29
DE NOVO SYNTHESIS OF FATTY ACIDS Floro B. Madarcos, MD Dept. of Biochemistry URMMMC College of Medicine

De Novo Synthesis of Fatty Acids

Embed Size (px)

DESCRIPTION

biochem

Citation preview

Page 1: De Novo Synthesis of Fatty Acids

DE NOVO SYNTHESISOF

FATTY ACIDSFloro B. Madarcos, MDDept. of Biochemistry

URMMMC College of Medicine

Page 2: De Novo Synthesis of Fatty Acids

OBJECTIVES At the end of the lecture, the

student should be able to discuss de novo synthesis of fatty acids in terms of: Definition of the pathway Sites – organs and intracellular Reaction steps and regulation Role of fatty acid multienzyme

complex End product

Modifications and examples Sources of NADPH2

Page 3: De Novo Synthesis of Fatty Acids

DE NOVO SYNTHESIS OFFATTY ACIDS

I.Definition

The process of combining eight 2-carbonfragments (acetyl groups from acetyl CoA) fo form a 16-carbon saturated

fatty acid palmitate.

Page 4: De Novo Synthesis of Fatty Acids

DE NOVO SYNTHESIS OFFATTY ACIDS

II. Cellular Location

Cytoplasm

Page 5: De Novo Synthesis of Fatty Acids

DE NOVO SYNTHESIS OFFATTY ACIDS

III. Sites A. Main – liver and adipocytesB. Other Sites

Nervous system Special tissues under specific conditions, such as the mammary glands during lactation

Page 6: De Novo Synthesis of Fatty Acids

HCO3- + ATP

Citrate lyase

Pyruvate

OxaloacetatePi + ADP

Pyruvatecarboxylase

(biotin)Acetyl-CoA

HS-CoA + NAD

CO2 + NADPH

Pyruvatedehydrogenase

complex

CitrateHS-CoA

Mitochondrial Matrix

H+

CitrateAnion

(Malate, Pyruvate or Pi)

Cytosol

Malate

Oxaloacetate

NAD+

NADH + H+

Malatedehydrogenase

Acetyl CoA

HS-CoA

Pi + ADP

ATP

PyruvateMalic enzyme

NADPH2NADP

IV. REACTIONS OF DE NOVO SYNTHESIS OF FATTY ACIDS

First Step: Production of Cytosolic Acetyl CoA by the Citrate Transport System

Citrate synthase

Pt

To FA Synthesis

CO2

Page 7: De Novo Synthesis of Fatty Acids

IV. REACTIONS OF DE NOVO SYNTHESIS OF FATTY ACIDS

B. Second Step: Carboxylation of Acetyl CoA to Malonyl CoA

O ||CH3 – C – S – CoA

ACETYL CoA

ATP

ADP + Pi

O O \ || C – CH2 – C – S – CoA //O MALONYL CoA

Acetyl CoA carboxylase(Biotin)

HCO3-

(CO2)

