6
Great Barrier Reef Marine Park sedimentology revealed issue 84 Dec 2006 Great Barrier Reef Marine Park sedimentology revealed New research into inter-reefal environments will assist reef managers Emma Mathews and Andrew Heap Geoscience Australia has completed a detailed spatial analysis of seabed environments in the Great Barrier Reef (GBR) Marine Park. e analysis was based on a new dataset of more than 3000 samples, which is accessible online from Geoscience Australia’s marine samples database. e results, to be published later this year (Mathews & Heap 2006), represent the first regional assessment of postglacial sediments across the entire GBR since Maxwell’s pioneering work in 1968, and provide the first quantified comparisons in a spatial framework. e information can be used by managers and planners to make better decisions in Australia’s highest profile World Heritage Area. Spatial study A quantitative spatial study of the seabed sediments comprising inter-reefal environments gives important clues about the sources of sediment, their relative influence on GBR ecosystems, and sediment distribution by hydrological processes. e study also contributes to our understanding of the evolution during the past 18 000 years of the northeast Australian margin, the largest tropical mixed siliciclastic– carbonate margin on Earth and the modern type case used to compare ancient rocks from similar environments elsewhere on the Earth. Inter-reefal environments cover 327 950 square kilometres or 95% of the total area of the GBR Marine Park but are much less studied than the reefs. ey form a connected network of habitats that support a wide range of biological communities in addition to the reefs (Chin 2003). Spatial changes in the composition and texture of seabed sediments help to characterise the benthic environments covered by the existing GBR Marine Park planning scheme. Figure 1. Location of samples collected within the Great Barrier Reef Marine Park.

Dec Great Barrier Reef Marine Park sedimentology revealed · Great Barrier Reef Marine Park sedimentology revealed issue 84 Dec 2006 The distribution of these two major components

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dec Great Barrier Reef Marine Park sedimentology revealed · Great Barrier Reef Marine Park sedimentology revealed issue 84 Dec 2006 The distribution of these two major components

Great Barrier Reef Marine Park sedimentology revealed �

issue 84 Dec 2006

GreatBarrier Reef Marine Park sedimentology revealedNew research into inter-reefal environments will assist reef managersEmma Mathews and Andrew Heap

GeoscienceAustraliahascompletedadetailedspatialanalysisofseabedenvironmentsintheGreatBarrierReef(GBR)MarinePark.Theanalysiswasbasedonanewdatasetofmorethan3000samples,whichisaccessibleonlinefromGeoscienceAustralia’smarinesamplesdatabase.

Theresults,tobepublishedlaterthisyear(Mathews&Heap2006),representthefirstregionalassessmentofpostglacialsedimentsacrosstheentireGBRsinceMaxwell’spioneeringworkin1968,andprovidethefirstquantifiedcomparisonsinaspatialframework.TheinformationcanbeusedbymanagersandplannerstomakebetterdecisionsinAustralia’shighestprofileWorldHeritageArea.

Spatial studyAquantitativespatialstudyoftheseabedsedimentscomprisinginter-reefalenvironmentsgivesimportantcluesaboutthesourcesofsediment,theirrelativeinfluenceonGBRecosystems,andsedimentdistributionbyhydrologicalprocesses.

Thestudyalsocontributestoourunderstandingoftheevolutionduringthepast18000yearsofthenortheastAustralianmargin,thelargesttropicalmixedsiliciclastic–carbonatemarginonEarthandthemoderntypecaseusedtocompareancientrocksfromsimilarenvironmentselsewhereontheEarth.

Inter-reefalenvironmentscover327950squarekilometresor95%ofthetotalareaoftheGBRMarineParkbutaremuchlessstudiedthanthereefs.Theyformaconnectednetworkofhabitatsthatsupportawiderangeofbiologicalcommunitiesinadditiontothereefs(Chin2003).SpatialchangesinthecompositionandtextureofseabedsedimentshelptocharacterisethebenthicenvironmentscoveredbytheexistingGBRMarineParkplanningscheme.

Figure 1. LocationofsamplescollectedwithintheGreatBarrierReefMarinePark.

