20
1/20 0.5Msps to 20Msps sampling frequency Adaptive power consumption: 120mW @ 20Msps, 95mW@10Msps Single supply voltage: 2.5V Independent supply for CMOS output stage with 2.5V/3.3V capability ENOB=11.2 @ Nyquist SFDR= -81.5 dBc @ Nyquist 1GHz analog bandwidth Track-and-Hold Common clocking between channels Dual simultaneous Sample and Hold inputs Multiplexed outputs Built-in reference voltage with external bias capability. DESCRIPTION The TSA1204 is a new generation of high speed, dual-channel Analog to Digital converter pro- cessed in a mainstream 0.25μm CMOS technolo- gy yielding high performances and very low power consumption. The TSA1204 is specifically designed for applica- tions requiring very low noise floor, high SFDR and good isolation between channels. It is based on a pipeline structure and digital error correction to provide excellent static linearity and over 11.2 effective bits at Fs=20Msps, and Fin=10MHz. For each channel, a voltage reference is integrat- ed to simplify the design and minimize external components. It is nevertheless possible to use the circuit with external references. Each ADC outputs are multiplexed in a common bus with small number of pins. A tri-state capabili- ty is available for the outputs, allowing chip selec- tion. The inputs of the ADC must be differentially driven. The TSA1204 is available in extended (-40 to +85°C) temperature range, in a small 48 pins TQFP package. APPLICATIONS Medical imaging and ultrasound 3G base station I/Q signal processing applications High speed data acquisition system Portable instrumentation ORDER CODE PIN CONNECTIONS (top view) BLOCK DIAGRAM PACKAGE Part Number Temperature Range Package Conditioning Marking TSA1204IF -40°C to +85°C TQFP48 Tray SA1204I TSA1204IFT -40°C to +85°C TQFP48 Tape & Reel SA1204I EVAL1204/BA Evaluation board SELECT CLK DGND REFPQ AGND AVCC DGND DVCC DVCC INCMQ REFMQ GNDBI D5 D6 D7 D8 D9 D10 D11(MSB) AVCCB index corner 1 2 3 4 5 6 7 8 9 10 11 32 31 30 29 28 27 26 13 14 15 16 17 18 19 20 21 22 47 25 33 12 23 24 35 34 36 48 44 43 42 41 40 39 38 37 46 45 TSA1204 VCCBE GNDBE AGND INI AGND AGND IPOL AGND AGND INBQ INIB AGND INQ D2 D3 REFMI D0(LSB) OEB AVCC REFPI INCMI AVCC VCCBI GNDBE VCCBI D1 VCCBE D4 Timing Buffers IPOL CLK +2.5V/3.3V VINI VINBI OEB VINCMI GND VINQ VINBQ VINCMQ AD 12 I channel AD 12 Q channel 12 12 12 12 M U X REF I REF Q SELECT VREFPI VREFPQ Polar. VREFMI VREFMQ common mode common mode D0 TO D11 VCCBE GNDBE 7 × 7 mm TQFP48 TSA1204 DUAL-CHANNEL, 12-BIT, 20MSPS, 120mW A/D CONVERTER February 2003

Data Sheet

  • Upload
    seloca

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • 1/20

    n 0.5Msps to 20Msps sampling frequencyn Adaptive power consumption: 120mW @

    20Msps, 95mW@10Mspsn Single supply voltage: 2.5V

    Independent supply for CMOS output stage with 2.5V/3.3V capability

    n ENOB=11.2 @ Nyquistn SFDR= -81.5 dBc @ Nyquistn 1GHz analog bandwidth Track-and-Holdn Common clocking between channelsn Dual simultaneous Sample and Hold inputsn Multiplexed outputsn Built-in reference voltage with external bias

    capability.

    DESCRIPTIONThe TSA1204 is a new generation of high speed,dual-channel Analog to Digital converter pro-cessed in a mainstream 0.25m CMOS technolo-gy yielding high performances and very low powerconsumption.The TSA1204 is specifically designed for applica-tions requiring very low noise floor, high SFDRand good isolation between channels. It is basedon a pipeline structure and digital error correctionto provide excellent static linearity and over 11.2effective bits at Fs=20Msps, and Fin=10MHz.For each channel, a voltage reference is integrat-ed to simplify the design and minimize externalcomponents. It is nevertheless possible to use thecircuit with external references. Each ADC outputs are multiplexed in a commonbus with small number of pins. A tri-state capabili-ty is available for the outputs, allowing chip selec-tion. The inputs of the ADC must be differentiallydriven. The TSA1204 is available in extended (-40 to+85C) temperature range, in a small 48 pinsTQFP package.APPLICATIONSn Medical imaging and ultrasoundn 3G base stationn I/Q signal processing applicationsn High speed data acquisition systemn Portable instrumentationORDER CODE

    PIN CONNECTIONS (top view)

    BLOCK DIAGRAM

    PACKAGE

    Part Number Temperature Range Package Conditioning Marking

    TSA1204IF -40C to +85C TQFP48 Tray SA1204ITSA1204IFT -40C to +85C TQFP48 Tape & Reel SA1204IEVAL1204/BA Evaluation board