CitrateInsulinHigh CHOLow FatHigh Prot. +

Malonyl CoAPalmitoyl CoAEpinephrineGlucagonHigh FatFasting

- H2O

Mn+2BiotinRegulation1. Short Term Covalent Allosteric2. Long Term

Page 8: De Novo Synthesis of Fatty Acids

V. FATTY ACID SYNTHASE MULTIENZYME COMPLEX

β-KETO-ACYL

SYNTHASE

ACETYLTRANS ACY-LASE

MALONYLTRANSACYLLASE

HYDRATASE ENOYL

REDUCTASEβ-KETOACYL

REDUCTASE

ACPTHIO

ESTERASE

THIOESTERASE

KETOACYL

REDUCTASE ENOYL REDUCTASE

HYDRATASE

MALONYLTRANSACYLLASE

ACETYLTRANS ACY-LASE

β-KETO-ACYL

SYNTHASE

4-PHOSPHO-PANTETHEINE

SH

CYS

SUBUNITDIVISION

FUNCTIONAL

UNIT

CYS

SH

SH

ACP

SH

4-PHOSPHO-PANTETHEINE

Pantothenic acid

1

2

Page 9: De Novo Synthesis of Fatty Acids

REACTIONS OF FATTY ACIDSYNTHASE

Page 10: De Novo Synthesis of Fatty Acids

CYS–SH

ACP–SH

O ||CH3 – C – S – CoA Acetyl CoA

1Acetyl CoA trans-

acylase

CYS–SH O ||ACP–S – C – CH3

Acetyl-S-ACP

0 ||CYS–S-C-CH3 ACP–SH2

0 ||CYS–S-C-CH3

O O || |ACP–S-C-CH2-C |

O O|| ||C-CH2-C-S-CoA|O

Malonyl CoA

3Malonyl trans

acylase Malonyl-S-ACP

CO2

CYS–SH O O || ||ACP–S – C – CH2 – C – CH3

Acetoacetyl – S - ACP

CYS–SH O || H OH ACP–S – C – C – C – CH3

H Hβ- KetohydroxyButyryl –S-ACP

4

5

NADPH+ + H+NADP+

β-KetoacylACP-synthase

β-KetoacylACP-reductase

CYS–SH O || ACP–S – C – CH = CH – CH3

Crotonyl – S - ACP

H2O

β- HydroxylACP-dehydratase

6

NADPH+ + H+

NADP+

7 Enoyl ACP-reductase

ACP– SH

ACP– S-C-CH2

O ||

CYS– S – C - CH2 – CH2 – CH3

O ||

CYS– S – C - CH2 – CH2 – CH3

O O || || C-CH2-C-S-CoA |O

Malonyl CoA

9

O||-C|

O

CYS–SH O || ACP–S – C – CH2 – CH2 – CH3

Butyryl–S-ACP4-Carbon Sat.

Fatty Acyl-ACP CYS–SH O O || ||ACP–S – C – CH2 – C – CH2 – CH2 - CH3

CO2

10

CYS–SH O || ACP–S – C – CH2 – CH2 – CH2 – CH2 - CH3

NADPH+ + H+NADP+NADP+

NADPH+ + H+ H2O

567

CYS–SHACP–S-Palmitate

CYS–SHACP–SHPalmitoyl

thioesteraseRepeat steps

(2) - (7)5x more

6-Carbon sat.Fatty Acyl-ACP 16-Carbon sat.

FA (Palmitoyl ACP) + Palmitate (C16)

VI. REACTIONS OF FATTY ACID SYNTHASE

Butyryl– S-ACP

8

O

CoA1 2

321

12

12 3

124 3

12

12

VI. SYNTHESIS OF PALMITATE (Lippincott’s Biochem, 4TH ed.)

FA synthase

124 36 5

12345

6

Keto group at β-

carbon

α

H2O

Page 11: De Novo Synthesis of Fatty Acids

STRUCTURE OF PALMITATE (16:0)

O

β α ||CH3–CH2–CH2–CH2–CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-C-O16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Carboxyl endMethyl end

Acetyl CoA

Malonyl CoA

(16 carbons; no double bond)

Page 12: De Novo Synthesis of Fatty Acids

VII. SOURCES OF NADPH2 FOR FATTY ACID

SYNTHESISPentose Phosphate Pathway

(HMP)Cytosolic conversion of malate to

pyruvateExtramitochondrial isocitrate

dehydrogenase - ruminants

Page 13: De Novo Synthesis of Fatty Acids

6 - Phosphogluconate dehydrogenase

NON-OXIDATIVE

STAGE

Glucose 6 – phosphate

6 – phosphogluconate

6 – phosphogluconolactone

Ribulose 5 – phosphate

Ribose 5 – phosphate Xylulose 5 – phosphate

Glyceraldehyde 3 – phosphate

Seduloheptulose 7– phosphate

Fructose 6 – phosphate

Erythrose 4 – phosphate

Fructose 6 – phosphate

Glyceraldehyde 3 – phosphate

GLYCOLYSIS

G6P dehydrogenase

Gluconolactone hydrolase

Transketolase

Transketolase

Transaldolase

OXIDATIVE STAGE

NAPD

NADPH + H

H2O

H+

NAPDNADPH + H

CO2

VIII. PENTOSE PHOSPHATE PATHWAY AS A SOURCE OF NADPH2

Page 14: De Novo Synthesis of Fatty Acids

HCO3- + ATP

Mitochondrial Matrix

Acetyl CoA

IX. CYTOSOLIC CONVERSION OF MALATE TO PYRUVATE AS A SOURCE OF NADPH2

Citrate lyase

Pyruvate

OxaloacetatePi + ADP

Pyruvatecarboxylase Acetyl-CoA

HS-CoA + NAD

CO2 + NADPH

Pyruvatedehydrogenase

complex

CitrateHS-CoA

H+

CitrateAnion

(Malate, Pyruvate or Pi)