Page 2: Dec Great Barrier Reef Marine Park sedimentology revealed · Great Barrier Reef Marine Park sedimentology revealed issue 84 Dec 2006 The distribution of these two major components

Great Barrier Reef Marine Park sedimentology revealed �

issue 84 Dec 2006

Largest sediment databaseThestudyisbasedonmorethan3000surfacesedimentsamplescollectedintheGBRMarineParksince1984andrepresentsthelargestsedimentdatabaseassembledforanypartoftheshallowtropicalAustralianshelf(figure1).Nearlyhalfofthesampleswerecollectedbetween2003and2005bysixregionalsurveysconductedbytheAustralianInstituteofMarineScienceandCSIROfortheGBRSeabedBiodiversityProject,aprogramrunbytheReefCRCinTownsville.GeoscienceAustralia’scontributiontothisprogramwastoproduceaquantitativeregionalsynthesisoftheseabedsedimentologyfromasystematicanalysisofthetextureandcompositionofthesamples.ThenewdataarepartofafundamentalnationalmarinedatasetmaintainedbyGeoscienceAustralia.

Regional sedimentologyPreviousworkfromtheGBRshowsthatpostglacialsedimentsareessentiallymadeupofamixtureofcalciumcarbonatefromtheskeletalremainsofmarineorganisms(molluscs,foraminifers,coralsandalgae)andsiliciclasticsedimentsmainlyderivedfromsourcesonland(Maxwell1968,1969;Maxwell&Swinchatt1970;Flood&Orme1988).

Table 1 Calculatedareaof%sedimentconcentrationsintheGreatBarrierReefMarinePark

Sediment attribute km2 Per centGravel %

0–20 196,050 56.820–40 23,100 6.740–60 8,400 2.460–80 3,000 0.980–100 2,500 0.7Sum: 233,000 67.5No data: 112,150 32.5

Sand %0–20 10,140 2.920–40 24,940 7.240–60 57,010 16.560–80 81,370 23.680–100 59,560 17.3Sum: 233,010 67.5No data: 112,170 32.5

Mud %0–20 120,190 34.820–40 59,050 17.140–60 33,640 9.860–80 14,400 4.1780–100 5,730 1.7Sum: 233,020 67.5No data: 112,160 32.5

Bulk carbonate %0–20 14,580 4.220–40 28,680 8.340–60 43,310 12.660–80 66,170 19.280–100 86,560 25.9Sum: 239,300 69.3No data: 105,880 30.7

Carbonate sand %0–20 15,720 4.620–40 20,960 6.140–60 29,160 8.560–80 41,230 11.980–100 99,880 29.0Sum: 206,960 60.0No data: 138,220 40.0

Carbonate mud %0–20 16,800 4.920–40 34,870 10.140–60 36,130 10.560–80 39,400 11.480–100 50,660 14.7Sum: 177,870 51.5No data: 167,310 48.5

Marine Park total 345,180 100.0

*Calculations weremadeusingAlbersEqualAreaProjection.

Page 3: Dec Great Barrier Reef Marine Park sedimentology revealed · Great Barrier Reef Marine Park sedimentology revealed issue 84 Dec 2006 The distribution of these two major components

Great Barrier Reef Marine Park sedimentology revealed �

issue 84 Dec 2006

Thedistributionofthesetwomajorcomponentsshowsacross-shelfvariationwhereinthesiliciclasticsedimentsarerestrictedtotheinnershelfregionsclosetothecoast,andthecarbonatesedimentsaredominantonthemiddleandoutershelves(Belperio,1983).

This‘model’providedausefulregionalframeworkforthecurrentstudy,whichaddsessentialdetailbycharacterisingthegrainsizeofthebulksedimentandquantifyingtheareasofshelfcomprisingdifferentproportionsofgravel(>2mm),sand(63µm–2mm),andmud(<63µm)inboththebulkandcarbonatefractions.Theresultisourmostup-to-daterepresentationofpostglacialsedimentsforthismargin.

Key findingsTheGBRMarineParkisgenerallygravel-poor,withsedimentscomprisinglessthan20%gravelcovering196050squarekilometresormorethan56%ofthetotalmarineparkarea(figure2;table1).Relativelyhighgravelconcentrations(morethan40%)coveranareaof13900squarekilometres(4%oftotalarea),andarerestrictedtoafewareasnexttotheouter-shelfreefsandinBroadSoundontheinnershelf.

MostofthesedimentintheGBRMarineParkiscomposedofsand,withconcentrationsofmorethan60%covering140900squarekilometresofthemarinepark,ormorethan40%ofthetotalarea(figure3;table1).Sandconcentrationsshowveryhighspatialvariabilityacrossthemarinepark(muchhigherthanpreviouslyreported)andaregenerallyhigherontheoutershelfandinthesouth.Thishighdegreeofspatialvariabilityisalsoafeatureofthecarbonateconcentrationsandprincipallyreflectstheinsituproductionofcarbonatebymarineorganisms.

