

~ A +

VDC + c ~ e - - I V l ) + l V l

i f V > 0 ,

i f V < 0 ,

(4 )

w h e r e A + a n d A - a r e t h e a b s o l u te v a l u e s o f t h e g a i n f a c t o rs o f th e o p e r a t i o n a l a m p l i f ie r ( L M7 4 1 ) g a i n c ir c u it s :

A + ---- R + / R ~ a n d A - = R [ / R 2 . T h e s e g a i n f a c t o r s a r e n o t a d ju s t a b l e a n d A + ~ A - ~ 0 . 5 . T h e D C b i a s V DC i s

se t t o 1 .25 V and i s no t shown in F ig . 1 fo r purpo se o f c la r i ty . The o r, f l , 6 and v fac to rs t ake in to acco un t the fac t t ha t

the c i rcu i t rea l i za t ion in t roduce a smoo th ing o f the ha t resu l t ing in f s i ns t ead o f f as the non l inear func t ion . A SPI CE

s i mu l a t i o n o f t h e n o n l i n e a r i ty s u b s y s t e m h a s e n a b l e d u s t o d e t e r mi n e ot = 0 . 7 8 3 9 9 , / ~ = 0 . 5 6 8 7 6 , 8 = 1 . 39 7 9and v = 1 .5005 wi th a l i near reg ress ion coef f i c i en t o f 0 .99994 . The sh ape o f the ma p (4 ) i s qu i t e d i f fe ren t f ro m

t h e s t a n d a r d t e n t ma p , a n d F i g . 2 s h o w s t h a t o u r mo d e l ( 4 ) i s i n a g r e e me n t w i t h o u r me a s u r e me n t s a n d SPI CE

s imula t ion on the non l inear i ty .

F i g . 2 ( b ) w a s r e a l i z e d b y i n j e c t i n g a t r i a n g u l a r w a v e v o l t a g e o f a mp l i t u d e 3 V a t t he i n p u t o f t h e n o n l i n e a r e l e me n t

a n d m e a s u r i n g t h e v o l t a g e a t t h e o u t p u t o f th i s n o n l i n e a r b l o c k . T h e f r e q u e n c y o f t h e i n p u t s ig n a l w a s a b o u t 3 k H z .

W e h a v e o b s e r v e d a h y s t e r e s i s - l i k e p h e n o me n a f o r h i g h e r f r e q u e n c i e s w h i c h i s d u e t o p h a s e d e l a y b e t w e e n i n p u t

a n d o u t p u t s i g n a ls . A s w e w i l l de a l w i t h f r e q u e n c i e s u p t o a b o u t 6 / T o = 2 . 3 4 k H z w e c a n c o n s i d e r t h a t t h e s ta t ic

non l inea r i ty m ode l (4 ) i s s ti l l va l id .

Page 5: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 5/21

P. Ce lka /Phys ica D 104 (1997) 127-147 131

-0 .1 ~ - a .

- 0 . 2

~.~ -0.3

~ -0.4

~ -0.5

' ~ - 0 . 6

-0.7

- O . 8 I I ~ . ~ 1 _ ~ ~ _ ~ L I

- 2 - 1 . 5 - 1 - 0 . 5 0 0 . 5 1 1 . 5 2

[ - - r I I I I | l • l T I 1

v [Vo#] b.

F i g . 2 . ( a ) T h e s t a n d a r d t e n t m a p f ( c o n t i n u o u s l i n e w i t h ( ¢ ,) ) a n d t h e s m o o t h t e n t m a p f s ( d a s h e d l i n e ) t o g e t h e r w i t h S P I C E s i m u l a t i o n

( o ) f o r V o c = 0 ( b ) T h e e x p e r i m e n t a l m e a s u r e m e n t s o n th e n o n l i n e a r f u n c t i o n f s ( V ) : h o r i z o n ta l a x i s V ( I V / D i v ) , v e r ti c a l a x i s

( 5 00 m V / D i v ) .

3 . R e l a t i on s b e tw e e n c on t i n u ou s - an d d i sc r e te - t im e e q u at i o n s

When the time constant T is lower than about 15 times the delay r, it has been shown [7,8] that the DDE (3) can

be approximated by the discrete-time equation x ~-* mf(x) in the stable regimes, and the dynamics of the discrete-

time equation reproduce quite accurately the behavior of the continuous-time system. In the standard tent map f,

there is no period-doubling route to chaos [46]. The standard tent map is well known to produce stable fixed point

solutions if m < 2, and chaotic solutions for m _> 2. Correspondingly, the continuous-time equation (3) exhibits

stable equilibrium points and chaotic solutions in the respective regions. The discrete-time system with the smooth

tent map x w, mfs(x) is characterized by a limited period-doubling route to chaos (Fig. 4) giving rise to 2N-cycle

periodic solutions X u = { X ' l , x 2 , " " • , X 2 N } - In the continuous-time system (3) with the nonlinearity being fs, these

cycles correspond to 2Ur-periodic solut ions X u which will be defined later, It is not surprising to find the same

appearance of harmonics, isomers and also of different types of chaotic attractors in the electronic circuit as well as

in interferometer optical systems because they are modeled by the same kind of DDE (with unimodal map). When

m ~ [mr, m,[, m f standing for the value of m that ends the period doubling in the map x ~-* mf~(x)(in the standard

tent map f , m f = 2 ) , the chaotic attractors of the smoothed or standard tent map belonging to the fundamental

branch are composed of two sets of unconnected chaotic intervals and the solutions of (3) are square-wave-like [2,71.

The value of m, van be computed with the so-called critical lines associated with the map f~ [47,48]. Ifm > mMax

where mM~x >_ m, is the solution of f~(m) + f ( -~( -m) = 0 (for the standard tent map mM~ = 4), the solution

becomes unbounded. Throughout this section, we will use f as a generic unimodal map.

MFMs associated with stable solutions of (3) will be introduced in order to make the comparison with the map

x ~ mf (x ) . Furthermore, we will show that within a given [m f, m , [ bifurcation interval where chaotic solutions

appear, the discrete-time approximation can also be used if we introduce a novel definition for the Lyapunov exponent

LE associated with the DDE (3). This generalized LE will be very close to the LE of discrete map and thus both

approaches give similar chaotic-like solutions from a statistical point of view. This point is very important for the

meaning of the control scheme we will present, so we will show the relation between the LE of the map x ~ mf (x )

and the new definition of the LE of the DDE (3). This comparison between the two LEs is motivated by two facts:

Page 6: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 6/21

132 P. Ce lk a /Ph ys ica D 104 (1997) 127-14 7

¢:

0 . 5

0

- 0 . 5

-1

- 1 . 5

- 2

- 2 . 5

2 0 4 0 6 0 8 0

Num ber of Exponent1 0 0

2 0

1 8

1 6

1 4

1 2

1 0

8

1 4

1 2

1 0

8

6

4

3

6

4

1 0

b ' . . . . . . , , , , . . . . . . .

i i I , , , I , , , I , , , I , , , I , , , I , ,

3 . 2 3 . 4 3 . 6 3 . 8 4 4 .2 4 ,4

m

. ' ' ' ' 1 ' ~ ' ' 1 ' ' ' ' 1 . . . . I ' ' ' ~ ' 1 ' ' ' ' i . . . . I ' ' '

2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

~ / T

Fig. 3. (a) Typical Lyapunovspectra (N b = 100). (b) Lyapunov dimension for r / T = 100/6. (c) Lyapunov dimension for m = 3.2. Thecharacteristic numbers were computed on 1000 × r length time series.

f i r s t ly , con t ro l l ing chao t i c t ra j ec to r i es wi th h igh LE i s more d i f f i cu l t t han wi th low LE; second , con t ro l l ing two

t r a j e c to r i e s w h i c h h a v e t h e s a me L E , e v e n f r o m t w o d i f f e r e n t s y s te ms , w i t h t h e s a m e c o n t r o l me t h o d , i s o f t h e s a me

o r d e r o f d i f f ic u l ty . W e t h u s c o n c l u d e t h a t i f t h e c o n t r o l s c h e m e w e p r e s e n t w o r k s f o r t h e d i s c r e t e - t i me s y s t e m , t h e n

i t w i l l g i v e g o o d r e s u l t s f o r t h e c o n t i n u o u s - t i me s y s t e m i n t h e s a m e r a n g e o f t h e p a r a m e t e r s e t v a l u e s. L e t u s f i r st

reca s t Eq . (3 ) , reca l l ing tha t or2 = 1 , i n the fo l lowing w ay :

d x ~ m A ---- ( ? T 2 - 1 )d t + A x = h ( t ) 1 O t l / T

(5 )

wi th x = ( x d x / d t ) T a n d h ( t ) = ( O f ( x ( t - r ) ) ) T E q . ( 5 ) c a n b e r e w r i t t e n a s x = - A x + F , n ( X r ) , w i t h x r ( t ) =

x ( t - r ) , a n d t h e r e l a t e d v a r i a ti o n a l e q u a t i o n i s g i v e n b y

~ Fm(x~)3 ± = - A ~ x + - - ~ x r . (6 )

O Xr

I n o r d e r t o h a v e a n i d e a o f th e c o m p l e x i t y o f t h e s e t y p e s o f D D E , i t i s in t e r e st i n g t o e s t i ma t e t h e L y a p u n o v d i me n s i o n ,

w h i c h g i v e s a g o o d a p p r o x i m a t i o n o f t h e f r a c t a l d i me n s i o n o f t h e a t tr a c t in g s e t . U s i n g n u me r i c a l i n t e g r a ti o n ( f o u r t h -

o r d e r R u n g e - K u t t a , A t = r / ( N b - - 1 )) o f ( 5 ) a n d ( 6 ) t o g e t h e r w i t h th e G r a m - S c h m i d t p r o c e d u r e a s d e s c r ib e d b y

Fa r me r [ 3 ] , a n d I k e d a a n d Ma t s u mo t o [ 1 7 ] , w e w e r e a b l e t o c o mp u t e t h e L y a p u n o v s p e c t r u m o f ( 5 ) , a n d u s i n g

K a p l a n - Y o r k e c o n j e c t u r e [ 8 ] t o c o mp u t e D L . V a r y i n g m a n d r , w e d i s p l a y i n F i g . 3 s o me c h a r a c t e r i s t i c L y a p u n o v

s p e c t r a a n d L y a p u n o v d i me n s i o n s .