    SELECT

    CLK

    DGN

    D

    REFPQ

    AGND

    AVCC

    DGN

    D

    DVCC

    DVCC

    INCMQ

    REFM

    Q

    GN

    DBI

    D5

    D6

    D7

    D8

    D9

    D10

    D11(MSB)

    AVCCB

    indexcorner

    1

    23

    4

    5

    6

    7

    8

    9

    10

    11

    32

    31

    30

    29

    28

    2726

    13 14 15 16 17 18 19 20 21 22

    47

    25

    33

    12

    23 24

    35

    34

    36

    48 44 43 42 41 40 39 38 3746 45

    TSA1204

    VCCBE

    GNDBE

    AGND

    INI

    AGND

    AGND

    IPOL

    AGND

    AGND

    INBQ

    INIB

    AGND

    INQ

    D2

    D3

    REFM

    I

    D0(LSB)

    OEB

    AVCC

    REFPI

    INCMI

    AVCC

    VCCBI

    GNDBE

    VCCBI D1

    VCCBE

    D4

    Timing

    BuffersIPOL

    CLK+2.5V/3.3V

    VINI

    VINBI

    OEB

    VINCMI

    GND

    VINQ

    VINBQ

    VINCMQ

    AD 12I channel

    AD 12Q channel

    12

    12 12

    12

    MUX

    REF I

    REF Q

    SELECT

    VREFPI

    VREFPQ

    Polar.

    VREFMI

    VREFMQ

    common mode

    common mode

    D0TOD11

    VCCBE

    GNDBE

    7 7 mm TQFP48

    TSA1204

    DUAL-CHANNEL, 12-BIT, 20MSPS, 120mW A/D CONVERTER

    February 2003

  • TSA1204

    2/20

    CONDITIONSAVCC = DVCC = VCCB = 2.5V, Fs= 20Msps, Fin=10.5MHz, Vin@ -1dBFS, VREFP=1.0V, VREFM=0VTamb = 25C (unless otherwise specified)DYNAMIC CHARACTERISTICS

    TIMING CHARACTERISTICS

    Symbol Parameter Test conditions Min Typ Max Unit

    SFDR Spurious Free Dynamic Range -81.5 -71.0 dBcSNR Signal to Noise Ratio 66.9 68.5 dBTHD Total Harmonics Distortion -80 -70 dBc

    SINAD Signal to Noise and Distortion Ratio 64.8 68 dBENOB Effective Number of Bits 10.6 11.2 bits

    Symbol Parameter Test conditions Min Typ Max Unit

    FS Sampling Frequency 0.5 20 MHzDC Clock Duty Cycle 45 50 55 %TC1 Clock pulse width (high) 22.5 25 nsTC2 Clock pulse width (low) 22.5 25 nsTod Data Output Delay (Clock edge to Data Valid) 10pF load capacitance 9 ns

    Tpd I Data Pipeline delay for I channel 7 cycles

    Tpd Q Data Pipeline delay for Q channel 7.5 cyclesTon Falling edge of OEB to digital output valid data 1 nsToff Rising edge of OEB to digital output tri-state 1 ns

  • TSA1204

    3/20

    TIMING DIAGRAM

    PIN CONNECTIONS (top view)

    N-1N

    N+1

    N+6

    N+7N+2

    N+5N+3

    N+4

    N+8

    CLK

    Tpd I + Tod

    N+9N+10

    N+11

    N+12N+13

    DATAOUTPUT

    sample N+1I channel

    sample NQ channel

    sample N+1Q channel

    sample N+2I channel

    sample N+2Q channel

    sample N+3I channel

    OEB

    Simultaneous sampling on I/Q channels

    SELECT

    sample N-9I channel

    sample N-8I channel

    sample N-7Q channel

    sample N-6Q channel

    CLOCK AND SELECT CONNECTED TOGETHER

    Tod

    I

    Q

    SELECT

    CLK

    DGN

    D

    REFPQ

    AGND

    AVCC

    DGND

    DVCC

    DVCC

    INCMQ

    REFMQ

    GNDBI

    D5

    D6

    D7

    D8

    D9

    D10

    D11(MSB)

    AVCCB

    indexcorner

    1

    23

    4

    5

    6

    7

    8

    9

    10

    11

    32

    31

    30

    29

    28

    27

    26

    13 14 15 16 17 18 19 20 21 22

    47

    25

    33

    12

    23 24

    35

    34

    36

    48 44 43 42 41 40 39 38 3746 45

    TSA1204

    VCCBE

    GNDBE

    AGND

    INI

    AGND

    AGND

    IPOL

    AGND

    AGND

    INBQ

    INIB

    AGND

    INQ

    D2

    D3

    REFMI

    D0(LSB)

