52
Daytime Optical Aeronomy Supriya Chakrabarti Center for Space Physics Boston University CEDAR tutorial, June 12, 1997

Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Daytime Optical Aeronomy

Supriya Chakrabarti

Center for Space Physics

Boston University

CEDAR tutorial, June 12, 1997

Page 2: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Motivation

At any given time, the Earth is- 42 - 45% Sunlit

- 33 - 35% Dark (night)

- 20 - 25% twilight

Most CEDAR related optical observationsare limited to clear nights during 2 weekscentered around the new Moon

CEDAR tutorial, June 12, 1997

Page 3: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

More on Motivation

Continuous observations like RADAR

Equatorial Spread F triggers

Observations of cusp emissions under sunlitconditions

Observations of Stable Auroral Red Arcsunder sunlit condition

Conjugate auroral emissions

CEDAR tutorial, June 12, 1997

Page 4: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

•'•••

,••'

••.••.

••.'•

"••:

'•.:

'•-.

:•-•

•-"

.•VI

'C

vh

''

,••

••',:•.••

-f-••^

S-r.."

••'•••;

••;':V

;i^4-*fI

:v-'

••••••

.•

.V•,

•:••

••:"-'-

i••• 'i

-

%

Page 5: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new
Page 6: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

High DensityCold Plasmaspherfc Plasma

EnergeticNeutralPrKipftation

Plasmapause

Lower DsnsltyColdPlasmaspherfc Plasma(Dusk Bulge Region)

km

CyclotronWaves

Dusk

/;

(L-8) (L-I

ConjugateSar Arcs

(M)

Anlsotroplc \EnergeticIon Precipitation

Wave Scattering(?)of Ring Current Ions

Heat Flowand/orLow Energy (-Electron Fiux

Ring Current Beit(1-200 kev)-Denslty Is^ontoursShown

Dawn

Couk)mbcoliisions

-withring cun^kKisheatthett)ermalelectronswithin theshadedregion.

Charge exchangecollisions withneutral hydrogentransform ringcurrent tons Intoenergetic neutralsthat move off onstraight line pathsin all directionsfrom the collisionsites.

fn^rh the inner magnetosphere showing the overlap between the ring current and plasrposition of conjugate SAR arc emissions. Major ring current loss processes are summarize

Page 7: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Observe when the Sun is up

What can we do to increase the

observing time?

(when we were grad students

we did not complain about working nights and weekends)

CEDAR tutorial, June 12, 1997

Page 8: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Early Observations

In the 11th Century, Persian bom Egyptianmathematician, physicist, and astronomer Ibnal-Haytham (ib^en al-hitham") or Alhazen(MhezenO- Colors of twilight was due to the optical properties

of the atmosphere

- Measured the height of the atmosphere bymeasuring the duration of twiUght (52,000 paces)

CEDAR tutorial, June 12, 1997

Page 9: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Early Observations (contd.)

First quantitative measurement of day skyundertaken by Swiss physicist de Saussure(late 18th century)

Systematic photometry of the CelestialSphere started by Jensen in 1898 (Jensen,1928)

CEDAR tutorial, June 12, 1997

Page 10: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Early Observations (contd.)

Yntema (1909) - first photometricmeasurements of the night sky light- Called it Earthlight

- Variable from night to night

- Scattered starlight could not account for thezenith angle distribution of the intensity

- Noted similar earlier observations dating backto 1788

CEDAR tutorial, June 12,1997

Page 11: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Early Observations (contd.)

Spectroscopic Observations of AuroralGreen Line (5577A) [Campbell (1895)]- Present all the time

- Permanent aurora (due to Yntema)

- Non-Polar Aurora (due to Rayleigh, 1924)

This is what today we call Airglow (due toElvey, 1950)

CEDAR tutorial, June 12,1997

Page 12: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Terminology

Airglow: Non-thermal radiation emitted by theEarth's atmosphere with the exceptions ofauroral emissions and radiation of cataclysmicorigin such as lightning and meteor trains -Chamberlain (notes that essentially same as Elvey's)

Twilightglow: Sunlight shining on the emittingregion from below

Dayglow: Sunlight enters from above theatmosphere

CEDAR tutorial, June 12,1997

Page 13: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

So what is the challenge?