Page 7: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 7/21

P . C e lka /P h ys i ca D 1 0 4 (1 9 9 7 ) 1 2 7 -1 4 7 133

F i g . 3 ( a ) d i s p l a y s L y a p u n o v s p e c t r u m f o r s t a b le ( m = 2 ) a n d c h a o t ic s o l u ti o n s ( m = 3 . 2 a n d m = 4 . 3 ) . W e

o b s e r v e t h e e x p o n e n t i al - l ik e b e h a v i o r o f th e s e s p e c t r a a n d t h e e x is t e n c e o f an " i n f in i t e n u m b e r " 4 o f n e g a t iv e L E s .

T h e L y a p u n o v d i m e n s i o n D L r a n g e s f r o m 4 t o m o r e t h a n 1 9 w h e n m a n d r / T a r e v a r ie d . T h e l in e a r r e l a ti o n b e t w e e n

D L a n d m r / T o b s e r v e d e x p e r i m e n t a l l y b y I k e d a [ 3 , 1 7 ] s e e m s t o b e e ff e c t iv e f o r t h e m p a r t b u t n o t f o r t h e r / T o n e

(F ig . 3 (c ) ) .

E q . ( 5 ) c a n b e s o l v e d o n e a c h i n t e r v a l [ ( n + 1 ) r , ( n + 2 ) r ] f o r 5 n 6 ~ U { - 1 } , g i v i n g r i s e t o t h e s o l u t i o n x ( . ) ={ x~ ( . )} ~ j w i t h t h e i n it i al c o n d i t i o n X _ l ( t ) = ( ~ p ( t ) d ~ o ( t ) / d t ) T = q ~ ( t) o n [0 , r ] . T h e 2 - v e c t o r v a l u e d f u n c t i o n

x ( . ) b e l o n g s to t h e s p a c e C 2 ( [ 0 , + ~ ] , I ) × c l ( [ 0 , + ~ ] , I ) , w h e r e 1 is a l e n g t h m M a x i n te r v a l. T h e s o lu t i o n x ( . )

w i t h r e s p e c t t o t h e i n i t i a l c o n d i t i o n q t , ( . ) i s c o m p u t e d i t e r a t i v e l y o n e a c h r - t i m e i n t e r v a l v i a t h e e v o l u t i o n o p e t a t o r

5Vm . W i th in t he g ive n r an ge m ~ [0 , m Ma x , t h e n o n l i n e a r o p e r a t o r )t-m i s b o u n d e d , a n d d u e t o th e l o w - p a s s b e h a v i o r

o f (5 ) , 5Vm w i l l b e a c o n t i n u o u s f u n c t i o n a l s p a c e v a l u e d o p e r a t o r . I n t r o d u c i n g t h e t i m e n o r m a l i z a t i o n t ~ ( n + 1 ) r ÷ / "

w i t h ~ ~ 1 0 , r ] a n d n ~ ~ W { - 1 }, w e i n t r o d u c e 5 rm i n th e f o l l o w i n g d e f i n i t i o n :

D e f i n i t i o n 1 . W e w il l ca l l.T 'rn t h e e v o l u t io n o p e r a t o r o f E q . (5 ) i fU r n : C 2 ( [ 0 , r ] , I ) × c l ( [ 0 , r ] , I ) --+ C 2 ( [ 0 , r ] , I )

× C I ( 1 0 , r l , 1 ) " x , , _ j ( t ) ~ F m ( X n - l ( t ) ) = x n ( t ) i s a c o n t i n u o u s l y d i f f e r e n t i a b l e m a p . ( /', { x ~ ( t )} ~ = 0 ) i s t h e

t r a j e c t o r y a s s o c i a t e d t o o n e s o l u t i o n o f ( 5 ) f o r w h i c h x , , ( t ) = , 2 , ( t" ) + e - - a t x n - 1 r ) , wi th x _ l ( t ) = ~ ( t" ) t he i n i t ia lc o n d i t i o n a n d

~ , , ( [ ) ~ - ( m / T 2) f d t ' e - a ~ [ - t ' ) h n ( t ' ) ,

o

wi th h , , ( t ' ) - -- ( O f ( x , , _ I ( t ' ) ) ) T f o r X n ( 0 ) = X n - l ( r ) t h e c o n t i n u i t y c o n d i ti o n .

W e n o w g i v e a l e m m a t h a t w il l b e u s e f u l in t h e p r o o f s o f t h e m a i n t h e o r e m s . T h i s l e m m a s t a te s t h a t u n d e r t h e

a s s u m p t i o n t h a t r / T > > 1 t h e k e r n e l e - A r - t ' ) i n th e e v o l u t i o n o p e r a t o r c a n b e a p p r o x i m a t e d b y a D i r a c d i s t r ib u t i o n

u p t o a m a t r i x m u l t i p l i c a t i o n f a c t o r . T h i s o b s e r v a t i o n w a s a l r e a d y m e n t i o n e d b y I k e d a e t a l . [ 8 ] .

L e m m a 2 . L e t 3 ( t - t o ) b e t h e s c a l a r v a l u e d D i r a c d i s t r i b u t i o n c e n t e r e d a t t o , d ~ ( t , to ) - d t e - A ( t - t ° ) a m a t r i x

v a l u e d m e a s u r e d e f i n e d o n [ 0, r ] w i t h A d e f i n e d in (5 ) . I f w e i m p o s e d ~ ( t , t o) = B ( t , t o ) 3 ( t - t o ) d t t h e n B ( t , t o ) , ~

A - J e a { f -t ~) i f r / T > > 1 a n d T > 0 .

P r o o f N o t e t h a t t h e m a t r i x A i s n o t s i n g u l a r b e c a u s e T > 0 . W e t h e n h a v e t o i d e n t i f y t h e m a t r i x B ( t , t o ) . F i r s t o f

a l l w r i t e t h e f o l l o w i n g e x p r e s s i o n :

i

f s ( t - t o ) d t = e (/ " - t o ) ,

o

w h e r e t h e d i s tr i b u t i o n ~ ( t ) i s 0 i f t < 0 a n d 1 i f t > 0 . L e t u s i n t e g r a t e th e m e a s u r e d se (t, to ) o v e r [ 0 , / ']

i i

f d ~ ( t , t o ) = f d t e A " - t o ),

o o

4 Num erical simulations l imit this number to N b .

5 ~ is the set of natural numbers.

Page 8: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 8/21

13 4 P. Celka/Physica D 104 (1997) 127-147

w h i c h g i v e s u s i m m e d i a t e l y

f dse ( t , t o ) = A - l [ e A J -t ° ) - e - A t ° ] .

0

I f t < t o t h e n f ~ d ~ ( t , to ) ~ 0 a s t h e c o e f f i c i e n t s in m a t r i x A d e p e n d o n I / T a n d r / T

f o dse ( t , t 0 ) - ~ A - l e a ( f - t ° ) , a n d w e c a n r e w r i t e fo d ~ ( t , t o ) ~ A - l e a ( t - t ° ) E ( t - - t o) . F i n a l l y

B ( t ' , to ) ~ ( t " - t o ) ~ A - l e a ( t - t ° ) E ( t - - to ) a n d B ( t , t o) ~ A - l e a ( f- t ° ) .

> > 1 . I f / " > t o t h e n

T h i s c o m p l e t e s t h e p r o o f . [ ]

F r o m t h is l e m m a , w e h a v e t h e f o l l o w i n g t r i v ia l b u t i m p o r t a n t r e s u lt o n th e m a t r i x B ( t , t o ) .

C o r o l l a r y 3 . W i t h t h e s a m e a s s u m p t i o n a s i n L e m m a 2 , l i m t - - , t 0 B ( t , t o ) = A - 1 .

T h e p r o o f o f C o r o l l a r y 3 is s t r a ig h t f o r w a r d f r o m L e m m a 2 . W e d e f i n e a 2 N r - p e r i o d i c s o l u t io n o f (5 ) in r e l a ti o n

w i t h t h e e v o l u t i o n o p e r a t o r U , n a s f o ll o w s :

D e f i n i t i o n 4 . W e w i l l c a l l X N = { ~'1 t" ), x 2 ( ~ . . . . . x 2 N ( ; )} a 2 N r - p e r i o d i c s o l u t i o n o f (5 ) i f 5 2N (Xn (7) ) = -~'n t ' ) ,

V n E { 1 , 2 . . . . . 2 g } an d .T 'm ~ 2 ~ ( t" ) ) = X l (t " ).

I n o r d e r t o i n t r o d u c e M F M a n d M L E q u a n t i t ie s r e l a t e d t o ( 5 ), d e p e n d i n g o n t h e ty p e o f s o l u t io n w e h a v e , w e

i n t r o d u c e a d i f f e r e n ti a l o p e r a t o r 7 9 o n C 2 ( [ 0 , r ] , I ) x C 1 [0 , r ] , I ) .

D e f i n i t i o n 5 . W e d e f i n e t h e d i f f e r e n t i a l o p e r a t o r D a s

fmf9 . T 'm ( X n ( ~ ) =-- " ~ d t ' e - A ( t - t ' ) 7 9 h n ( t ' ) ,

o

w h e r e 7 9 h = - ( 0 d f ( x ) / d x ) T .

I t i s c l e a r t h a t t h i s d i f f e r e n t i a l o p e r a t o r e x i s t s o n l y i t f ( x ) i s d i f f e r e n ti a b l e e x c e p t o n a s e t o f z e ro L e b e s g u e

m e a s u r e . T h e s t a n d a r d t e n t m a p f h a s a n u n d e f i n e d d e r i v a t i v e at {0} b u t th i s s et is o f n u ll m e a s u r e . W e c o u l d

a l s o u s e th e t h e o r y o f d is t r ib u t i o n s a n d c o n s i d e r t h a t i f f i s l o c a l l y i n te g r a b l e , t h e n w e c a n d e f i n e d f ( x ) / d x a s a

d i s tr i b u ti o n . T h e M F M / Z r , p a s s o c i a t e d w i t h a 2 N r - p e r i o d i c s o l u t io n i s d e f in e d a s :

N N . . . . 2g - - ^ 2ND e f i n i t i o n 6 . L e t X r b e a 2 r - p e r i o d i c s o l u n o n , t h e M F M i s /z r, o = ( I - In = j I l D . ~ m ( X n ( t ) ) l l p ) / l ~ l w h e r e

I I " l i p : L P x L p ~ R + : ( f l ( x ) , f 2 ( x ) ) -"+ I I ( f l ( x ) , f 2 (x ) l ip - - - - -( ~ i = 1 f a I f / ( x ) l p d x ) l / P i s t h e s e m i n o r m o n t h e

s p a c e L p x L p o f L e b e s g u e m e a s u r a b l e f u n c t i o n s o n th e t im e i n t e rv a l ~ , a n d I S 2 1 i s i t s l e n g t h .