    OEB

    AVCC

    REFPI

    INCM

    I

    AVCC

    VCCBI

    GNDBE

    VCCBI D1

    VCCBE

    D4

  • TSA1204

    4/20

    PIN DESCRIPTION

    ABSOLUTE MAXIMUM RATINGS

    OPERATING CONDITIONS

    Pin No Name Description Observation Pin No Name Description Observation

    1 AGND Analog ground 0V 25 GNDBE Digital buffer ground 0V2 INI I channel analog input 26 VCCBE Digital Buffer power supply 2.5V/3.3V3 AGND Analog ground 0V 27 D11(MSB) Most Significant Bit output CMOS output (2.5V/3.3V)4 INBI I channel inverted analog input 28 D10 Digital output CMOS output (2.5V/3.3V)5 AGND Analog ground 0V 29 D9 Digital output CMOS output (2.5V/3.3V)6 IPOL Analog bias current input 30 D8 Digital output CMOS output (2.5V/3.3V)7 AVCC Analog power supply 2.5V 31 D7 Digital output CMOS output (2.5V/3.3V)8 AGND Analog ground 0V 32 D6 Digital output CMOS output (2.5V/3.3V)9 INQ Q channel analog input 33 D5 Digital output CMOS output (2.5V/3.3V)10 AGND Analog ground 0V 34 D4 Digital output CMOS output (2.5V/3.3V)11 INBQ Q channel inverted analog input 35 D3 Digital output CMOS output (2.5V/3.3V)12 AGND Analog ground 0V 36 D2 Digital output CMOS output (2.5V/3.3V)13 REFPQ Q channel top reference voltage 37 D1 Digital output CMOS output (2.5V/3.3V)14 REFMQ Q channel bottom reference

    voltage0V 38 D0(LSB) Least Significant Bit output CMOS output (2.5V/3.3V)

    15 INCMQ Q channel input common mode 39 VCCBE Digital Buffer power supply 2.5V/3.3V - See Application Note

    16 AGND Analog ground 0V 40 GNDBE Digital buffer ground 0V17 AVCC Analog power supply 2.5V 41 VCCBI Digital Buffer power supply 2.5V18 DVCC Digital power supply 2.5V 42 DVCC Digital Buffer power supply 2.5V19 DGND Digital ground 0V 43 OEB Output Enable input 2.5V/3.3V CMOS input20 CLK Clock input 2.5V CMOS input 44 AVCC Analog power supply 2.5V21 SELECT Channel selection 2.5V CMOS input 45 AVCC Analog power supply 2.5V22 DGND Digital ground 0V 46 INCMI I channel input common mode23 DVCC Digital power supply 2.5V 47 REFMI I channel bottom reference voltage 0V24 GNDBI Digital buffer ground 0V 48 REFPI I channel top reference voltage

    Symbol Parameter Values UnitAVCC Analog Supply voltage 1) 0 to 3.3 VDVCC Digital Supply voltage 1) 0 to 3.3 V

    VCCBE Digital buffer Supply voltage 1) 0 to 3.6 VVCCBI Digital buffer Supply voltage 1) 0 to 3.3 VIDout Digital output current -100 to 100 mATstg Storage temperature +150 C

    ESDHBM: Human Body Model2)

    CDM: Charged Device Model3)2

    1.5kV

    Latch-up Class4) A1). All voltages values, except differential voltage, are with respect to network ground terminal. The magnitude of input and output voltages must not exceed -0.3V or VCC2). ElectroStatic Discharge pulse (ESD pulse) simulating a human body discharge of 100 pF through 1.5k3). Discharge to Ground of a device that has been previously charged.4). Corporate ST Microelectronics procedure number 0018695

    Symbol Parameter Min Typ Max UnitAVCC Analog Supply voltage 2.25 2.5 2.7 VDVCC Digital Supply voltage 2.25 2.5 2.7 V

    VCCBE External Digital buffer Supply voltage 1.8 2.5 3.5 VVCCBI Internal Digital buffer Supply voltage 2.25 2.5 2.7 V

  • TSA1204

    5/20

    1) Condition VRefP-VRefM>0.3V

    ELECTRICAL CHARACTERISTICSAVCC = DVCC = VCCB = 2.5V, Fs= 20Msps, Fin=2MHz, Vin@ -1dBFS, VREFP=1.0V, VREFM=0VTamb = 25C (unless otherwise specified)ANALOG INPUTS

    DIGITAL INPUTS AND OUTPUTS

    VREFPIVREFPQ Forced top voltage reference

    1) 0.96 1.4 V

    VREFMIVREFMQ Forced bottom reference voltage

    1) 0 0.4 V

    INCMIINCMQ

    Forced input common mode voltage 0.2 1 V

    Symbol Parameter Min Typ Max Unit

    Symbol Parameter Test conditions Min Typ Max Unit

    VIN-VINB Full scale reference voltage Differential inputs mandatory 1.1 2.0 2.8 VppCin Input capacitance 7.0 pFReq Equivalent input resistor 3 K

    BW Analog Input Bandwidth Vin@Full Scale, Fs=20Msps 1000 MHzERB Effective Resolution Bandwidth 70 MHz

    Symbol Parameter Test conditions Min Typ Max Unit

    Clock and Select inputsVIL Logic "0" voltage 0 0.8 VVIH Logic "1" voltage 2.0 2.5 V