Day sky is about 10^-10^^ brighter than nightBrightness of the Full Moon is 10"^ of the Sun

Brightness of the New Moon is 10"^ of the Sun

Ice, water, land - all contribute to the

brightness of the sky near an observatory

CEDAR tutorial, June 12, 1997

Page 14: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

loglxkOV

30

ZO

W

CU?

-?.o

-2.0

-ao

"SiO I.. I ll II I. • I • 11 • • I

72^ S°° 8'^ 7^ goo gOO ^oo ^ ^ f»t

Fig. 2. A sample record of the sky brightness at the zenith as afunction of time from measurements in a narrow spectral band(X « 0.5 fi, AX =6 A) on a July day that was not very clear.

Page 15: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Q09 ao^

Fig. 1, Smoothed isophotes of the daytime sky for a highly transparent atmosphere (P=0.87) and variouszenith distances Cof the sun. The surface brightness of the sky is expressed in stilbs. a) C=0®; b)C= 30";c) C= 60^M) C= 80'.

Page 16: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

o<

o

CO

6>0

a>

s-«

iso

COCO

C4

cio

500

EARTH ULTRAVIOLET DAYGLOW

NUV

O3 ABSORPTION

O.. ABSORPTION

1000 1500 2000 2500 3000 3500 4000

WAVELENGTH (X)Fig. 3. Complete Earth dayglow spectrum, adjusted tonadir viewing from 200 km at midmoming. Thevarious spectral bands defined at the top of the figure are the extreme, far, middle, and near-ultraviolet.Regions ofabsorption byoxygen species are indicated by thick horizontal lines; emission band intervalsareshown for Nj and NO, and thestronger emission lines ofatomic and ionic species areshown. The NUVemission rate was calculated assuming an Earth albedo of0.3 and a smoothed solar irradiance, the MUVwas taken from Barth (1965), the FUV from Huffman etal. (1980), and the EUV from Gentieu etal.

(1979).

osj

10

§o

wCO

10000

1000 _

0.1 _

0.01

500

EARTH ULTRAVIOLET NIGHTGLOW

1000 1500 3000 2500 3000

WAVELENGTH (X)3500 4000

Fig. 9. Composite UV nightglow spectrum adjusted to nadir viewing from 600 km in equatorial regionAll spectral features have been smoothed to 15 Aresolution. The O2 and NO molecular, the Hgeocoronalresonant scattering, and the recombination emissions are indicated. The O2 spectrum was.taken from the Hennes (1966) rocket experiment, the NO spectrum from the Sharp and Rusch (1981)rocket data, and the Oi and Hi lines from the STP 78-1 satellite data of Chakrabarti etal. (1984). Tfieabsolute values of the O2 and NO bands were obtained by normalizing to the Huffman etal. (1980) S3-4equatorial spectrum (after converting the S3-4 data to absolute units). The nightglow varies strongly with

!> -J

Page 17: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Find the airglow signal

T—r—r

Page 18: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Dayglow measurement by FPI

r- r T~i f r T-i

UflVE LENGTH (A)

Page 19: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

80 r-Sky spectrum

63000 6300 2

Solar spectrum

63000 6300-2 6300-4 X(A)

High-resolution spectra of sky and sun obtained by Bens, Cocger, and Shepherd (1965)The true zero level would actually be at about —1000 mV.

15

10

%5

(A

AII

t

o\

J^O-O-O-O-l o ± 0-6- -o-bo-•30ai o •900-2 tSOOS 69004 63004

.5«-

The result of subtracting the two spectra in Figure 2; the difference showsthe 6300.3 A oxygen line in the dayglow.