T h e t i m e i n t e r v a l f 2 i s u s u a l l y [ 0 , r ] b e c a u s e t h e t r a j e c t o r y ( ~ ', {Xn 7 ) }n°~=0 i s c o m p u t e d o n i t , b u t , a s t h e f u n d a m e n t a l

p e r i o d o f t h e 2 r - p e r i o d i c s o l u t io n i s To ~ 2 ( r + T ) , 1 2 c o u l d b e t a k e n t o b e ½ T0 i f w e r e c o m p u t e t h e i te r a t iv e

s o l u t io n o n t h is i n t e rv a l . F i n a l l y w e i n t r o d u c e a M L E A r , p o f o n e t r a je c t o r y (~ ', {x n ( 7)} n~ _0 a s s o c i a t e d t o E q . ( 5 ) a s :

D e f i n i t i o n 7 . L e t ( t ' , { x n ( ~ }n~_0 b e a t r a j e c t o r y a s s o c i a t e d t o o n e s o l u t i o n ' o f ( 5 ) , t h e M L E i s

Page 9: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 9/21

P. Ce lka /Ph ysica D 104 (1997) 127 -147

A t , p = lim l n ( lz u p ) / N w h e r e l z u ( F I 2 ) /N -+ oO r ,p ~ i [ ~ m ( ~ n ( ; ) ) l l p ] ~ Q I N .\ n = - - I

13 5

L e t u s n o w d e r i v e t he d i s c r e t e - t i me a p p r o x i ma t i o n o f ( 5 ). I n f a c t , w e w i l l d e d u c e f r o m ( 5 ) a d i ff e r e n c e e q u a t i o n b u t ,

a s s u m i n g L e m m a 2 , th i s c o n t i n u o u s - t i me e q u a t i o n w i l l b e n o t h in g b u t a d i s c r e t e - ti me o n e .

Lemma 8 . I n t h e c a s e r / T - -~ ~ ( 5 ) r e d u c e s t o t h e d i f f e r e n c e e q u a t i o n x ( t ) . ~ m f ( x ( t - r ) ) w i th 2 ( t ) ~ 0 'v' t > 0 .

P r o o f I f aga in / " 6 [0 , r ] , t he so lu t ion o f Eq . (5 ) i s o f the fo rm

Xn (; ) = a~'m X n_l ( t ) ) ,

wh ere 5Vm i s def ined in Def in i t ion 1 . Le t us wr i t e the r igh t -han d s ide o f the p rev ious equ at ion as

f

g n ( t ) = ~ 5 dse(t, t ) h n ( t ) .

0

U s i n g L e m m a 2 , w e c a n w r i te

im~g ~ 6 ) ~ . - r-

0

mdt B (t, t")8(t - t )hn(t ) "~ ~-~-B (t, t")hn (t)

w i t h Co r o l l a r y 3 w e g e t

m A - 1 ^g n(i) "~ - - ~ h n ( t ) ,

and w i th the def in i tion o f the vec to r hn ( t ) a n d t h e ma t r i x

A - ' { ° q / T l o )= ~ _ I / T 2 r 2 ,

w e o b t a i n

y ( ; ) J 0 "

T h i s l e m m a i mp l i e s t h a t u s i n g L e m m a 2, E q. ( 5 ) r e d u c e s t o a d i s c r e t e - t i me e q u a t i o n w h e n r / T > > 1 , a s th e

s o l u ti o n mu s t b e c o n s t a n t o n e a c h t i me i n te r v a l [ n r , ( n + 1 ) r ] . O b s e r v e th a t t h e MFM / Z r , p a n d ML E Ar,p d e p e n d

o n t h e d e l a y r . W i l l sh o w t h a t in th e l i m i t i n g c a s e r / T ~ ~x~ t h e F l o q u e t mu l t i p l ie r a n d t he L E o f t h e d is c r e t e ma p

x w-~ m f( x ) w i l l b e c l o s e to , r e s p e c ti v e l y , t h e MF M a n d M L E o f t h e c o n t i n u o u s - t i me e q u a t i o n ( 5 ) . I n p r a c t ic e , f o r

a f ini te rat io r / T ~ 20 there ex i s t s a va lue o f p such tha t A r , p w i l l b e a s c l o s e a s w e w a n t t o t h e L E o f t h e ma p

x w-~ m f( x ) , a n d t h e s a me h o l d s f o r t h e F l o q u e t mu l t i p l i e r . W e h a v e n o t h e o r e m a b o u t t h e e x i s t e n c e o f s u c h a p ,

g i v e n t h e p r e c i s i o n o n t h e L E o r F l o q u e t m u l t ip l i e r, b u t n u m e r i c a l s i mu l a t io n s i n Se c t i o n 4 w i l l s u g g e s t th a t s u c h a

c o n d i t i o n e x i s ts . T h i s w i l l l e a d t o t h e s t u d y o f t h e c o n t r o l s c h e m e o n l y i n t h e d i s c r e t e - t i me a p p r o x i m a t i o n . I n t h is

s i tua t ion , w here the ra t io r / T - -- r ~x~, we get the fo l lowing tw o theore ms :

Page 10: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 10/21

1 3 6 P. Celka/Physica D 104 (1997) 127-147

Theorem 9. F o r T > 0 f ix e d a n d f o r a g i v e n v a l u e o f m = m s , le t X ~ b e a 2 N r - p e r i o d i c s o l u t io n o f (5 ) , a n d # r , p2 N

t he c o r re s p o n d in g M F M . F o r a n y p 6 ] 0 , + c ~ [ w e h a v e l i m r ~ / Z r , p = I -I n= l I d f ( - £ n ) / d x l, w h e r e X N = {-£~ 2~=1

i s t h e s t a b l e o r b i t o f th e m a p x ~ m s f ( x ) .

P r o o f U s i n g L e m m a 2 w e c a n w r it e

m f m f mn( t ) = ~ d ~ ( t , ?)7)hn(t ) ~ ~-~ dt B( t , t")~(t - ~79hn( t ) ~ - ~ B ( i , ~79hn(t )

~2 ~2

a n d t h u s

m 1 ^

gn( t ) ~ ~ -~A- 7 )hn( t ) ,

w h i c h g i v e s

R e c a l l i n g t h a t b y d e f i n it i o n t h e M F M i s

n = l

D u e t o t h e f a c t t h a t i n t h e c a s e r / T --+ ~ t h e D D E r e d u c e s t o t h e d i f f e r e n c e e q u a t i o n a s s ta t e d b y L e m m a 8 , w i t h

Xn (} ') c o n s t a n t f o r n ~ ~ tO { - 1 }, t h e r e i s a u n i q u e a n d b i j e c ti v e c o r r e s p o n d e n c e b e t w e e n t h e 2 N r - p e r i o d i c s o l u t io n

X ~ o f th e D D E a n d t h e 2 N - c y c l e X Iv o f t he m a p x ~+ m f ( x ) : X ~ ~ X N = { ~ 1 , " " , X 2N } . T h e d i f f e r e n t i a l

o p e r a t o r c a n b e r e c a s t i n t h e f o l l o w i n g f o r m :

D ' ~ m ( X n ( t ) ) ~ ( m d f ( - E n ) / d x0

a n d

I I~D~mCXn(t) )l lp ~ ]df( -£n ) /dxlP dt ~ lY2 l ldf ( -£n)d x I.

F i n a l l y

l i m / z r , p ~ IS211 d f ( ~ n ) / d x l ~ I d f ( -~n) /dx l . []r - - -~ oo ~kn = l n = l

Theorem 10. F o r T > 0 f i x e d a n d f o r a g i v e n v a l u e o f m = m c l e t ( ~ , { Xn (t)} n~ __ 0 b e a t r a j e c t o r y a s s o c i a t e d t o

o n e s o l u t i o n o f ( 5 ), a n d Ar,p th e c o r re s p o n d in g M L E . F o r a n y p E ] 0, + ~ [ w e h av e l i m r ~ At, p = l i m N ~

l n ( l - I ~ = l [ d f ( x n ) / d x b ) N w h e r e {Xn}~_~ i s t h e t ra j e c t o r y a s s o c i a t e d w i t h t h e m a p x ~-~ m cf (X ) .

. T h e p r o o f o f T h e o r e m 1 0 i s t h e s a m e a s th a t o f T h e o r e m 9 . In th e p r a c t i c a l c a s e w h e r e r / T i s f in i te a n d i n th e

r a n g e [ 1 5 , 8 0 ], w e h a v e o b s e r v e d t h a t t h e r e e x i st s a p v a l u e s u c h t h a t Ar,p i s v e r y c l o s e d t o th e L E a n d / Z r , p v e r y

c l o s e t o th e F l o q u e t m u l t i p l ie r o f th e d i s c r e t e m a p f o r g i v e n v a l u e s o f m . W e w i l l g i v e a n u m e r i c a l e x a m p l e i n

S e c t i o n 4 , b u t t h is m o t i v a t e s t h e n e x t t w o c o n j e c t u r e s .

Page 11: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 11/21

P . C e l k a / P h y s i c a D 1 0 4 ( 1 9 9 7 ) 1 2 7 - 1 4 7 1 3 7

C o n j e c t u r e 1 1. F o r T > 0 , r / T > 1 5 f ix e d , a n d f o r a g i v e n v a l u e o f m = m s , le t X u b e a 2 N r - p e r i o d i c s o l u t io n

o f ( 5 ) , a n d lZr,p t h e c o r r e s p o n d i n g M F M . 3 p 6 ] 0 , o o [ su c h th a t l U r . p - ( I- lZ U l I d f ( - £ n ) / d x l ) l i s m i n i m u m w h e r e

X N - 2 N= {Xn}n=j i s th e s t a b l e o r b i t o f th e m a p x ~ m s f ( x ) .