    OEB input

    VIL Logic "0" voltage 0 0.25 x VCCBE V

    VIH Logic "1" voltage 0.75 x VCCBE VCCBE V

    Digital OutputsVOL Logic "0" voltage Iol=10A 0 0.1 x VCCBE V

    VOH Logic "1" voltage Ioh=10A 0.9 x VCCBE VCCBE V

    IOZ High Impedance leakage current OEB set to VIH -1.7 1.7 ACL Output Load Capacitance 15 pF

  • TSA1204

    6/20

    ELECTRICAL CHARACTERISTICSAVCC = DVCC = VCCB = 2.5V, Fs= 20Msps, Fin=2MHz, Vin@ -1dBFS, VREFP=1.0V, VREFM=0VTamb = 25C (unless otherwise specified)REFERENCE VOLTAGE

    POWER CONSUMPTION

    ACCURACY

    MATCHING BETWEEN CHANNELS

    Symbol Parameter Test conditions Min Typ Max Unit

    VREFPIVREFPQ

    Top internal reference voltage 0.807 0.89 0.963 V

    VINCMIVINCMQ

    Input common mode voltage 0.40 0.46 0.52 V

    Symbol Parameter Min Typ Max Unit

    ICCA Analog Supply current 40 49.5 mAICCD Digital Supply Current 2 3 mA

    ICCBE Digital Buffer Supply Current (10pF load) 6.2 9 mAICCBI Digital Buffer Supply Current 73 221 A

    Pd Power consumption in normal operation mode 120 155 mW

    Rthja Thermal resistance (TQFP48) 80 C/W

    Symbol Parameter Min Typ Max Unit

    OE Offset Error -1.8 -0.5 1.8 LSBGE Gain Error -0.1 0 0.1 %DNL Differential Non Linearity -0.93 0.4 +0.93 LSBINL Integral Non Linearity -1.8 0.8 +1.8 LSB

    Mono tonicity and no missing codes Guaranteed

    Symbol Parameter Min Typ Max Unit

    GM Gain match 0.033 0.1 %OM Offset match 0.4 2.5 LSB

    PHM Phase match 1 dgXTLK Crosstalk rejection 87 dB

  • TSA1204

    7/20

    DEFINITIONS OF SPECIFIED PARAMETERS

    STATIC PARAMETERSStatic measurements are performed throughmethod of histograms on a 2MHz input signal,sampled at 20Msps, which is high enough to fullycharacterize the test frequency response. Theinput level is +1dBFS to saturate the signal.

    Differential Non Linearity (DNL)The average deviation of any output code widthfrom the ideal code width of 1 LSB.

    Integral Non linearity (INL)An ideal converter presents a transfer function asbeing the straight line from the starting code to theending code. The INL is the deviation for eachtransition from this ideal curve.

    DYNAMIC PARAMETERSDynamic measurements are performed byspectral analysis, applied to an input sine wave ofvarious frequencies and sampled at 20Msps.The input level is -1dBFS to measure the linearbehavior of the converter. All the parameters aregiven without correction for the full scale ampli-tude performance except the calculated ENOBparameter.

    Spurious Free Dynamic Range (SFDR)The ratio between the power of the worst spurioussignal (not always an harmonic) and the amplitudeof fundamental tone (signal power) over the fullNyquist band. It is expressed in dBc.

    Total Harmonic Distortion (THD)The ratio of the rms sum of the first five harmonicdistortion components to the rms value of thefundamental line. It is expressed in dB.

    Signal to Noise Ratio (SNR)The ratio of the rms value of the fundamentalcomponent to the rms sum of all other spectralcomponents in the Nyquist band (fs/2) excludingDC, fundamental and the first five harmonics.SNR is reported in dB.

    Signal to Noise and Distortion Ratio (SINAD)Similar ratio as for SNR but including the harmonicdistortion components in the noise figure (not DCsignal). It is expressed in dB.From the SINAD, the Effective Number of Bits(ENOB) can easily be deduced using the formula:SINAD= 6.02 ENOB + 1.76 dB.When the applied signal is not Full Scale (FS), buthas an A0 amplitude, the SINAD expressionbecomes:SINAD2Ao=SINADFull Scale+ 20 log (2A0/FS)SINAD2Ao=6.02 ENOB + 1.76 dB + 20 log (2A0/FS)The ENOB is expressed in bits.

    Analog Input BandwidthThe maximum analog input frequency at which thespectral response of a full power signal is reducedby 3dB. Higher values can be achieved withsmaller input levels.

    Effective Resolution Bandwidth (ERB)The band of input signal frequencies that the ADCis intended to convert without loosing linearity i.e.the maximum analog input frequency at which theSINAD is decreased by 3dB or the ENOB by 1/2bit.

    Pipeline delayDelay between the initial sample of the analoginput and the availability of the correspondingdigital data output, on the output bus. Also calleddata latency. It is expressed as a number of clockcycles.