Page 20: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Absorption

Emission

\

MTOO ^ 2000

Fraunhofer

Fraunhofer

Emission

Absorption'tOOO oersteds

n 2000 oersteds

rsteds

X AX in A•tOOO oersteds

Fig. 3. Profiles of D2 and Di Fraunhofer lines as computed from Priester's observation;and Di terrestrial lines are shown for an autumn evening. The absorption lines are those ocell at 160® with 0 field and the t components at 2000 and 4000 oersteds.

Page 21: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

i-; t

. .--A

? L."

•• f-• i .

'V' .r-

'•'W'• .r

'S'o/a.-r IovA~ri om

Fie, 7. Observed sodium dayglow and twilight intensities.

Page 22: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Visible Dayglow Observations

Emission

Lymaj)-ciOi »P-»S

[Oi] »P-^SNOyNt2PGNi+ 1 Ncg

[Nil *S-*D(Oil*I>-»SNaD

(Oi) 'P-^D(Oj) ^Zg-^Lg-

[Ot]OH

Dayglow Observations*

Wavelength Altitude Zenith Intensity

1216 A > 100 km 5-12 kr

1304A >100 km 2-6 kr

1355 A >100 km 0.4 kr

:fl0o-3O00A 80-140 km 1 kr

3000-4000A obs> 170 km 0.4 kr

3914 A lOtMOOkm 2-5 kr

4278 A0.1 kr5200 A >100 km

5577 A 80-250 km 2 kr

5893 A 85-95 km 5-40 kr

6300 A >125 km 2-60 kr

7600 A 40-130 km 300 kr

8640A25 mrU7 /I 40-90 km

2.8-4.0 II not measured, piubably 5 mr

50-90 km

• References and deuils on these emissions are given in the text. Several features show a wide rangeof intensity; the true range may be less than is shown. The NO- and second posiUve N,-mtensityapplies to the strongest band.

(As summarized by Noxon, 1968)

CEDAR tutorial, June 12, 1997

Page 23: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Strategy for Ground based opticalairglow and auroral observations

Since the signals are line emissions, and the dominantbackground is continuum, use small bandpass instruments- High spectral resolution spectrometers or photometers

- Fabry-Perot Interferometers

- LIDARs

Use conventional instruments from high altitude- Aircrafts, balloons, rockets, spacecrafts

Exploit the difference in polarization characteristics of thesignal and background

Exploit unusual observing conditions- Eclipses, dayside aurora (local winter)

CEDAR tutorial, June 12,1997

Page 24: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Strategy (Contd.)

Use new technology to improve SNR- Detector

» CCDs have > 10 times QE of PMTs

- New optical configurations» DGP, Hi-TIES, SCARI

- New observation geometry and analysis» Application of tomography

CEDAR tutorial, June 12, 1997

Page 25: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Examples

High Resolution Photometer

- First reported observation of Dayglow byBlamont and Donahue (1961) used a sodiumvapor cell (as the bandpass selector) which wasperiodically subjected to a magnetic fieldperpendicular to the optical axis (to furtherdiscriminate the airglow signal from Rayleighscattered component)

Works for resonance lines of selected speciesCEDAR tutorial, June 12,1997

Page 26: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Examples (contd.)

• High resolution Spectrometer- So far, the airglow measurements have been carried out

by interferometers e.g., Jarrett and Hoey, 1963{controversial)', Bens et al., 1965; Barmore, 1977 andSridharan et al., 1992, 1994, 1995.