C o n j e c t u r e 1 2 . F o r T > 0 , r / T > 15 , and fo r a g iven va lue o f m = m c , l e t ( /', {xn(t )}n~_0 ) be a t r a j e c to ry

a s s o c i a t e d t o o n e s o l u t io n o f (5 ) , a n d A t , p t h e c o r r e s p o n d i n g M L E . 3 p 6 ] 0 , <x ~[ s u c h t h a t: J A r . p - l i m N ~

1 Nn( l - In=2 I d f ( x n ) / d x D / N I i s m i n i m u m w h e r e { xn } ~_ 1 i s a t r a j e c t o r y a s s o c i a t e d w i t h t h e m a p x ~ -~ m c f ( x ) .

O b s e r v e t h a t , a t t h is p o i n t , t h e r e a re n o r e s t r ic t io n s a b o u t t h e v a l u e o f m e i n T h e o r e m 1 0 a n d C o n j e c t u r e 1 2. T h e o r e m

1 0 t el ls u s th a t, i n t h e m e a n , t h e M L E w i l l c o n v e r g e t o i ts d i s cr e t e c o u n t e r p a r t a s r / T ~ o o . T h i s t h e o r e m d e a l s

w i t h m e a n v a l u e s o f t h e d i f f e r e n t ia l o p e r a t o r D b u t it c o u l d a l s o b e v i e w e d a s a d i f f e r e n t i a l p r o c e s s o n a m e a n

s o l u t i o n {<x) n }~_- w i thin S2 wh er e

( 7 )

I f m 6 [ m f , m , [ a n d r / T > > 1 , t h e m e a n t r a j e c to r y m a t c h a s a d i s c r e t e -t i m e t r a j e c t o r y b e c a u s e t h e d i s c r e te - t im e

a t t r a c t o r li e s o n t w o u n c o n n e c t e d s e ts . I f m > m , , t h e c o n t i n u o u s - t i m e t r a j e c t o r y fi ll s t h e e n t i r e i n t e rv a l I a n d

t h e c o n n e c t i o n b e t w e e n t h e m e a n t r a j e c t o r y a n d t h e d i s c r e t e - t i m e a p p r o x i m a t i o n i s c o m p l e t e l y l o s t . S u r p r i s i n g l y ,

i n th i s r e g i o n , t h e M L E a s d e f i n e d i n D e f i n i t i o n 5 w i l l s t il l b e v e r y c l o s e t o t h e d i s c r e t e - t i m e v a l u e , b u t t h e t i m e

c o r r e s p o n d e n c e i s n o m o r e v a l id . W e h a v e t h u s e s t a b l i s h e d t h e d i f f e re n t c o n t i n u o u s - d i s c r e t e c o n n e c t i o n s w i th

M F M , M L E a n d m e a n t r a je c t o r ie s D D E . I n th e n e x t s e c t io n , w e w i l l a p p r e c i a t e t h e d i f f e re n t a p p r o x i m a t i o n s a n d

t h e ir r e s p e c t iv e r e s t ri c ti o n s w h e n a p p l y i n g t h e c o n t r o l m e t h o d .

4 . C o n t r o l s c h e m e

4 . 1 . C o n t r o l t o w a r d s s t a b l e p e r i o d i c o r b i t s o f t h e f u n d a m e n t a l b r a n c h

P y r a g a s h a s i n t r o d u c e d a v e r y s im p l e t i m e - d e l a y e r r o r f e e d b a c k c o n t r o l m e t h o d i n o r d e r t o s ta b i li z e U P O e m b e d -

d e d i n a c h a o t i c a t t ra c t o r [ 2 3 ] . S o m e e x p e r i m e n t a l a n d t h e o r e t ic a l a p p r o a c h e s b a s e d o n t h i s m e t h o d h a v e b e e n t h e

s u b j e c t o f n u m e r o u s p a p e r s [ 2 7 - 2 9 , 3 9 , 4 2 , 4 3 ] . T h i s s c h e m e h a s b e e n a p p l i e d t o a n o p t ic a l b i s t a b le s y s t e m r u n n i n g

i n c h a o t i c m o d e , p r e v i o u s l y . H o w e v e r , t h e s t a b i li z e d o r b i t s w e r e n o t U P O s , b u t t h e o n e s c l o s e t o s t a b le u n c o n t r o l l e d

s y s t e m o r b i t s w e r e [ 3 6 ]. A s m e n t i o n e d i n s e c ti o n l , t h e fi rs t p o s s i b l e w a y o f c o n t r o l l in g t h e D D E ( 3 ) w i t h t h e m a p

( 4 ) i s to s t a b i li z e c h a o t i c t r a je c t o r ie s t o w a r d s s o m e p e r i o d i c o r b i t s w h o s e b e h a v i o r s a r e c l o s e t o s t a b le 2 N r - p e r i o d i c

s o l u t io n s o f t h e o r i g in a l s y s t e m .

T h e c o n t r o l w i l l b e d o n e i n re a l t im e a s s u m i n g t h e s t a te x i s o b s e r v a b l e . L e t u s s u p p o s e t h a t t h e o ri g i n a l s y s t e m

i s i n a Chao t i c r eg io n wi th m - -- - m c c [ m y , m,[ a n d t h a t r / T > > l ( i n o u r c a s e 1 6 . 6) . N o t i c e t h a t th e i n t e r v a l

[ m y , m,[ c o r r e s p o n d s t o c h a o t i c t ra j e c to r i e s t h a t a r e s q u a r e - w a v e - l i k e s o l u t i o n s o f ( 3 ). W e w i l l f o r c e t h e s y s t e m t o

b e c l o s e t o o n e o f it s 2 N r - p e r i o d i c s o l u t i o n s b y u s i n g a n e r r o r f e e d b a c k s c h e m e w i t h a c o n t r o l s i g n a l o f th e f o r m

c ( t ) = K ( x ( t - n T o ) - x ( t ) ) w i t h K 6 ~ , n 6 { 1 , 1} a n d T o = 2 r . T h e c o n t r o l l e d s y s t e m c a n b e m o d e l e d b y

T 2 d 2 x ( t ) ~ d x ( t )o t 2 ~ + t o t l - - - - - ~ + x ( t ) ---- m f ( x ( t - r ) ) + c ( t ) . (8 )

Page 12: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 12/21

1 3 8 P. Ce lka /P hys ic a D 104 (1997) 12 7-147

0

-1

' ' ' I ' ' ' ' I ' ' ' ' I . . . . I ' ' ' ' I '

a . "4

,,----

.... ~i' i!

K = O, , , I . , . , l , , . , i . . . . I , , , , l ,

1 . 5 2 2 . 5

-1

b .

........ l~

........ ~~ i]"~

. . . . . . . . . . . . . : ' ~ ! i v ~ . -

, . r - - :

0 0 . 5 1 3 . 3 . 5 0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5

m + K m + K

F i g . 4 . C o m p a r i s o n b e t w e e n n u m e r i c a l s im u l a t i o n s o f c o n t r o l l e d ( K # 0 ) a n d u n c o n t r o l l e d ( K = 0 ) sy s t e m s m o d e l e d b y Fro, k w i t h :

( a ) f a n d ( b ) f s .

T h e u s e o f o t h e r v a l u e s o f n w i l l b e t h e s u b j e c t o f Se c t i o n 4 . 2 . T h e e v o l u t i o n o p e r a t o r o f ( 8 ) w i l l b e n o t e d ~ m , Ka s i t d e p e n d s o n K . I t is e a s y t o d e r iv e t h e d i s c r e te m a p t h a t c o r r e s p o n d s t o ( 8 ) w i th L e m m a 8 a n d i n t h e c a s e w h e r e

1

x k = ( m f ( x k -1 ) + K X k - l ) / ( 1 + K ) = F m , r ( X k - l ) (9 )

K e e p i n g m = mc f i x e d a n d v a r y i n g K i n t h e ma p ( 9 ) r e s u l ts i n a r e v e r s e p e r i o d - d o u b l i n g e n d i n g w i t h f ix e d p o i n t

s o l u t io n s i n d e p e n d e n t o f t h e K v a l u e s . F i g . 4 s h o w s t w o b i f u r c a t i o n d i a g r a m s c o r r e s p o n d i n g t o th e ma p s f a n d

f s . T h e s e t w o b i f u r c a t i o n d i a g r a ms h a v e b e e n c o mp u t e d w i t h ( 9 ) , a n d t h e c o r r e s p o n d i n g ma p , v a r y i n g m w h i l e

K = 0 u n t il m ---- mc , a n d th e n v a r y i n g K w h i l e m = mc w a s k e p t u n c h a n g e d . W e o b s e r v e t h a t t h e s mo o t h ma p

g i v e s e f f e c t iv e l y a l i m i t e d p e r i o d - d o u b l i n g e n d i n g a t a p p r o x i ma t e l y m y - - 2 . 3 b e f o r e e n t e r i n g t h e c h a o t i c r e g i o n .

R i g h t a f t e r m y t h e so lu t ion evo lves to chao t i c in t e rva l s as in the s t andard t en t map where m y = 2 . T h e v f a c t o rd e t e r mi n e s t h e v a l u e o f m y a n d a l s o t h e n u mb e r N o f d i f fe r e n t s t a b le c y c l e s . T h e K f a c t o r d e t e r mi n e s s t a b il i ty

in t e rva l s one wa n t s to access , ca l l ed in [36] the target in tervals . W h e n K i s c h o s e n i n s u c h a w a y t h a t it c o r r e s p o n d s

t o a 2 N - c y c l e , t h e c o n t i n u o u s - t i me s y s t e m ( 8 ) w i l l e v o l v e to a 2 N r - p e r i o d i c s o l u ti o n t h a t is c l o s e t o th e o r i g i n a l

2 N z - p e r i o d i c s o l u t i o n .

I n o r d e r t o c o n f i r m t h e c o r r e s p o n d e n c e b e t w e e n c o n t r o l l e d d i s c r e t e - a n d c o n t i n u o u s - t i me s o l u t i o n s , w e h a v e

c o m p u t e d t h e L E o f ( 9 ) a n d t h e ML E o f ( 8 ) u s in g a n o p t i m a l t i me i n t e r v a l l e n g t h 1 12 ] = ½To. Para me ters fo r (8 ) a re

g i v e n i n T a b l e 1 . W e c a n c o m p u t e t h e e v o l u t i o n o p e r a t o r 3Cm, o f ( 8 ) u s in g D e f i n i t io n 1 a n d c h a n g i n g t h e v e c t o r

/In to

( o )~ In (t ) = m f ( x n - l ( t ) ) + K ( X n - l ( t ) ) • ( 1 0 )

m ( 1 + K )

F r o m c o mp u t e d t r a j e c t o r i e s 0 " , {x n ( t ) }~= - l ) o f ( 8 ) w i t h t h e e v o l u t i o n o p e r a t o r Urn,K,, w e h a v e c a l c u l a t e d t h e

M LE in d i f fe ren t s itua t ions wi th mc = 3 .2 f ixed : (1 ) kee p ing r / T f i x e d a n d v a r y i n g K f o r t h r e e v a l u e s o f p ;

( 2 ) k e e p i n g K f i x e d a n d v a r y i n g r / T f o r t h r e e v a l u e s o f p ; ( 3 ) k e e p i n g r / T , K f i x e d , a n d v a r y i n g p . Fo r a l l

n u m e r i c a l s i mu l a t i o n s w e h a v e t a k e n 1 0 00 12 i n t e rv a l s t o c o m p u t e MF M a n d ML E .