AcrosstheentireGBRMarinePark,mudconcentrationsabove60%cover20150squarekilometres(6%)ofthemarinepark(figure4;table1).NorthofTownsville,mudcomprisesarelativelysmallamountofthemiddleandoutershelfsediments,withhighestconcentrationsreaching40%ontheinnershelf.SouthofTownsville,similarmudconcentrationsoccuronlyonthemiddleshelf,andextendintotheCapricornChannel.

Carbonateisthedominantsedimenttype,withconcentrationsabove60%covering152700squarekilometres(45%)ofthemarinepark(figure5;table1).Concentrationsincreasefrommorethan20%nearthecoasttomorethan80%onthemiddleandoutershelves.Concentrationsoflessthan20%occurinembaymentsnorthof

Figure 2. Mapofthe%gravelweightconcentrationinsediment.

Page 4: Dec Great Barrier Reef Marine Park sedimentology revealed · Great Barrier Reef Marine Park sedimentology revealed issue 84 Dec 2006 The distribution of these two major components

Great Barrier Reef Marine Park sedimentology revealed �

issue 84 Dec 2006

theBurdekin,Pioneer,andFitzroyrivers,whichcurrentlydeliverthehighestquantitiesofsiliciclasticsedimenttotheinnershelf,andonthesouthernborderofthemarineparkwheresiliciclasticsandsaretransportednorthintotheparkfromFraserIslandandHerveyBay.

AclassificationofsedimenttypeshasrevealedthattheMarineParkisdominatedbygravelly,muddysand,whichcovers53350squarekilometresor16%ofthemarinepark.Othercommonsedimenttypesincludegravellysandandslightlygravelly,muddysands,whichcover48830squarekilometres(15%)and46650squarekilometres(14%),respectively.Themostscarcesedimenttypesincludethegravelsandmuds,withmuddygravelcovering600squarekilometres

andslightlygravellymudcovering1100squarekilometres;bothmakeuplessthan1%ofthetotalmarineparkarea.

ThisnewstudyaddsconsiderablymoredetailtothemodelofpostglacialsedimentologyforthenortheastAustralianmargin,specificallyaboutspatialvariabilityinthedistributionsofthesedimentfractions.Whilethereisageneralincreaseinthecarbonatecontentandadecreaseinsiliciclasticcontentacrosstheshelf,asshownbypreviousstudies,ourresultsshowthattheseacross-shelfdistributionsarecomplexanddonotholdforallpartsofthemargin.Overall,thetextureandcompositionofpostglacialsedimentsshowstrongcorrelationswiththedominantsedimentsources,withoverprintingbyhydrodynamicprocesses.

Applications for managementThespatialanalysisofseabedsedimentintheGBRrevealsinformationaboutthetextureandcompositionofinter-reefalseabedhabitatsandtheirvariability.TheGBRMarineParkisauniquenaturalenvironmentofnationalandinternationalsignificance,anditsmanagersrequiredetailedmappingtofullyunderstandthenatureoftheseabedanditshabitats.Ourquantitativespatialanalysisoftheseabedsedimenttextureandcomposition,andtheassociateddistribution

“ThisnewstudyaddsconsiderablymoredetailtothemodelofpostglacialsedimentologyforthenortheastAustralianmargin”

Figure 3. Mapofthe%sandconcentrationinsediment.

Page 5: Dec Great Barrier Reef Marine Park sedimentology revealed · Great Barrier Reef Marine Park sedimentology revealed issue 84 Dec 2006 The distribution of these two major components

Great Barrier Reef Marine Park sedimentology revealed �

issue 84 Dec 2006

patterns,givesasystematicseabedclassification.ThesedataprovidethebestpossiblespatialinformationformarineparkmanagerstomakeinformeddecisionsandquantitativecomparisonsbetweenareasofdifferenthabitattypesinAustralia’shighestprofileWorldHeritageArea.

AssembledseabedsedimentinformationprovidesaconsistentandrobustdatasetthatcanbeusedtohelpcharacterisethedifferentmanagementzonesmakinguptheGBRMarinePark.Overall,seabedsedimentsrangefromgravel-poorwithlocalisedhighgravel

concentrations,tosedimentswithhighsandandcarbonateconcentrations,andhighmudwithlowcarbonateconcentrations.Together,thisvariabilityinsurfacesedimentsshowsthepotentialrangeofinter-reefalseabedhabitatsandtheirphysicalcharacteristics.Seagrassmeadows,mudandsandflats,andgravelandshoalbottomsarejustsomeoftheinter-reefhabitatsalreadyidentified.