• LIDARS

- Gibson and Sandford (1972) found that sodiumabundance enhancement smaller than dayglowobservations reported by Blamont and Donahue (1961)

- Clemesha et al. (1982) studied diurnal variations

- Yu et al. (1997) obtained tidal temperatureCEDAR tutorial, June 12,1997

Page 27: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Fig 1 Fabry-Perot interference fringes of the dayglow 5300 A01 radiation photographed at l-Observato.re DU Pic du Mid. (altitude 2877 m) on 30 August 1963 at18" 00 GMT Exposure 5sec, f/2 camera, with a single plate Fabry-Perot interferom-mR and IS AHAL^™ INTERFERENCE FILTER. AZIMUTH DUE SOUTH OVER PYRENEES WITH

ZERO degrees elevation.

Page 28: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Date

October 6,1971October 7.1971November 2,1971November 14,1971July 12,1972July 13,1972July 15,1972

90Height (km)

\

Fig. 1 Height distribution for 1,000 laser shots between 1205and 1257 UT, Octobcr 27, 1971. The bars are the standarderrors due to the limited photon count. The absolute densityscale is uncertain to ±30% because a nifl^t-time calibration was

not possible on this date.

Table 2 Oay/Nlght Abundance Ratio

Time of observations (irr)Day Night

1300-18001300-18001100-17001200-13001800-21000500-09001100-2100

1800-22001800-22001700-22001900-21002100-24000000-03002100-2300

Mean over all dates

Mean abundance during dayMean abundance during night

1.061.100.971.420.950.921.04

1.07±0,06

Mean abundance within 3 h of noonMean abundance during night

0.821.040.951.42

0.82

1.01±0.11

Page 29: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

TABLE 1. Specifications for the Lidar

Nighttime DaytimeValue Value

Transmitted energy 30 mJ 60 mJ

Pulse duration 2 ys 2 MS

Repetition rate 0.4 s~^ 0.4 s~

Wavelength 589 nm 589 nm

Total transmitted bandwidth 10 pm 12 pm

Receiver area 0.39 m 0.39 m

Receiver bandwidth 800 pro 30 pm

Transmitter beamwidth 0.15 mR 0.15 mR

Receiver beamwidth 0.4 mR 0.2 mR

Receiver efficiency 2.4 % 0.7 %

Height interval 1 km 1 km

DATE

CD 90 a

951

S •

•• ^•

••

HEIGHTu>

o

(b)(

V / •V/

CENTROID HEIGHT

(M

'e

O5 lOHUJ

k

i • •% •.

(c) ..

ABUNDANCE

V \y \• * \• \

••

OD<

5-

00 12 00 12 00 12

LOCAL TIME

Fig. 2. Sodium variations for period May 11-15, 1981. Density isopleths are in unitsof m~^. The continuous curves in (b) and (c) are 5-hour running means.

00 12 00 12

Page 30: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

a) 24 h AmplitudeMean Day Spring 1996

b) 24 h Phase105

^100e

r^cw 95O)

•a

3 90

< 85

80

1 1 1 1 1 i 1GSWM/

' Udar

ylK-i.

T' = 53

1 1 1 1

0 2 4 6 8 10 12 14 16Temperature (K)

c) 12 h Amplitude1 1 1 1 1 i 1

Lidar

"-•'W

^•^SWM "

/ m

T' = 3.6

ir 1 r 1 1 1 1

105

^100E

^ 9541

T3

2 90

< 85

800 2 4 6 8 10 12 14 16

Temperature (K)

Lidar

<;swivl\

10 -5 0 5 10 15 20 25 30Phase (Local Solar Time)

d) 12 h Phase

GSWM

Lidar

Phase (Local Solar Time)

Figure 2 . Amplitude and phase profiles of the 24 and 12 hcomponents of the temperature perturbations for the 1996Spring Mean Day at Urbana.