  • TSA1204

    8/20

    Static parameter: Integral Non LinearityFs=20MSPS; Icca=40mA; Fin=2MHz

    Static parameter: Differential Non LinearityFs=20MSPS; Icca=40mA; Fin=2MHz

    Linearity vs. FsFin=5MHz; Rpol adjustment

    Distortion vs. FsFin=5MHz; Rpol adjustment

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    0 500 1000 1500 2000 2500 3000 3500 4000

    Output Code

    INL

    (LSB

    s)

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0 500 1000 1500 2000 2500 3000 3500 4000

    Output Code

    DN

    L (L

    SBs)

    40

    50

    60

    70

    80

    90

    100

    10 15 20 25

    Fs (MHz)

    Dyna

    mic

    par

    amet

    ers

    (dB)

    5

    6

    7

    8

    9

    10

    11

    12

    ENO

    B (b

    its)

    ENOB I

    SINAD_I

    ENOB Q

    SINAD_Q

    SNR_I

    SNR_Q

    -120-110-100-90-80-70-60-50-40-30-20

    10 15 20 25

    Fs (MHz)

    Dyna

    mic

    par

    amet

    ers

    (dBc

    )

    THD_ISFDR_I

    THD_QSFDR_Q

  • TSA1204

    9/20

    Linearity vs. FinFs=20MSPS; Icca=40mA

    Linearity vs. TemperatureFs=20MSPS; Icca=40mA; Fin=2MHz

    Linearity vs. AVCCFs=20MSPS; Icca=40mA; Fin=5MHz

    Distortion vs. FinFs=20MSPS; Icca=40mA

    Distortion vs. TemperatureFs=20MSPS; Icca=40mA; Fin=2MHz

    Distortion vs. AVCCFs=20MSPS; Icca=40mA; Fin=5MHz

    30

    40

    50

    60

    70

    80

    90

    100

    0 10 20 30 40 50

    Fin (MHz)

    Dyna

    mic

    par

    amet

    ers

    (dB)

    5

    6

    7

    8

    9

    10

    11

    12

    ENO

    B (b

    its)

    ENOB_I

    SNR_ISINAD_I

    SNR_Q SINAD_Q

    ENOB_Q

    40

    50

    60

    70

    80

    90

    100

    -40 10 60

    Temperature (C)

    Dyna

    mic

    par

    amet

    ers

    (dB)

    7

    7.5

    88.599.51010.511

    11.512

    ENO

    B (b

    its)

    SINAD_QSNR_Q

    ENOB_Q

    ENOB_I

    SNR_I SINAD_I

    50556065707580859095

    100

    2.25 2.35 2.45 2.55 2.65

    AVCC (V)

    Dyna

    mic

    par

    amet

    ers

    (dB)

    6

    7

    8

    9

    10

    11

    12

    ENO

    B (b

    its)

    SINAD_I

    ENOB_I

    SNR_I

    SNR_Q

    ENOB_Q

    SINAD_Q

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    0 10 20 30 40 50

    Fin (MHz)

    Dyn

    amic

    pa

    ram

    eter

    s (d

    Bc)

    SFDR_I

    SFDR_QTHD_I

    THD_Q

    40

    50

    60

    70

    80

    90

    100

    110

    120

    -40 10 60

    Temperature (C)

    Dyna

    mic

    par

    amet

    ers

    (dBc

    )

    THD_QSFDR_Q

    THD_ISFDR_I

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    2.25 2.35 2.45 2.55 2.65

    AVCC (V)

    Dyn

    amic

    Pa

    ram

    eter

    s (d

    Bc)

    SFDR_Q

    SFDR_I

    THD_Q

    THD_I

  • TSA1204

    10/20

    Linearity vs. DVCCFs=20MSPS; Icca=40mA; Fin=5MHz

    Linearity vs. VCCBIFs=20MSPS; Icca=40mA; Fin=5MHz

    Linearity vs. VCCBEFs=20MSPS; Icca=40mA; Fin=5MHz

    Distortion vs. DVCCFs=20MSPS; Icca=40mA; Fin=5MHz

    Distortion vs. VCCBIFs=20MSPS; Icca=40mA; Fin=5MHz

    Distortion vs. VCCBEFs=20MSPS; Icca=40mA; Fin=5MHz

    40

    50

    60

    70

    80

    90

    100

    2.25 2.35 2.45 2.55 2.65

    DVCC (V)

    Dyna

    mic

    par

    amet

    ers

    (dB)

    6

    7

    8

    9

    10

    11

    12

    ENO

    B (b

    its)

    SINAD_I

    ENOB_I

    SNR_ISNR_Q

    ENOB_Q

    SINAD_Q

    50

    55

    60

    65

    70

    75

    80

    85

    90

    2.25 2.35 2.45 2.55 2.65

    VCCBI (V)

    Dyna

    mic

    par

    amet

    ers

    (dB)

    8

    8.5

    9

    9.5

    10

    10.5

    11

    11.5

    12

    ENO

    B (b

    its)