F i g . 5 ( a ) s h o w s t h a t t h e ML E a n d MFM a r e c l o s e t o t h e i r d i s c r e t e e q u i v a l e n t v a l u e s c o mp u t e d w i t h Fro,K,

a n d t h a t t h e r e a r e s e v e r a l t a r g e t i n t e r v a l s f o r t h e c o n t r o l l e d s y s t e m. W e o b s e r v e i n F i g . 5 ( b ) t h a t i n b o t h c a s e s

Page 13: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 13/21

0 . 3

0 . 2

, ~ 0 . 1

, , ~ - 0 . 1

- 0 . 2

- 0 . 3

P. Ce l ka /P hys ica D 104 (1997) 1 27-14 7

• G . ' 1= O .

~ , I L y a -~, p = l "

i i , i i ' t i 1 '

0 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5 0 . 3

K

13 9

0. 3

0.25

0. 2

0.15

0.1

, i I ' , ' I , ' , I ' , , I ' ' '

b . - - Lya-p=0.3 ]

Lya-p= 1 I........ Lya-p=2

0 , . 0 4 0 ,

0.10364~i , I i , i I i ~ ~ I i i L I i , i _

20 4 0 60 80 100

Tau/T

o

-0.05

-o.1

- 0 . 1 5

0 .1 ~ r - ~ - - - , I ~ ' ' ~ ' ' ' I ' ' '

, I L . - p = 0 3 I\ I Lya-p=l I

o . o I . . . . . . . . . I

4 . 1 7 2 2 1" 0 . 2 L ~ ~ ~ 2 - - ~ ~ , _ I , ~ , J ~ ~ J I i i i

0 20 40 60 80 100

T a u / T

0 .17

0 .16

0 .15

[ '~ 0.14

0 .13

0 .12

0.11

-0.132

-0.133

-0 .134

-0.135

,~ -0 .136

-0.137

-0.138

-0.139

-0.14

0.1

C .

0.1 0.2 0.3 0.4 0.5 0.6

P. . . . ~ . . . . i . . . . I . . . . ~ . . . .

J

0.2 0.3 0.4 0.5 0.6

P

F i g . 5. V a l i d a ti o n o f T h e o r e m s 9 a n d 1 0 a n d C o n j e c t u r e s 11 a n d 1 2 b y c o m p u t a t i o n o f M L E a n d M F M : ( a ) f i n it e r a t io r / T = ~ fo r

t h r e e v a l u e s o f p w i t h a b o l d l i n e i n d i c a t in g d i s c r e t e v al u e s ; ( b ) c o n v e r g e n c e o f M L E a n d M F M t o t h e i r d i s c r e t e c o u n t e r p a r t ( l in e m a r k e r ) ;

( c ) e x i s t e n c e o f a n o p t i m a l p v a l u e .

Page 14: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 14/21

14 0 P C e l k a / P h y s i c a D 1 0 4 ( 1 9 9 7 ) 1 2 7 - 1 4 7

IIIIIIII

(a) (b)

(c )

Fig. 6. (a) Phase plane representation o f a chaotic solution. (b) Control towards a 2r-p erio dic for K = 0.1704 4- 0.0085. (c) Control

towards a 4r-p erio dic for K = 0.080 5: 0.004. Horizontal axis V (500 mV /Div ), vertical axis d V / d t (1 V/Div ).

o f M L E a n d M F M , t h e c o n v e r g e n c e i s fa s t e r i f p = 0 . 3 . I n f a c t, F i g . 5 (c ) s h o w s t h a t t h e r e e x i s t s a n o p t i m a l

v a l u e o f p f o r w h i c h M L E a n d M F M a r e c lo s e s t t o th e i r d i s c r e t e e q u i v a l e n t s , t h i s l a s t n u m e r i c a l e x p e r i m e n t

s u p p o r t s C o n j e c t u r e s 1 1 a n d 1 2. E a c h r e g i o n w h e r e M L E i s n e g a t i v e c o r r e s p o n d s t o a s t a b l e e q u i l i b r i u m p o i n t

o r p e r i o d i c s o l u t i o n . T h e s e s o l u t i o n s o f ( 8 ) a r e c l o s e to o r i g i n a l s t a b l e s o l u t i o n s o f (5 ) o r ( 3 ) o n t h e f u n d a m e n t a l

b r a n c h .

T h e b i f u r c a t i o n d i a g r a m s o f F i g . 4 s h o w t h a t th e r e i s a r e v e rs e p e r i o d - d o u b l i n g c a s c a d e 2 N T o - -+ 2 N - 1 T o . • • - ->

T o a s p a r a m e t e r K i s v a ri e d . I n s t e a d o f u s i n g a c o n t r o l s i g n a l o f t h e f o r m c ( t ) = K ( x ( t - n T o ) - x ( t ) ) w i t h

K ~ • , n ~ { 1 , 1 }, w e c a n a l s o c o n s i d e r a w e i g h t e d l i n e a r c o m b i n a t i o n o f x ( t - n r ) s u c h a s c ( t ) - -- K ( x ( t ) - ( 1 -

R oo) ~V~,n= R n - l x ( t - n r ) ) . T h i s m e t h o d h a s b e e n u s e d b y S o c o l a r e t a l. [ 3 9 ,4 2 ] i n t h e c a s e o f c o n t r o l t o w a r d s U P O s .

I n c e r t a in c a s e s , t h e y h a v e s h o w n t h a t u s in g R 5~ 0 c o u l d l e a d t o th e s t a b i l i z a t i o n o f U P O s t h a t w e r e u n c o n t r o l l a b l e

i n th e c a s e R = 0 a s in P y r a g a s ' s m e t h o d . F i g . 6 s h o w s a n e x p e r i m e n t a l r e p r e s e n t a t io n o f th e c h a o t i c t r a je c t o r y fo r

m -----3 . 2 0 - t- 0 . 1 6 a n d t w o p e r i o d i c o r b i t s o n t h e f u n d a m e n t a l b r a n c h i n t h e p l a n e x - d x / d t . T h e l a r g e ra n g e o f

p o s s i b l e v a l u e s f o r n s h o w s a f i rs t l i m i t a t i o n o f th e p r e s e n t m e t h o d , b e c a u s e w e c a n n o t p r e d i c t w h a t k i n d o f s o l u t io n

w e w i l l c o n t r o l w i t h s u c h a c o n t r o l s i g n a l.

Page 15: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 15/21

~J

C

[

IIiII[

1 . 5 '

a .

1

0 . 5

0

- 0 . 5

-1

- 1 . 5 '

0

r , , I ' ' ' ' I '

i ~ J I i ~ , , [ , , ,

0 . 0 0 5 0 . 0 1

T i m e [ s e c ]

' ' ' r ' , , ,

0 . 0 1 5 0 . 0 2

III

1 . 5 . . . . i ,

-1

- 1 . 5 . . . . l '

0 0 . 0 0 5

' ' ' I '

, , , i , , ,

0.01

T ime sec ]

~ 0 0 . 5

r~

"~ o

-o . 5

, i ,

0 . 0 1 5

L

i It t

0 . 0 2

F i g . 7. ( a) T i m e s e r i e s r e p r e s e n t a t i o n o f a c h a o t i c s o l u t i o n . ( b ) C o n t r o l t o w a r d s a 8 r - p e r i o d i c t r a j e c t o r y ~b r K = 0 . 0 5 + 0 . 0 0 2 5 .

P . C e l k a / P h y s i c a D 1 0 4 ( 1 9 9 7 ) 1 2 7 - 1 4 7 141

( a ) ( b )

F i g . 8 . ( a ) C o n t r o l t o w a r d s a s ta b l e p e r i o d i c o r b i t f o r K = 0 . 0 9 2 q - 0 . 0 0 4 6 a n d F = 1 . 0 1 3 4 , a n d ( b ) it s p e r i o d d o u b l e d v e r s i o n f o r

K = 0 . 0 8 0 + 0 . 0 0 4 a n d y = 1 .0 1 34 . H o r i z o n ta l a x i s V (5 0 0 m V / D i v ) , v e r ti c a l a x i s d V / d t ( 1 V / D i v ) .

R e m a r k 1 3. A l l t i m e s e r i e s a n d p h a s e p l a n e p i c t u r e s a r e e i t h e r p h o t o g r a p h s t a k e n f r o m a n a n a l o g o s c i l l o s c o p e o r

d i g i t al l y a c q u i r e d o n a c o m p u t e r . T h e K v a l u e s a re a p p r o x i m a t e b e c a u s e o f a 5 % t o l e r a n c e o n t h e c i rc u i t e l e m e n t s

R , R I , R 2 , R ~ , R ~ , R e , L a n d C . T h e m g a i n f a c t o r w a s 1 + R 1 / R 2 a n d a l s o s u b j e c t t o 5 % t o l e ra n c e . P h a s e p l a n e

t r a je c t o ri e s i n p h o t o g r a p h s a r e w i t h o u t t h e D C b i a s a n d c e n t e r e d a t ( V = 0 , d V / d t = 0 ).

T h e 4 r - p e r i o d i c o r b i t w a s c o n t r o l la b l e f o r K = 0 . 0 8 0 4 - 0 . 0 0 4 . I f w e h a v e a l o o k a t F i g . 5 (a ) , it i s f a r f r o m b e i n g

o b v i o u s t h a t i t w a s p o s s i b l e b e c a u s e t h e M L E h a s a s u d d e n a n d i n e x p l i c a b l e j u m p a r r o u n d t h i s K v a l u e f o r a ll p

v a l u es . F i g . 7 s h o w s a c o n t r o l l e d c h a o t i c tr a j e c t o r y to w a r d s s o m e 8 r - p e r i o d i c s o l u t io n a s p r e d i c te d b y F i g . 5 (a ) f o r

m = 3 . 2 0 4 - 0 . 1 6 .