Page 31: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

<000

100

tn

zUiK2

XK

ZUIISJ

<0

L:ne intensity

X 6300A

V 5577A

Sunset

X*

%

7'V H

Blue Hilln

23 - 24 Mor 1969

Incoherent Scatter Data —

\t

- 200

f400

EST

1^

Sunrise

Fig. 4.31. Absolute values of /(6300) and /(5577) observed by Noxon and Evans (1974) from BlueHill Observatory (geomagnetic latitude about 56'N) during the type-d display ofMarch 23-24, 1969.The gaps are at times when the photometer was directed away from the zenith. The lower trace is themagnetometer //-component. I am very much indebted to DrJ. F. Noxon for providing these data

in advance of publication.

Page 32: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Examples (contd.)

High altitude measurements

- Aircrafts

» Noxon and Vallance Jones (1962) - Oj 1.27 jim

- Balloons

» Wallace (1962) - OI6300 A

- Rockets

» Wallace and McElroy (1966) - 015577 A

- Spacecrafts» Hays et al. (1978); Solomon and Abreu (1989)

CEDAR tutorial, June 12,1997

Page 33: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

WallaceMcElroy

Fastie

200 300

3914& PHOTONS/cm^ . secFig. 12. Rocket m^uremeots ofthe 3914 ANt+ dayglow volume emisskm rmte. The dotted line

is propoitioiial to the Nt'*' ion concentration measured by a spectrometer.

10' c?

X3914 VOLUME EMISSION (PHOTONS cm-^sec^)Fig. 13. Theoretical contribution ofseveral excitation mechanisms tothe Na^d^giow, taken fromWallace and McElroy (1966). Two assumptions were made conoeming the effide&cy ofsolar UVin simultaneously Ionizing and exciting the ion. The horizontal lines correspond to the Wallace and

McElroy measurements.

Page 34: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

oT3

3 40

•£<I

30

20

10

0I06

105' 1 T-

lOOi^

"xo

95

90

85-

I so

ar•D

? 75-

60

55

- Upleg

o -Downieg

200 400 600

Overhead emission intensity, kR

J L800

Fig. 1. OaC^Ag) overhead emission intensity cor-RECIEDTOTHEZENTTH. I

0 68®N Februory 1970 (Miller)

• SS'N September 1969 (Miller ond Ryder)

/i68®N Morch 1970

X (1.27^) derived ozone

o (1.27^) derived ozone corrected toO'^solor depression

+ Solar occulotion

• Balloon Sonde

L—i i-J-iJ—I 'III10® 10® iQio 10"

Ozone concentration, cnr^

68" N, Morch 1975

I0'2

A comparison of the measured ozone profile with that obtained from other experiments.

Page 35: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Q 500 -

400-

300--

200-

100-

*^•0 1.1 TJ "1.4 »l.5 •I.B—n».7N^. FIRST NEGATIVEtnr

Nj. SECOND POSnWE™ ^I L^(l2ia)N>. LBH

0.<to.A>.2b.j0.4l0jf0.610.7

01 (1304)01 (1356)

"1 ' I 'I ' P M M I '5000 5200 5400 5600 " 5800 ' WOO *6^00 ' UCO ' 8600 ' ' 7.107^,00WAVELENGTH (A)

NII(2io)

L (1216)

Mgll(279S) -]pOti(2470) (2972)

[Nl] (3466)

WAVELENGTH (A)

'011(3934)

Call(3970)011(4351)

011(4368)

(NI](smoi

•200 MOO leoo 1800 2000 2200 ' 24*00 ' 2^ ' 2^0 ' jdoo ' 3200 ' 'Jm ' ' ' ' ' 'J ' I ' i^ | • | , yV I | •T.^T [T | Tf T, ?P^«00 4800 5000 5200

Nj. FIRST POSITIVF

iii.e r>.5 r®.< r5.3 r>.2 • ^ 3^^ ^4^O2. ATMOSPHEpig

[01] (5577)

[Nil] (5735)

—Bi

[01] (6300)-

NT. MEINEL ^ g-».i a.2

[oil] (7320) 01(8440)

ll ' Mod ' MOO ' ejj ' 'aid ' 8600 ' 6^ ' ' 'yL MM ' 7^0 '̂ if^BOOO ^^/400 7800 7600 8000 8200 8400 8600 8800 9000