    SINAD_I

    ENOB_I

    SNR_ISNR_Q

    ENOB_Q

    SINAD_Q

    50

    55

    60

    65

    70

    75

    80

    85

    90

    2.25 2.75 3.25

    VCCBE (V)

    Dyna

    mic

    par

    amet

    ers

    (dB)

    77.588.599.51010.51111.512

    ENO

    B (b

    its)

    SINAD_I

    ENOB_I

    SNR_Q

    SNR_I

    ENOB_Q

    SINAD_Q

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    2.25 2.35 2.45 2.55 2.65

    DVCC (V)

    Dyn

    amic

    Pa

    ram

    eter

    s (d

    Bc)

    SFDR_Q

    SFDR_I

    THD_Q

    THD_I

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    2.25 2.35 2.45 2.55 2.65

    VCCBI (V)

    Dyn

    amic

    Pa

    ram

    eter

    s (d

    Bc)

    SFDR_Q

    SFDR_I

    THD_Q

    THD_I

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    2.25 2.75 3.25

    VCCBE (V)

    Dyn

    amic

    Pa

    ram

    eter

    s (d

    Bc)

    SFDR_Q

    SFDR_I

    THD_Q

    THD_I

  • TSA1204

    11/20

    Linearity vs. Duty CycleFs=20MSPS; Icca=40mA; Fin=5MHz

    Distortion vs. Duty CycleFs=20MSPS; Icca=40mA; Fin=5MHz

    Single-tone 8K FFT at 20Msps - I ChannelFin=5MHz; Icca=40mA, Vin@-1dBFS

    Dual-tone 8K FFT at 20Msps - I ChannelFin1=9.7MHz; Fin2=10.7MHz; Icca=40mA, Vin1@-7dBFS; Vin2@-7dBFS; IMD=-76dBc

    40

    50

    60

    70

    80

    90

    100

    45 47 49 51 53 55

    Positive Duty Cycle (%)

    Dyna

    mic

    par

    amet

    ers

    (dB)

    7

    7.588.599.51010.51111.512

    ENO

    B (b

    its)

    SINAD_QSNR_Q

    ENOB_Q

    ENOB_I

    SNR_I SINAD_I

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    45 47 49 51 53 55

    Positive Duty Cycle (%)

    Dyna

    mic

    par

    amet

    ers

    (dBc

    )

    THD_QSFDR_Q

    THD_ISFDR_I

    Frequency (MHz)1 2 3 4 6 7 8 9 105

    -20

    -40

    -60

    -100

    -80

    -140

    0

    -120Pow

    er

    spec

    trum

    (dB

    )

    -20

    -40

    -60

    -100

    -80

    -140

    0

    -120

    1 2 3 4 6 7 8 9 105Frequency (MHz)

    Pow

    er

    spe

    ctru

    m (dB

    )

  • 12/20

    TSA1204 APPLICATION NOTE

    DETAILED INFORMATION

    The TSA1204 is a dual-channel, 12-bit resolutionanalog to digital converter based on a pipelinestructure and the latest deep submicron CMOSprocess to achieve the best performances interms of linearity and power consumption.Each channel achieves 12-bit resolution throughthe pipeline structure which consists of 12 internalconversion stages in which the analog signal isfed and sequentially converted into digital data. Alatency time of 7 clock periods is necessary to ob-tain the digitized data on the output bus.The input signals are simultaneously sampled onboth channels on the rising edge of the clock. Theoutput data is valid on the rising edge of the clockfor I channel and on the falling edge of the clockfor Q channel. The digital data out from the differ-ent stages must be time delayed depending ontheir order of conversion. Then a digital data cor-rection completes the processing and ensures thevalidity of the ending codes on the output bus.The structure has been specifically designed toaccept differential signals only.

    COMPLEMENTARY FUNCTIONS

    Some functionalities have been added in order tosimplify as much as possible the applicationboard. These operational modes are described asfollowed.

    Output Enable (OEB)When set to low level (VIL), all digital outputsremain active and are in low impedance state.When set to high level (VIH), all digital outputsbuffers are in high impedance state while theconverter goes on sampling. When OEB is set to alow level again, the data are then present on theoutput with a very short Ton delay.Therefore, this allows the chip select of the device.The timing diagram summarizes this functionality.In order to remain in the normal operating mode,this pin should be grounded through a low value ofresistor.

    SELECTThe digital data out from each ADC cores are mul-tiplexed together to share the same output bus.This prevents from increasing the number of pinsand enables to keep the same package as singlechannel ADC like TSA1201.The selection of the channel information is donethrough the "SELECT" pin. When set to high level(VIH), the I channel data are present on the busD0-D11. When set to low level (VIL), the Q chan-nel data are on the output bus D0-D11.Connecting SELECT to CLK allows I and Q chan-nels to be simultaneously present on D0-D11; Ichannel on the rising edge of the clock and Qchannel on the falling edge of the clock. (see tim-ing diagram page 2).REFERENCES AND COMMON MODE CONNECTION

    VREFM must be always connected externally.