ThecollectionandmappingofseabedsedimentsampleshasbeenundertakenaspartoftheGBRSeabedBiodiversityProject,whichaimstoformaninventoryoftheseabed’scharacteristics,suchassedimenttypesandfishandinvertebrateassemblages(Pitcheretal2002).SeabedsedimentdatawillbeaddedtoexistingregionalmapsoftheGBRMarineParkandwillprovidemoredetailtohelpmanagersconservesignificanthabitatsandbiologicalcommunities.Inareaswherebiologicalinformationisnotavailable,‘proxies’suchasseabedsedimentscanhelpdeterminetherelationshipbetweenphysicalenvironmentsandbiologytopredictbiodiversity.

Themainadvantageofusingsedimentdataisthattheycanbedeterminedacrossbroadregions,eveninareasthatlackbiologicaldata.OurquantitativespatialinformationaboutseabedsedimentsprovidesaplanningandmanagementframeworkfromwhichtoassessnewplanningproposalsintheGBRMarinePark,andtomonitor

“OurquantitativespatialinformationaboutseabedsedimentsprovidesaplanningandmanagementframeworkfromwhichtoassessnewplanningproposalsintheGBRMarinePark,andtomonitorhabitats”

Figure 4. Mapofthe%mudconcentrationinsediment.

Page 6: Dec Great Barrier Reef Marine Park sedimentology revealed · Great Barrier Reef Marine Park sedimentology revealed issue 84 Dec 2006 The distribution of these two major components

Great Barrier Reef Marine Park sedimentology revealed �

issue 84 Dec 2006

habitats.Thisapproachwillimprovemarineparkmanagementanddecisionmaking.Furtherwork,investigatingthelinksbetweensediments,habitatsandmarinebiotaingeneral,isnecessaryfortheconservationandappropriatefuturemanagementofinter-reefalareasinthepark.

ThenextstageofGeoscienceAustralia’sworkwillbetocharacteriseandquantifythespatialvariabilityofsedimentswithintheframeworkofthecurrentGBRplanningscheme.Byrevealingthetextureandcompositionofdifferentmanagementzones,weprovidevitalbaselineinformationthatcanbeusedtomonitorpotentialchangestoseabedhabitatsandbiologicalcommunities.

Related websiteGeoscienceAustralia’smarinesamplesdatabasewww.ga.gov.au/oracle/mars

link

For more information

phone EmmaMathewson+61262499295

email [email protected]

ReferencesBelperioAP.1983.TerrigenoussedimentationinthecentralGreatBarrierReeflagoon:amodelfromtheBurdekinregion.BMRJournalofAustralianGeologyandGeophysics8:179–190.ChinA.2003.Inter-reefalandlagoonalbenthos.StateoftheGreatBarrierReefOn-line,GreatBarrierReefMarineParkAuthority,www.gbrmpa.gov.au/corp_site/info_services/publications/sotr/benthos/index.html(viewed28June2006).FloodPG&OrmeGR.1988.Mixedsiliciclastic/carbonatesedimentsofthenorthernGreatBarrierReefprovince,Australia.InDoyleLJ&RobertsHH(eds),Carbonate–clastictransitions,Elsevier,Amsterdam.MathewsEJ&HeapAD.2006.Sedimentologyandgeomorphologyofinter-reefalseabedenvironmentsoftheGreatBarrierReef,northeastAustralia.GeoscienceAustraliaRecord.MaxwellWGH.1968.AtlasoftheGreatBarrierReef,Elsevier,Amsterdam.MaxwellWGH.1969.ThestructureanddevelopmentoftheGreatBarrierReef.In:StratigraphyandPalaeontology:EssaysinHonourofDorothyHill,AustralianNationalUniversityPress.MaxwellWGH&SwinchattJP.1970.GreatBarrierReef:regionalvariationinaterrigenous–carbonateprovince.GeologicalSocietyofAmericaBulletin81:691–724.PitcherCR,VenablesW,EllisN,McLeodI,PantusF,AustinM,CappoM,DohertyP&GribbleN.2002.GreatBarrierReefSeabedBiodiversityMappingProject:Phase1,ReporttoCRCReef,CSIROMarineResearch.

Figure 5. Mapofthe%bulkcarbonateconcentrationinsediment.