Fl^e 2. Typiral dayglow spectrum recorded by the Arizona Airglow Experiment fGLO^simultaneously from one column of gas in eight

Page 36: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Ni0P>tO-rfW)

N(

(V^NhNO^^OiNNftJHN^O0(;S)fO2-»O+<^0^D)ficm02^-MO^D)from altenuteOQ5)fiomP2^-»«0CS)fianN2CA3V>»ON^X*=0)/N^X«nv)OrZ))fiomN^>K)OOOybammpyiOl^'D)fiomN(V>K)

TABLE 1. Rate Coefficientt and BranchingRate Co^tdent (cmV^) or Yieldi.dxi(r^ (r^oo)-®-55, r^i2oo

i.95xi<rV/joo)-o-7 r,<i2oo

2.05<i(r^^i.8xi(r^®

IJxKT*®4.0x10-^2 exp(-865/7U1.2

-0.21ogio[(r/300)-0-7«/oj0.12+0.021ogxol(r^00)*®%/0]0.75 (vaO only)0.250.030.00.0

Ratios

Reference

Walls and Dunn (1974];Tofrel a/. [197Q

Me/ir and Biondi [1969];Atge et at. (1983J

Zip/etat. [1980]Zip/et at. 11980JRees and Jones (1973JFehseitfetd [1977]Constantinides et at. 11979]Stanger et al. (1972]Abreu et at. [1983]appiox. to Yee et al. (1989]appiox. to Yee et al. (1989JPiper [1982]Cartwright (1978JOlson and Smith [1974]assumed

assumed

Page 37: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Examples (contd.)

Polarimetry

- Noxon and Goody (1962); Noxon (1963,1964)Primarily investigated 016300 Ain dayglowand also in daytime aurora

Special geometry- Total solar eclipse

» Sharp et al. (1966)

- Dayside cusp» Many

CEDAR tutorial, June 12,1997

Page 38: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Maximum

polarizationV Babinet point

^ Sun

Arago point ^ VBrewster pointVTTTTTTTTTTTT^TTTTTTTTTTT^^TTTTTTTTTTT^^TTTTTTTTTTTTTTT?

Antisolar point

\-NPoint observed

from high elevation

Fig. 10. Diagram of the neutral points.

Pm90

80

70

BO

SO

40

30

ZD

W1 1 1 1 1 I I L_J_

^ /n2O3O4O50SO706030/OO?,1o

Fig. 8. Maximum degree of polarization of the light from thedaytime sky as a function of thevertical transparency of the atmosphere.

/

Green filter

Horizon

Page 39: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

POL. ^ 50'A

DAYGLOW

POL.« 0%

INT.. lo

™?! polarimeter. Optical channel Acontains a polaroidset to transmit the nunimum signal from the sky background. Channel Btransmits an attenuatedmaximize the signal from the sky background. When the two areequalized for the b^kground astr^out of balance component remains for an unpolarized dayriow

emission feature; the actual sky signal through one channel is several orders of magnitude greaterthan the dayglow signal.

Page 40: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

fsacaicCMOPoeR

6RATIN6

CBERT SCANNING SPECTROUETER

FCLO LENS

WERFEREKEFlTER

POLAROtO

SET TOmMHlZCSCiTTERCOSIMII04TSI9I4L

SUGHTIY MOJO ^1Q F0ST / SUTTERQ) SUNUGMTnuMoo-.

TRI AUULI

PWrOHULTKIER

NEUTIULOENSITYriLTER

Fig. 5. M early version of the scanmng polarimeter indicating how the spectrometer is made torapidly alternate between the two optical channels; channel is at the top. Uter versions avoidthe polarization introduced from mirror reflection although its existence does not upset the pri~-;pi.

of operation.