    Internal reference and common modeIn the default configuration, the ADC operates withits own reference and common mode voltagesgenerated by its internal bandgap. VREFM pinsare connected externally to the Analog Groundwhile VREFP (respectively INCM) are set to theirinternal voltage of 0.89V (respectively 0.46V). It isrecommended to decouple the VREFP and INCMpins in order to minimize low and high frequencynoise (refer to Figure 1)Figure 1 : Internal reference and common mode setting

    TSA1204VIN

    VINBVREFM

    1.03V

    VREFP330pF 4.7uF10nF

    INCM330pF 4.7uF10nF0.57V

  • TSA1204

    13/20

    External reference and common modeEach of the voltages VREFM, VREFP and INCMcan be fixed externally to better fit to theapplication needs (Refer to table OPERATINGCONDITIONS page 4 for min/max values).The VREFP, VREFM voltages set the analogdynamic at the input of the converter that has a fullscale amplitude of 2*(VREFP-VREFM). Usinginternal VREFP, the dynamic range is 1.8V.The best linearity and distortion performances areachieved with a dynamic range above 2Vpp andby increasing the VREFM voltage instead oflowering the VREFP one.The INCM is the mid voltage of the analog inputsignal.It is possible to use an external reference voltagedevice for specific applications requiring evenbetter linearity, accuracy or enhancedtemperature behavior.Using the STMicroelectronics TS821orTS4041-1.2 Vref leads to optimum performanceswhen configured as shown on Figure 2.

    Figure 2 : External reference setting

    DRIVING THE DIFFERENTIAL ANALOG INPUTSThe TSA1204 has been designed to obtainoptimum performances when being differentiallydriven. An RF transformer is a good way toachieve such performances.Figure 3 describes the schematics. The inputsignal is fed to the primary of the transformer,while the secondary drives both ADC inputs. Thecommon mode voltage of the ADC (INCM) isconnected to the center-tap of the secondary ofthe transformer in order to bias the input signalaround this common voltage, internally set to0.46V. It determines the DC component of theanalog signal. As being an high impedance input,it acts as an I/O and can be externally driven toadjust this DC component. The INCM isdecoupled to maintain a low noise level on this

    node. Our evaluation board is mounted with a 1:1ADT1-1WT transformer from Minicircuits. Youmight also use a higher impedance ratio (1:2 or1:4) to reduce the driving requirement on theanalog signal source.Each analog input can drive a 1.4Vpp amplitudeinput signal, so the resultant differential amplitudeis 2.8Vpp.Figure 3 : Differential input configuration with transformer

    Figure 4 represents the biasing of a differentialinput signal in AC-coupled differential inputconfiguration. Both inputs VIN and VINB arecentered around the common mode voltage, thatcan be let internal or fixed externally.

    Figure 4 : AC-coupled differential input

    Figure 5 shows a DC-coupled configuration withforced VREFP and INCM to the 1V DC analoginput while VREFM is connected to ground; weachieve a 2Vpp differential amplitude.

    1k

    TSA1204VIN

    VINBVREFM

    VREFP

    externalreference

    VCCA330pF 4.7uF10nF

    TS821TS4041

    TSA1204VIN

    VINB

    INCM

    50 33pF

    330pF 470nF10nF

    Analog source 1:1ADT1-1

    I or Q ch.

    50 10nF

    TSA1204

    VIN

    VINB

    INCM33pF100k

    100k

    50 10nF

    commonmode

  • TSA1204

    14/20

    Figure 5 : DC-coupled 2Vpp differential analog input

    Clock input

    The TSA1204 performance is very dependant onyour clock input accuracy, in terms of aperturejitter; the use of low jitter crystal controlledoscillator is recommended.The duty cycle must be between 45% and 55%.The clock power supplies must be separated fromthe ADC output ones to avoid digital noisemodulation at the output.It is recommended to always keep the circuitclocked, even at the lowest specified samplingfrequency of 0.5Msps, before applying the supplyvoltages.

    Power consumption

    So as to optimize both performance and powerconsumption of the TSA1204 according thesampling frequency, a resistor is placed betweenIPOL and the analog Ground pins. Therefore, thetotal dissipation is adjustable from 10Msps up to20Msps. The TSA1204 will combine highest performancesand lowest consumption at 20Msps when Rpol isequal to 54k.At lower sampling frequency range, this value ofresistor may be adjusted in order to decrease theanalog current without any degradation ofdynamic performances.The table below sums up the relevant data.