Cytosol

Malate

Oxaloacetate

NAD+

NADH + H+

Malatedehydrogenase

HS-CoA

Pi + ADP

ATP

PyruvateMalate dehydrogenase

(malic enzyme)

NADPH2NADP+

Citrate synthase

Pt

To FA Synthesis

CO2

Page 15: De Novo Synthesis of Fatty Acids

O-

IC – C – CH2 - IIO

O-

IC IIO

OII

O-

IC – C – CH2 - IIO

O-

IC IIO

OH II

IH

O-

IC – C - IIO

OIIC ICH3

Cytosolic NADH-dependentmalate dehydrogenase

NADH + H+ NAD+

NADP+-dependentmalate dehydrogenase

(malic enzyme)

NADP+

NADPH + H+

CO2

Oxaloacetate

Pyruvate

Malate

CYTOSOLIC CONVERSION OF MALATE TO PYRUVATE AS A SOURCE OF NADPH2

Glyceraldehyde 3-PO4

dehydrogenase reaction(glcolysis)

Reductive synthesis

of FAs, steroids,

sterols

Page 16: De Novo Synthesis of Fatty Acids

X. BALANCE SHEET FOR THE CONVERSION OF ACETYL CoA

TO PALMITATE

8Acetyl CoA + 7Malonyl CoA + 14NADPH

+ 14H+

1Palmitate + 7CO2 + 8CoA + 14NADP+ + 6H2O

Page 17: De Novo Synthesis of Fatty Acids

XI. PAMITATE MODIFICATION

Chain Elongation Desaturation Hydroxylation

Page 18: De Novo Synthesis of Fatty Acids

XII. PAMITATE MODIFICATION

Sites ER – Malonyl CoA/ NADPH/

Palmitoyl CoA Mitochodrion – Acetyl CoA,

NAD & NADPH

Page 19: De Novo Synthesis of Fatty Acids

XIII. FATTY ACID CHAIN ELONGATION

IN THE ENDOPLASMIC RETICULUMPALMITOYL CoA

β-KETOACID

MALONYL CoA

REDUCTION(similar to de novo

pathway)

SATURATED FA 26 CARBONS (even numbers)

NADPH

Page 20: De Novo Synthesis of Fatty Acids

XIV. FATTY ACID ELONGATION IN THE MITOCHONDRION

O ||

R – CH2 – C – SCoA (Fatty acyl CoA)

O O | | ||R – CH2 – C – CH2 – C – SCoA

O ||CH3 – C – SCoA

CoASH β-ketothiolase

OH O | ||R – CH2 – CH – CH2 – C – SCoA

β-hydroxyacyl CoAdehydrogenase

NADH + H+

NAD+

O ||R – CH2 – CH = CH – C – SCoA

Enoyl CoAhydratase

H2O

O ||R – CH2 – CH2 – CH2 – C – SCoA

NADP+

NADPH + H+ Enoyl CoAreductase

Acetyl CoA

Fig. 17.12, p. 685, Devlin’s Textbook of Biochemistry, 7th ed.

Page 21: De Novo Synthesis of Fatty Acids

XV. FATTY ACID DESATURATION

SAT. FATTY ACID

UNSAT. FATTY ACID(monoenoic fatty acid)

Cytochrome b5

NADPH-cytochrome b5 reductase

O2 Δ9

UNSAT. FATTY ACID

UNSAT. FATTY ACID(with more = bonds)

Δ4Δ5Δ6

Fatty acid desaturase

Cytochrome b5

NADPH-cytochrome b5 reductase

O2

Page 22: De Novo Synthesis of Fatty Acids

XVI. FATTY ACID DESATURATION- EXAMPLES

16:0 (Sat. FA Palmitic acid)

18:0 (Sat. FAStearic acid )

18:2Δ9,12

(Dienoic FA)