A n o t h e r d r a w b a c k o f th i s m e t h o d i s t h a t t h e c o n t r o l m a y g e n e r a t e n e w p e r i o d i c s o l u t i o n s t h a t ar e n o t a t a ll r e la t e d

t o s t ab l e p e r i o d i c s o l u t i o n s o f t h e o r ig i n a l s y s t e m . F i g . 8 s h o w s t w o e x a m p l e s o f s u c h a s it u a ti o n w h e r e s t a b l e

Page 16: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 16/21

142 P. Celka/Physica D 104 (1997) 127-147

p e r i o d i c o r b i t s a r e f o u n d u s i n g t h e c o n t r o l s i g n a l c ( t ) = K ( x ( t - y T o ) - x ( t ) ) , w i t h y i r r a t i o n a l a n d a r b i t a r i l y

c l o s e t o a n i n t e g e r v a l u e f o r m = 3 , 2 0 ± 0 . 1 6 .

4 . 2 . C o n t r o l to w a r d s s t a b l e p e r i o d i c h a r m o n i c s a n d i s o m e r s

A l r e a d y s t a t e d i n S e c t i o n 1 , I k e d a e t al . h a s p r e d i c t e d t h e e x i s t e n c e o f h a r m o n i c s a n d i s o m e r s o f t h e f u n d a m e n t a l

b r a n c h [ 7 , 8 ] . D e r s t i n e e t a l . [ 1 4 ] h a v e v e r i f i e d e x p e r i m e n t a l l y t h e s e p r e d i c t i o n s w i t h a h y b r i d o p t i c a l l y b i s t a b l e

s y s t e m . O n e p r o b l e m i n o b s e r v i n g t h e s e s o l u t i o n s i s th e i r re l a ti v e r a n d o m a p p e a r e n c e a s a f u n c t i o n o f t h e p a r a m e t e r

m a n d t h e s p e e d a t w h i c h w e v a r y i t b e c a u s e t h e y u s u a l l y c o - e x i s t f o r a g i v e n m . M o r e o v e r , s o m e o f th e s e i s o m e r s

a r e u n s t a b l e a n d u n o b s e r v a b l e u n l e s s w e u s e s o m e c o n t r o l o n t h e m . D e r s t i n e e t a l . [ 1 4 ] h a v e p r o v i d e d a s i m p l e

a n d e f f i c i e n t l o c k i n g m e t h o d i n o r d e r t o s t a b i l i z e t h e w a v e f o r m s . O u r a p p r o a c h i s q u i t e d i f f e r e n t s i n c e w e s t a r t

f r o m a c h a o t i c t r a j e c to r y , N p , w h i c h i s a c h a o t i c s q u a r e - w a v e - l i k e s o l u t i o n , o r L ~ w h i c h i s a c h a o t i c t r a j e c t o r y

w i t h a p r e d o m i n a n t p o w e r s p e c tr a l p e a k l o c a t e d a t f = p ~ T o , a n d c o n t r o l i t t o w a r d s p e r i o d i c i s o m e r s . U s i n g o u r

t i m e - d e l a y c o n t r o l s c h e m e , w e w e r e a b l e t o co n t r o l s u c h i s o m e r s a n d o b s e r v e m o r e e f f ic i e n tl y t h e b i f u r c a t io n r o u t e

t o f u l ly d e v e l o p e d c h a o s . W e h a v e u s e d t h e f o r m u l a t i o n o f D e r s t i n e [ 1 4 ] f o r t h e w a v e f o r m s : L 1 i s th e f u n d a m e n t a l

m

(a) (b)

( c )

Fig. 9. (a) Phase p lane representation of a chao tic solution, (b) control tow ards a L34/3 orbit (c) control towards a L3/3 orbit. Horizontal

axis V (500mV/Div), vertical axis d V / d t (1V/Div).

Page 17: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 17/21

P. Celka/Physica D 104 (1997) 127-147

-0.5

1

0 . 5

0

- 0 . 5

-1

-2

i , . , i , . . . i . , r

a .

~' ' ' ' 1 ' ' '

j, , , I . . . . I . . . . I , , , , I , , , , l , , , , l , , ,

- 1 . 5 - 1 - 0 . 5 0 0 . 5 1

X

0 . 5

1 .5

0 . 5

- 0 . 5

-1

b .

, , l , l , , , , l l , , , I , , , , I , & l i l l l n , l , , ,

- 2 - 1 . 5 - 1 - 0 . 5 0 0 . 5 1

X

143

-1

- 2

. . . I . . . . I . . . . I . . . . I . . . . I . . . . I , , .

- 1 . 5 - 1 - 0 . 5 0 0 . 5 1 1 . 5

, X

. ~ , l ' . , I , I ' ,

f

- 0 . 5

"1 , , , I . . . . I ,

- 2 - 1 . 5 - 1 - 0 . 5 0 0 . 5 1 1X

1.5

Fig. 10. (a) Phase plane representation of a chaotic solution. (b )-(d) Control towards periodic orbits.

.5

nb r a n c h , L n i s a n n t h - o r d e r h a r m o n i c b r a n c h w h i l e L m / n f o r n = 3 , 5 , 7 . . . a n d m = 2 , 4 , 8 , . . . a r e i t s v a r i o u s

i s o m e r s w i t h p e r i o d 6 m T o / n . F i g . 9 s h o w s e x p e r i m e n t a l L 3 / 3 a n d L 3 / 3 c o n t r o l l e d i s o m e r s f r o m a c h a o t i c s o l u t i o n

f o r m e d f r o m t h e L 3 b r a n c h . T h e L38/3 i s t h e p e r i o d - d o u b l e d s o l u t i o n o f L34/3 T h e b i f u r c a t i o n p a r a m e t e r m w a s

s l i g h t l y g r e a t e r t h a n 3 . 2 a n d k e p t f i x e d d u r i n g t h e c o n t r o l. W e w e r e t h u s a b l e t o c o n t r o l L34/3 a n d L ~ / 3 u s i n g a c o n t r o l

s i g n a l o f t h e f o r m c ( t ) = K ( x ( t - T ( m ,n ) - x ( t ) ) , w h e r e T (4 ,3 ) ~,~ 1 . 8 m s a n d T ( 8, 3) ~ 3 . 8 m s . T h e c o n t r o l d e l a y

T (4 ,3 ) c o r r e s p o n d s t o 2 T o a n d T ~8 ,3 ) t o ~ -T o w i t h l e s s t h a n 5 % e r r o r. T h i s e r r o r c o u l d b e d u e t o e i t h e r t h e i n a c c u r a c y

o n t h e t im e c o n s t a n t T ( p r e c i s i o n o v e r R , L a n d C ) a n d o n r ( p r e c i s o n o n u c i n th e a n a l o g d e l a y l i n e R D 1 0 7 s e t u p ),

e i t h e r t h e m i s m a t c h b e t w e e n t h e e f f e c ti v e p e r i o d o f t h e s q u a r e - w a v e a n d o u r a p p r o x i m a t i o n T o ~ 2 ( r + T ) .T h e n u m b e r o f e x i s t in g h a r m o n i c s d e p e n d s o n t h e r a t io r / T : t h e g r e a t e r t h i s r a t io , t h e g r e a t e r t h e h a r m o n i c a n d

i s o m e r s n u m b e r . W e h a v e m e n t i o n e d a b o v e t h a t th e c o n t r o l w a s m a d e o n a L ~ a t tr a c to r . W e c a n a c c e s s i t b y a p p l y i n g

t h e c o n t r o l w i th a h i g h v a l u e o f K a n d a c o n t r o l d e l a y T ( m , n ) w i t h n = 3 , 5 , 7 . • • a n d m = 2 , 4 , 8 . - • t h a t r e s u l t s

i n " f i s s u r i n g " N P i n t o L ~ . I f w e p r o c e e d d i r e c t l y f r o m N p t h e c o n t r o l s i g n a l i s l a r g e a n d t h e e v e n t u a l r e s u l t i n g

p e r i o d i c o r b i t d o e s n o t c o r r e s p o n d a t a ll w i th e i t h e r o n e h a r m o n i c o r i s o m e r s o l u t i o n . T h i s c o u l d i n t r o d u c e n e w

p e r i o d i c s o l u t i o n s t h a t a r e o n l y r e l a t e d t o t h e c o n t r o l l e d s y s t e m s t a te e q u a t i o n s a s a l r e a d y m e n t i o n e d i n S e c t i o n 4 .1 .

6 Recalling that TO ~ 2( r + T) .

Page 18: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 18/21

144 P. Ce lka/P hys ica D 104 (1997) 127-147

i i l l I i i 1 1 1 . . . . I , , , , I , , , 1 ~ , , , , I . . . .i i l l l l l l l l l l l l l l l l l l l l l l l l l l l l l" - - I . . . . I . . . . I . . . . I . . . . I . . . . I . . . . I . . . .

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

t i m e t i m e

i i i L I . . . . [ . . . . I * , , * 1 . . . . I . . . . I . . . .

2 -

1.

0 .

-1 -

- 2 . . . . I . . . . 1 . . . . I . . . . I . . . . I . . . . I . . . .

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

t i m e

Fig. 11. Effect of additive Gaussian noise on the control trajectories for K = 0.05, T / T = L~_ and m = 3.2 with (a) SN R 4 0 d B ;(b) SNR = 30dB ; (c) SNR = 20dB .

F i g . 1 0 s h o w s s t a b l e p e r i o d i c o r b i ts t h a t a re n o t s t a n d a r d i s o m e r s . W e c a n c h e c k t h is b y c o m p a r i n g t h e s h a p e o f th ec h a o t i c a t t r a c t o r a n d t h o s e o f t h e s t a b i l i z e d o r b i t s .