Page 41: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

t10 XR

55t8KR

20i4KR

^6 KR

6295 6300 6305

WAVELENGTH I

Spcctra of the 6300 Aline in the dayglow showing the wide range of intensity observed.

Page 42: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

l.O

0.8

0.6

I52

0.4

0.2

5200

O PRE TOTALITY

• TOTALITY

A CONTROL DAY

+ TWILIGHT AT 5.

5400 5600 5800 6000

Fig. 5. A plot showing that the relative spectral distribution ofthe day sky is the same.as that of the zenithsky just before totality, and also that the distribution at totality is similar to that of

the twilight at 5.1® solar depression.1.0 r

60

I 0.552

o—o—o

2141

\

2142 2143 2144 2145 2146

UNIVERSAL TIME

Fig. 4. The color change around totality expressed as the ratioof the intPTiQi'tv nOOO S tn tVinf A

Page 43: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Solar

77777? max

Without rcfrECtic^ -Withrefraction

Fig. 118. The twilight ray.

Page 44: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

4278

4240

Fig. 9.14. Tracing of twilight aiiglow spectrum in the visible region The N* . rMii ,•suggesting an auroral effect. After Nicolet [19546]; courtesy Universitrof Si^Pres"

Page 45: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

Fig. 3. Records similar to those shownin Fig. 2 obtained during the late night,daytime, and early evening of December 11, including the record ofoptical emission from daytime aurora.Details of the material are given in the

text.

Im

N

FOG

13 IS

« I 2,^11 I5577A

'vr

I li-056300A

2T b b B OUT B B b B 26 3^ 33 35

SASKATOONRAOAR

0 RIOICTER •ABSORPTWIdb

m9-to

.

SUNRISE SUNSETDECEMBER II LMT

VISILE

AURORA

OAYTnyCfiUmORAKR

2Mc

. r

"4

Page 46: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

MULTI-VWELENGTH DAYTIME PHOTOMETER

OArGLOWCOLNTER

PMTUBCCCXXING

UNIT

Fig. 1. Schematic diagram of the Muliiwavelength Daytime Photometer along with the novel mask system.Temperature stabilized interference filters are shown at the front end of the instrument. The Fabry-Perot

etalon can be seen in the optical unit.

Page 47: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

''•Og, 01 Feb. 1994 (11-)

5.0^ '04'•«>

c-->

09 Feb. 1994 (SB")

c-->

16 Feb. 1994 (29^

tx-

06 Feb. 1994

<5,

<5^ O

15" Feb. 1994

N3.5fi

I t „

Sn.-

"V ^ <=»

<t»

16 Feb. 1994

i- ^+Oo,I ^-46 'fi ^+00.C 1 ••

V o

Figure 6.8a. Surface plots of 557.7 nm emission intensities as observed from Maitriduring February 1994. The X, Y and Z axis represent the universal time, I- geomagnetic latitude and the relative intensities in photon counts respectively.

Page 48: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

New Instruments

- Hi-TIES

Future

-SCARI

- Application of LCD FPIs

New Techniques

- Application of tomographic techniques for 2-Dimaging spectroscopy applications

CEDAR tutorial, June 12,1997

Page 49: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

7 Traits Common to Many Discoveries(In Cosmic Discovery by Martin Harwitt)

The most important observational discoveries result from substantialtechnological innovation in observational astronomy

Once a powerful new technique is applied in astronomy, the mostprofound follow with little delay

A novel instrument soon exhausts its capacity for discovery

New cosmic Phenomena frequently are discovered by physicists andengineers or by other researchers originally trained outside astronomy

May of the discoveries of new phenomena involved use of equipmentoriginally designed for military use

The instruments used in the discovery of new phenomena often havebeen constructed by the observer and used exclusively by him

Observational discoveries of new phenomena frequently occur bychance - they combine a measure of luck with the will to pursue andunderstand an unexpected finding

CEDAR tutorial, June 12, 1997

Page 50: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

References and Sources

Jensen, C, Die Himmelsstrahlung, Handb. Phys., 19,70,1928.