16:Δ9 (Unsat. FAPalmitoleic acid)

18:3Δ6,9,12

(Trienoic FA)18:1Δ9 (Unsat. FA

Oleic acid)

Δ9(Stearoyl-CoAdesaturase)

Δ6

ω-7 ω-6ω-9

A B C

Δ9(Stearoyl-CoAdesaturase)

Page 23: De Novo Synthesis of Fatty Acids

XVII. EXAMPLE OF FATTY ACID DESATURATION

O ||

CH3–CH2–CH2–CH2–CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-C-O16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

O

||

CH3–CH2–CH2–CH2–CH2-CH2-CH = CH- CH2-CH2-CH2-CH2-CH2-CH2-CH2-C-O16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Palmitate (C16:0); saturatedO2

2 H2O

∆9 desaturase

NADH + H+

NAD+

Palmitoleic acid (16:∆9); monounsaturated; monoenoicomega-7

Page 24: De Novo Synthesis of Fatty Acids

XVIII. ANOTHER EXAMPLE OF FATTY ACID DESATURATION

O ||

CH3-CH2-CH2- CH2- CH2- CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-C-O18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

O

||

CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH= CH- CH2-CH2-CH2-CH2-CH2-CH2-CH2-C-O18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Stearic acid (C18:0); saturatedO2

2 H2O

∆9 desaturase

NADH + H+

NAD+

Oleic acid (18:∆9); monounsaturated; monoenoicomega-9

Page 25: De Novo Synthesis of Fatty Acids

XIX. EXAMPLE OF FATTY ACID ELONGATION AND DESATURATION

O

||CH3–CH2- CH2- CH2–CH2–CH = CH-CH2-CH = CH-CH2-CH2-CH2-CH2-CH2-CH2-CH2-C-S-CoA18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

O2

2 H2O∆6 desaturase

Linoleoyl CoA (18: 2∆9,12); dienoic

NADH+ + H+

NAD+

O

||CH3–CH2- CH2- CH2–CH2–CH = CH-CH2-CH = CH-CH2-CH = CH-CH2-CH2-CH2-CH2-C-S-CoA18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

γ-Linolenoyl CoA (18: 3∆6,9,12); trienoicMalonyl CoA

CO2 + HS-CoA

Elongase

O

||CH3-CH2-CH2-CH2-CH- CH=CH-CH2-CH=CH2-CH2-CH=CH-CH2-CH2-CH2-CH2-CH2-CH2-C-S-CoA20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Eicosatrienoyl CoA (20: 3∆8,11,14); trienoic

O ||

CH3-CH2-CH2-CH2-CH- CH=CH-CH2-CH=CH-CH2-CH=CH-CH2-CH=CH-CH2-CH2-CH2-C-S-CoA20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Arachidonoyl CoA (20: 4∆5,8,11,14); tetraenoic, omega-6

O2

2 H2O∆5 desaturase

NADH+ + H+

NAD+

Methylene groups

Page 26: De Novo Synthesis of Fatty Acids

XX. HUMAN DESATURATION OF

FATTY ACIDS

CH3-(CH2)6+n - CH2 - CH2 - CH2 - CH2 - CH2 - CH2 – (CH2)2 -COOH Δ

4 des

atur

ase

Δ5 d

esat

uras

e

Δ6 de

satu

rase

Δ9 de

satu

rase

9

8

7

6

3

2

5

4

1

16

15 - 10

Page 27: De Novo Synthesis of Fatty Acids
Page 28: De Novo Synthesis of Fatty Acids

XXI. CAN HUMANS SYNTHESIZE THESE TWO

FATTY ACIDS?

A. CH3 -(CH2)4-CH=CH-CH2-CH=CH-(CH2)7- COOH

B. CH3 -(CH2)4-CH=CH-CH2-CH=CH-CH2-CH=CH-(CH2)4- COOH5

8 1911 1017 13 1218

8 19 7 612 101118 1317

Omega-6

Omega-6

Page 29: De Novo Synthesis of Fatty Acids

REFERENCES

Horton, Principles of Biochemistry, 4th ed. Devlin, Textbook of Biochemistry, 7th ed. Lippincott’s Biochemistry, 4th ed. Harper’s Illustrated Biochemistry, 28th ed.