4 . 3 . N o i s e i n f l u e n c e o n t h e c o n t r o l l a b i l i t y

W h i l e t h e e l e c t r o n i c s e t u p w e h a v e u s e d d o e s n o t i n t r o d u c e m u c h n o i s e , i n m a n y p r a c t i c a l s i t u a t i o n s ( b i o l o g y ,

m e c h a n i c s , c h e m i s t r y ) , n o i s e i s o f m a j o r i m p o r t a n c e . I n t h is s e c t i o n , w e e x a m i n e t h e i n f lu e n c e o f a d d it i v e G a u s s i a n

n o i s e n ( t ) o n t h e c o n t r o l l a b i li t y o f c h a o t i c t r a j ec t o r i es w i t h i n o u r c o n t i n u o u s - t i m e c o n t r o l s c h e m e . I n o r d e r t o a s s e ss

t h is i n f l u e n c e, w e h a v e m o n i t o r e d t h e c o n t r o l l e d t r aj e c to r i e s f o r v a r i o u s s i g n a l t o n o i s e r a ti o s ( S N R ) . 7 W e c a n n o t ,

o n t h e o r e t i c a l g r o u n d s , i n f e r a b o u t a d d i ti v e n o i s e i n f l u e n ce , a n d w e h a v e t h e r e f o r e a s s e s s e d i t b y u s i n g n u m e r i c a l

s i m u l a t i o n s . F i g . 1 1 d i s p l a y s b o t h t h e s t a t e x ( t ) a n d t h e b i a s e d c o n t r o l s i g n a l c ( t ) - l . 5 f o r c l a r it y p u r p o s e s .D e p e n d i n g o n d e f i n it i o n o f c o n t r o ll a b il i ty , w e o b s e r v e t h a t u p to S N R = 3 0 d B t h e r e s u l ti n g c o n t r o l l e d t ra j e c to r i e s

a r e s ti ll c l o s e t o th e n o i s e l e s s o n e s . B u t o b v i o u s l y , f o r S N R a p p r o x i m a t e l y s m a l l e r t h a n 2 0 d B , s t a b i l i z at i o n d o e s

n o t t a k e p l a c e. L o o k i n g a t t h e c o n t r o l s ig n a l c ( t ) w e o b s e r v e , a s m e n t i o n e d p r e v i o u s l y , th a t i t d o e s n o t g o t o z e r o

b u t r e m a i n s p e r i o d i c ( i n n o i s e f r e e e n v i r o n m e n t s ) . T h i s c l e a r l y e s t a b li s h e s e v i d e n c e o f th e f a c t t h a t o u r c o n t r o l le d

t r a je c t o r ie s a r e n o t U P O s o f t h e o r ig i n a l s y s t e m , w h i c h i n th a t c a s e s h o u l d r e s u l t i n c (t ) ---> 0 a s t --+ oo. W h e n

c o n s i d e r i n g t h e l a rg e f e e d b a c k g a i n s i t u a t i o n K = 1 , t h e c o n t r o l l e d o r b i t s h o u l d b e a s t a b l e e q u i l i b r i u m s t a te ( s e e

7 SNR = 10 l og (Px /Pn) , whe re Px is the power o f the state x (t) and Pn is the p ower of the additive noise n (t).

Page 19: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 19/21

P. Ce lka /P hys ic a D 104 (1997) 1 27-14 7 1 4 5

2

1

0

-1

- 2

- 3

- 4

1 .4

, , l E ] J , , , J J ~ J J I , r r t I r , l t

I I ' I L I I ' I ' ' ' r I ' ~ ' ' I ' ' ' r I

1 . 4 5 1 . 5 1 . 5 5 1 .6 1 . 6 5

t i m e

F i g . 1 2 . E f f e c t o f a d d i t i v e G a u s s i a n n o i s e o n t h e c o n t r o l t r a j e c t o r i e s f o r K = 1 , r / T L ~ _ a n d m = 3 2 w i t h S N R = 2 0 d B .

Fig . 4 ) , bu t in the p resence o f no ise , t he con t ro l resu l t s i n some w ay in the ex t rac t ion o f the no i se co m pon en t as

seen in Fig. 12.

5 . C o n c l u s i o n

W e h a v e a p p l i e d a c o n t i n u o u s - t i me c o n t r o l me t h o d t o a n i n f i n i t e - d i me n s i o n a l s y s t e m mo d e l e d b y a s e c o n d -

o r d e r n o n l i n e a r d e l a y - d i f f e r e n t i a l e q u a t io n ( D D E ) i n o r d e r t o s t a b il iz e t h e s y s t e m o n t o d i f f e r e n t s t a b le s o l u ti o n s . A

s mo o t h e d n o n l i n e a r t e n t ma p w a s i mp l e m e n t e d w i t h o p e r a t i o n a l a mp l i f i e r s in e l e c t ro n i c c i r cu i t, a n d e x p e r i m e n t a l

e v i d e n c e o f t h e e x i s te n c e o f d if f e r e n t s o l u ti o n s b e l o n g i n g t o d i f f e re n t b i f u r c a t io n b r a n c h e s h a s b e e n p e r f o r me d .

A d i s c r e t e - t i me a p p r o x i ma t i o n o f t h e D D E h a s l e d u s t o c o n s i d e r r e l a t i o n s h i p s b e t w e e n D D E a n d d i s c r e t e - t i me

q u a n t i t ie s a n d t o i n t r o d u c e g e n e r a l iz e d m e a n F l o q u e t mu l t i p l ie r s ( MFM s ) a n d me a n L y a p u n o v e x p o n e n t s ( ML E s )

f o r n o n l i n e a r d e l a y - d i f f e r e n t i a l ty p e e q u a t i o n s . W e w e r e a b l e t o c o n f i r m t h e v a l i d i t y o f t w o i n t r o d u c e d c o n j e c t u r e s

c o n c e r n i n g t h e c o n v e r g e n c e o f M FM a n d M L E t o th e i r d i s c r e te c o u n t e r p a r t s a n d t he e x i s te n c e o f a n o p t i ma l L P × L P

s e m i n o r m f o r t h is a p p r o x i ma t i o n . T h e s t a b i l it y r e g i o n s f o r c o n t r o ll e d 2 m- c y c l e s c o mp u t e d f r o m t h e d i sc r e t e m a p

h a v e p r o v e d a g a i n t o b e i n g o o d a g r e e m e n t w i t h e x p e r i m e n t a l l y me a s u r e d s t a b il i ty r e g i o n s f o r c o n t r o ll e d 2 m r -p e r i o d i c s o l u t io n s . Se v e r a l i s o me r s o f h a r mo n i c s o l u ti o n s h a v e b e e n s u c c e s s f u l l y c o n t ro l l e d w i t h o u r m e t h o d .

Co n t r o l l e d s o l u t i o n s w e r e n o t u n s t a b l e p e r i o d i c o r b i t s ( U PO s ) b u t r a t h e r s o me c l o s e l y r e l a t e d s t a b l e o r u n s t a b l e

per iod ic so lu t ions o f the o r ig ina l sys t em. In the case where the sys t em behaves in a chao t i c way , due to no i se , t he

e x p e r i m e n t a l c o n t r o l s ig n a l c ( t ) = K ( x ( t - T ( m , n ) ) - x ( 1 ) ) c o u l d n e v e r b e z e r o a n d t h e c o n t r o ll e d p e r i o d i c o r b i t s

a re l imi t ed to be as c lose as poss ib le to the o r ig ina l . A f i r st d raw bac k o f th i s con t ro l me thod i s t he imp oss ib i l i t y to

d e t e r mi n e i n a d v a n c e a p e r i o d i c o r i b i t t o w h i c h w e w a n t t h e c o n t ro l l e d s y s t e m t o g o , a n d a s e c o n d o n e i s t h e p o s s i b le

g e n e r a t i o n o f n e w s t a b le p e r i o d i c s o l u t i o n s t h a t a r e n e i th e r U PO s n o r c l o s e t o s t a b l e s o l u t io n s o f t h e u n c o n t r o l l e d

s y s t e m. Se v e r a l p r o p o s i t i o n s h a v e b e e n ma d e t o u s e D D E s f o r i n f o r m a t i o n s t o r a g e i n p e r i o d ic s o l u ti o n s [ 8 ,3 71 , b u t ,

Page 20: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 20/21

14 6 P. Ce l ka /P hys ica D 104 (1997) 12 7-147

d u e t o n o i s e c o n s i d e ra t i o n s, t h e d e v i c e m u s t b e u n d e r c o n t ro l . A s w e h a v e e m p h a s i z e d , t h is i m p l i e s t o c o n s i d e r n e w

s o l u t i o n s g e n e r a t e d b y t h e c o n t r o l l e d s y s t e m a n d t o t a k e in t o a c c o u n t t h e p r e v i o u s l y s t a t ed d r a w b a c k w h e n u s i n g

o u r c o n t r o l m e t h o d .

A c k n o w l e d g e m e n t s

T h e a u t h o r i s g r a t e f u l o f P r o f . M . O g o r z a l e k f o r m a n y f r u i t f u l d i s c u s s i o n s , a n d t o D r . J . - M . V e s i n f o r t h e s u g g e s t i o n s

a n d c o r r e c t i o n s i n t h e m a n u s c r i p t .

R e f e r e n c e s

[1 ] J . Mal le t -P are t and R.D. Nussbaum , G loba l con t inua t ion and asym pto t ic behav iour fo r pe r iod ic so lut ions o f a d i f fe ren t ia l -de lay

equa t ion , An . d i Mat . pura ed Appl . 145 (1986) 33 .

[2 ] S . -N. Chow and D. Green , So me Resu l ts on S ingu la r De lay-Diffe ren t ia l Equa t ions (K luwer Acad emic Publ ishers , Dordrech t, 1993).

[3[ J .D. Farmer, Ch aotic attractors of an infinite-d ime nsional dynam ical system, Physica D 4 (1982) 366 -393 .

[4 ] M .C. M ackey and L . Glass , Osc i l la t ion and chaos in phys io log ica l con tro l sys tems , Sc iences 197 (1977) 287-289 .[5 ] S . Lepri , G. Giacom ell i , A. Po l i t i and ET. A recch i , High-d imen s iona l chaos in de layed dynamica l sys tems , Phys ica D 70 (1993)

2 3 5 -2 4 9 .

[6] K. Ikeda, M ultiple -valu ed s tationary s tate and its instability of the transmitted light by a ring cavity system, Opt. Co m. 30 (1979)

2 5 7 -2 6 1 .

[7 ] K. Ikeda , K. K ondo and O . Akim oto , Success ive h igher-ha rmonic b ifu rca t ions in sys tems with de layed feedback , Phys . Rev . Let t .