Kozyra, J. U., A. F. Nagy and D. W. Slater, High-altitude Energy Source(s)for StableAuroral Red Arcs, Rev. of Geophysics, 35,155,1997.

LLewellyn, E. J. and G. Witt, The measurement of Ozone Concentrations at High LatitudeDuring the Twilight, Planet. Space Sci., 25,165,1977.

Meier, R. R., Ultraviolet Spectroscopy and Remote Sensing ofthe Upper Atmosphere, SpaceSci. Reviews, 58, 1, 1991.

Nicolet, M., Dynamic Effects in the High Atmosphere, In The Earth as a Planet (G. P. KuiperEd), Ch Xin, pp 644 -712, Univ. of Chicago Press, Chicago, 1954.

Noxon, J. F., Observation of Daytime Aurora, J. Atmos. Terr. Phys., 25, 637,1963.

Noxon, J. F., A Study of the 6300 A Oxygen Line in the Day Airglow, JGR, 69, 3245,1964

Noxon, J. F. Day Airglow, Sp. Sci. Rev., 8,92,1968.

Noxon, J. F. and A. Vallance Jones, Nature, 196,157,1962

Noxon, J. F. and R. M. Goody, J. Atmospheric Sci., 10,342,1962

Pallam Raju, D., et al.. Ground based Optical Observations ofDaytime Auroral Emissionsfrom Antarctica, J. Atmos. Terr. Phys., 57,1591,1995.

CEDAR tutorial, June 12,1997

Page 51: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

References and Sources

Rayleigh, Lord (Strutt, R. J.), The Light of the Night Sky: Its intensity Variations whenAnalysed by Colour Filters, Proc. Roy. Soc. (London), A106,117,1924

Roach, F. E. and H. B. Petit, The Annual Variation ofSodium D in the Nightglow, Ann.Astrophys., 14,392,1951.

Rozenberg, G. V., Twilight: A Study in Atmospheric Optics, Plenum Press, New York, 1966.

Sharp, W. E., Zenith Skylight Intensity and Color During the Total Solar Eclipse of20 July1963, AppL Optics, 5,787,1966.

Slipher, V. M., On the General Auroral Illumination ofthe Skyand the Wavelength oftheChiefAuroral Line, Astrophys. J., 49,266,1919.

Solomon, S. C. and V. J. Abreu, The 630nm Dayglow, J. Geophys. Res., 94, 6817,1989.

Sridharanet al., 01630 nm Dayglowin the Region ofEquatorial lonizationAnomaly:Temporal Variability and its Causative Mechanism, J. Geophys, Res., 97,13715,1992.

Sridharanet al.. Precursor to Equatorial Spread F in 01630nm Dayglow, GRL,21,2797,94

Sridharan et al., Daytime Measurements ofOptical Auroral Emissionsfrom Antarctica, Curr.Sci., 68,830,1995.

CEDAR tutorial, June 12,1997

Page 52: Daytime Optical Aeronomy · 2015. 1. 7. · 1000 1500 2000 2500 3000 3500 4000 ... - Eclipses, dayside aurora (local winter) CEDARtutorial, June 12,1997. Strategy (Contd.) Use new

References and Sources

Wallace, L., J. Atmospheric Sci., 10,1,1962Wallace, L. and M. B. McElroy, The Visual Dayglow, Planet. Space Sci., 14, 677,1966.Yntema, L., On the Brightness ofthe Sky and Total Amount ofStarlight, Publ. Ast..

Groningen, No. 22,1,1909.Yu J,et al.. Observations ofTidal Temperature and Wind Perturbations in the Mesopause

' Region above Urbana, IL (40" N, 88" W), Geophys. Res. Lett., 24,1207,1997.

CEDAR tutorial, June 12,1997