49 (1982) 1467-1470.

[8 ] K. Ikeda and K. Matsumoto , High-d imens iona l chao t ic behav iour in sys tems with t ime-de layed feedback , Phys ica D 29 (1987)

2 2 3 -2 3 5 .

[9] T. Aid a and E D avis , Osc illa tion mo de selection using bifurcation of chaotic m ode transitions in a nonlinear ring-resonator, IE EE

J. Q. Electr. 30 (1994) 2986-2997.

[10] T . Aida , N. Otan i and E D avis , Dig i ta l implem enta t ion o f a non l inea r de layed-feedback sys tem, IEE E Trans . Circu i ts and Sys tems

Part 1 41 (1994) 238- 242 .

[1 l] A. Nam ajunas, K. Pyragas and A . Tamasevicius , Stabiliza tion of an unstable s teady-state in a mack ey-gla ss system, Phys. Lett. A

204 (1995) 255-262 .[ l 2 ] A. Namajunas , K. Pyragas and A. Tamasev ic ius , An e lec tron ic ana log o f the Ma ckey -Gla ss sys tem, Phys . Leu . A (1995) 42 -46 .

[13] EA. Hopf, D.L. Kaplan, H.M. Gibbs and R.L. Shoemaker, Bifurcations to chaos in optical bis tability, Phys. Rev. A 25 (1982)

2 1 7 2 -2 1 8 2 .

[14] M.W. Derstine, H.M. Gibbs, F.A. Hopf and D.L. Kaplan, Alternate paths to chaos in optical bis tability, Phys. Rev. A 27 (1983)

3 2 0 0 -3 2 0 8 .

[15] R C elka, Circuits optiq ues int6gr6s non lin6aires et applications, Ph.D. Thesis , S wiss Feder al Institute of Techno logy (1995).

[ l 6 ] J . Malle t -Pare t , Sur le th6or~me de d im ens ion f in ie d 'a t t rac teur p rovenan t d e sys tbmes de d im ens ions in f in ie, J . D iffe ren t ia l Equa t ions

22 (1976) 331.

[17] K . Ikeda and K. Matsum oto, Stud y of a high -dim ension al chaotic attractor, J . Statist. Phys. 44 (1986) 955 -983 .

[18] J . -R Eckm ann and D . Rue l le , Ergodic theory o f chaos and s t range at tracto rs , Rev . Mo dern Phys . 57 (1985) 61 7-656 .

[19] E. Ott, C. Greb ogi and J .A. Yorke, Co ntroll ing chaos, Phys. Rev. Lett. 64 (1990) 1196.

[20] G. Chen and X . Dong , Fro m chaos to o rde r-pe rspec t ives and metho dolog ies in con tro l l ing chao t ic non l inea r dynamica l sys tems , In t.

J . Bifu rc . Chaos 3 (1993) 1363-1409 .

[21 ] G. Chen and X. Do ng , On feedb ack con tro l o f chao t ic con t inuous - t ime sys tems , IEE E Trans . C ircu i ts and Sys tem s Par t 140 (1993)

5 9 1 -6 0 1 .

[22] W .L. Ditto, S.N. Rauseo and M .I. Spano, Ex perim ental control of chaos, Phys. Rev. Lett. 65 (1990) 32 11-32 14.

[23] K . Pyragas, Co ntinuo us control of chaos by self-cont rolling systems, Phys. Lett. A 170 (1992) 421-4 28.

[24] T. Kapitaniak, Sync hron ization of chaos using continuous contro l, Phys. Rev. E 50 (1994) 1642.

[25] M .J . Ogorza lek , Taming chaos : Pa r t I I -con tro l , IEEE Trans . Circu i ts and Sys tem s Par t 1 40 (1993) 7 00-706 .

[26] H. Dedieu and M.J . Ogorza lek , Con tro l l ing chaos in Chua ' s c i rcu i t v ia sampled inpu ts , In t . J . Bifu rc . and Chao s 4 (1993) 4 47-455 .

[27] E . Sch611 and K . Pyragas , Tunab le sem iconduc tor osc i l la to r based on se l f -con tro l o f chaos in the dyn amic a l l e ffec t , Europhys . Le t t.

24 (1993) 159-164.

[28] K. Pyragas and A . Tamasev ic ius , Experimenta l con tro l o f chaos by de layed se l f -con tro l l ing feedback , Phys . Le t t . A 180 (1993)

9 9 -1 0 2 .

Page 21: Delay-Differential Equation Versus 1D-Map

7/28/2019 Delay-Differential Equation Versus 1D-Map

http://slidepdf.com/reader/full/delay-differential-equation-versus-1d-map 21/21

P. Celka/Phvsica D 104 (1997) 127-147 14 7

[29] Y . L iu and J . Ohtsubo , Exper imen ta l con t ro l o f chao s in a l a se r -d iode in te r fe rom ete r wi th de layed feedb ack , Opt . Le t t. 19 (1994)

4 4 8 .

[301 J. Pa r i s i , R . Bad i i , E . B run , L . F lepp , C . R ey l , R . S toop , O .E . Ross le r , A . K i t t e l and R . R ich te r , Exp l ic i t r ea l i za t ion o f chaos con t ro l

i n a n n m r - l a s e r e x p e r i m e n t , J , P h y s . S c i . 4 8 ( 1 9 9 3 ) 6 2 7 .

I 31 1 R . G e n e s i o , M . B a s s o , M . S t a n g h i n i a n d A . T e si , L i m i t c y c le b i f u r c a t i o n a n a l y s is a n d i t s i m p l i c a ti o n f o r c o n t r o ll i n g c o m p l e x d y n a m i c s

i n a C O 2 l a se r , P r o c . N D E S ' 9 5 ( 1 9 9 5 ) 2 1 5 - 2 2 0 .

1321 A. Gavr ie l ides , P .M. Als ing , V . Kovan is and T . Erneu x , Con t ro l l ing chaos m ay induce new a t t r ac to r s in an op t ica l -dev ice , Opt . Com .

1 1 5 ( 1 9 9 5 ) 1 1 5 - 5 5 8 .

[ 33 ] A .T. R y a n , G .P. A g r a w a l , G .R . G r a y a n d E .E . G a g e , O p t i c a l - fe e d b a c k - i n d u c e d c h a o s a n d i t s c o n t r o l i n m u l t i m o d e s e m i c o n d u c t o r -

la se r s , IEEE J . Q . E lec t r . 30 (1994) 668-679 .

[341 EW. Schne ide r , R . B l i t t e r sdor f , A . Fors te r , T . Hauck , D . Lebender and J . Mul le r , Con t inuous con t ro l o f chemica l chaos by t ime-

de layed feedback , J . Phys . Chem. 97 (1993) 1244 .

[351 P . Ce lka , E xper im enta l ve r i f i ca t ion o f Pyra gas ' s cha os con t ro l m e thod app l ied to Chua ' s c i rcu i t , In t . J . B i fu rc . and Chao s 4 t 1994)

1 7 0 3 - 1 7 0 6 .

[361 P . Ce lka , Con t ro l o f t ime-de layed feedback sys tems wi th app l ica t ion to op t ic s , IEE In t . J . E lec t r . 79 (1995) 787-795 .

[ 37 ] B . M e n s o u r a n d A . L o n g t i n , C o n t r o l l i n g c h a o s t o s t o r e i n f o r m a t i o n in d e l a y - d i f f e re n t i a l e q u a t i o n s , P h y s . L e tt . A 2 0 5 ( I 9 9 5 ) 1 8 - 2 4 .

1381 M.D. B ar re t t , Co n t inuo us con t ro l o f chaos , Phy s ica D 91 (1996 ) 340--348 .

[391 J .E ,S . Soco la r , D .W. Sukow and D.J . Gau th ie r , S tab i l i z ing uns tab le uns tab le pe r iod ic o rb i t s in l a s t dynamica l sys tems , Phys . Rev . E

5 0 ( 1 9 9 4 ) 3 2 4 5 - 3 2 4 8 .

[40] M . Ding , W. Yang , V . In , W.L . Di t to , M.L . Span o and B . Gluckm an , Co nt ro l l ing chaos in h igh d ime ns ion s : Theo ry and exper ime nt ,

P h y s . R e v. E 5 3 ( 1 9 9 6 ) 4 3 3 4 - 4 3 4 4 .[41 ] V . Pet rov , E . Mif ia l iuk , S .K. Sco t t and K. S howal te r , S tab i l i z ing and charac te r iz ing uns tab le s ta tes in h igh-d im ens ion a l sys tems f rom

t ime se r ies , Phys . Rev . E 51 (1995) 3988-3996 ,

[42] A . Bab lo yan tz , C . Louren ~o and J .A . Sep u lchre , Con t ro l o f chao s in de lay d i f fe ren t ia l equa t ions , in a ne two rk o f osc i l l a to r s and in

mode l co r tex , Phys ica D 86 (1995) 274- -283 .

[43] A . Ki t t e l, J. Pa r i s i and K. Pyragas , De la yed feed back con t ro l o f chaos by se l f -adap ted de lay t ime , Phys . Le t t . A 198 (1995) 433-4 36 .

[44] M .E . B le ich and J .E .S . Soco la r , S tab i l i ty o f pe r iod ic o rb i t s con t ro l l ed by t ime-d e lay feedback , Phys . Le t t . A 210 (1996) 87-9 4 .

[ 45 ] Y u .L . M a i s t r e n k o , A .N . S h a r k o v s k y a n d E .Y u . R o m a n e n k o , D i f f e r e n c e E q u a t i o n s a n d t h e i r A p p l i c a t i o n s ( K l u w e r A c a d e m i c

Publ i she rs , Dordrech t , 1993).

[461 T . Yosh ida , H . Mo r i and H. Sh ig ema tsu , Ana ly t ic s tudy o f chaos o f the t en t map : Ba nd s t ruc tu re , power spec t ra and c r i ti ca l behav io rs ,

J . S ta t is t . Phys . 31 (198 3) 279 .

[ 47 1 I . G u m o v s k i a n d C . M i r a , D y n a m i q u e C h a o t i q u e ( C a m b r i d g e U n i v e r s i t y P r e s s, C a m b r i d g e , 1 9 90 ),

1481 P. Ce lka , A s imple w ay to com pute the ex i s tenc e reg ion o f I D chao t ic a t t r ac to r s in 2D-m aps , Ph ys ica D 90 (199 6) 235 -241 .