    Figure 6 : Total power consumption optimizationdepending on Rpol value

    Layout precautions

    To use the ADC circuits in the best manner at highfrequencies, some precautions have to be takenfor power supplies:- First of all, the implementation of 4 separateproper supplies and ground planes (analog,digital, internal and external buffer ones) on thePCB is recommended for high speed circuitapplications to provide low inductance and lowresistance common return. The separation of the analog signal from thedigital part is mandatory to prevent noise fromcoupling onto the input signal. The bestcompromise is to connect from one part AGND,DGND, GNDBI in a common point whereasGNDBE must be isolated. Similarly, the powersupplies AVCC, DVCC and VCCBI must beseparated from the VCCBE one. - Power supply bypass capacitors must be placedas close as possible to the IC pins in order toimprove high frequency bypassing and reduceharmonic distortion. - Proper termination of all inputs and outputs mustbe incorporated with output termination resistors;then the amplifier load will be only resistive andthe stability of the amplifier will be improved. Allleads must be wide and as short as possibleespecially for the analog input in order to decreaseparasitic capacitance and inductance.- To keep the capacitive loading as low aspossible at digital outputs, short lead lengths ofrouting are essential to minimize currents whenthe output changes. To minimize this outputcapacitance, buffers or latches close to the outputpins will relax this constraint. - Choose component sizes as small as possible(SMD).APPLICATIONDigital Interface applicationThanks to its wide external buffer power supplyrange, the TSA1204 is perfectly suitable to plug into 2.5V low voltage DSPs or digital interfaces aswell as to 3.3V ones.Medical Imaging applicationDriven by the demand of the applications requiringnowadays either portability or high degree of par-allelism (or both), this product has been devel-oped to satisfy medical imaging, and telecom in-frastructures needs.As a typical system diagram shows figure 7, a nar-row input beam of acoustic energy is sent into aliving body via the transducer and the energy re-flected back is analyzed.

    Fs (Msps) 10 20Rpol (k) 120 54Optimized power (mW)

    95 120

    TSA1204VIN

    VINB

    INCM

    330pF 4.7uF10nF

    analog

    DC

    AC+DC VREFP

    VREFM

    DCanalog

    VREFP-VREFM = 1 V

  • TSA1204

    15/20

    Figure 7 : Medical imaging application

    The transducer is a piezoelectric ceramic such aszirconium titanate. The whole array can reach upto 512 channels.

    The TX beam former, amplified by the HV TXamps, delivers up to 100V amplitude excitationpulses with phase and amplitude shifts.The mux and T/R switch is a two way input signaltransmitter/ output receiver.To compensate for skin and tissues attenuationeffects, The Time Gain Compensation (TGC) am-plifier is an exponential amplifier that enables theamplification of low voltage signals to the ADC in-put range. Differential output structure with low

    noise and very high linearity are mandatory fac-tors. These applications need high speed, low powerand high performance ADCs. 10-12 bit resolution is necessary to lower the quantificationnoise. As multiple channels are used, a dual con-verter is a must for room saving issues. The input signal is in the range of 2 to 20MHz(mainly 2 to 7MHz) and the application uses most-ly a 4 over-sampling ratio for Spurious Free Dy-namic Range (SFDR) optimization. The next RX beam former and processing blocksenable the analysis of the outputs channels ver-sus the input beam.

    EVAL1204/BA evaluation board

    The EVAL1204/BA is a 4 layer board with highdecoupling and grounding level. The schematic ofthe evaluation board is reported figure 11 and itstop overlay view figure 10. The characterization ofthe board has been made with a fully ADCdevoted test bench as shown on Figure 8. Theanalog signal must be filtered to be very pure.The dataready signal is the acquisition clock of thelogic analyzer.The ADC digital outputs are latched by the octalbuffers 74LCX573.All characterization measurements have beenmade with:- SFSR=1dB for static parameters.

    Figure 8 : Analog to Digital Converter characterization bench

    Mux andT/Rswitches

    TX beamformer

    Processingand display

    RX beamformerADC

    TGC amplifier

    HV TX amps

    Sine Wave Generator

    HP8644

    ADC evaluation

    board

    Pulse Generator

    Logic Analyzer

    Sine Wave GeneratorHP8644

    HP8133

    Vin

    Clk

    Data

    ClkPC

  • TSA1204

    16/20

    Operating conditions of the evaluation board:Find below the connections to the board for thepower supplies and other pins:

    Care should be taken for the evaluation board asthe outputs of the converter are 2.5V/3.3V(VCCB2) tolerant whereas the 74LCX573 externalbuffers are operating up to 2.5V.

    Single and Differential Inputs:The ADC board components are mounted to testthe TSA1204 with single analog input; theADT1-1WT transformer enables the differentialdrive into the converter; in this configuration, theresistors RSI6, RSI7, RSI8 for I channel (respec-tively RSQ6, RSQ7, RSQ8 for Q one) are con-nected as short circuits whereas RSI5, RSI9 (re-spectively RSQ5, RSQ9) are open circuits.The other way is to test it via JI1 and JI1B differential inputs. So, the resistances RSI5, RSI9 for I channel (respectively RSQ5, RSQ9 for Q one) are connected as short circuits whereas RSI6, RSI7, RSI8 (respectively RSQ6, RSQ7, RSQ8 for Q one) are open circuits.

    Grounding consideration

    So as to better reject noise on the board, connect on the bottom overlay AG (AGND), DG(DGND), GB1(GNDBI) together from one part, and GB2(GNDBE) with GB3(GNDB3) from the other part.

    Mode selectSo as to evaluate a single channel or the dualones, you have to connect on the board therelevant position for the SELECT pin.With the strap connected - to the upper connectors, the I channel at the out-put is selected.- horizontally, the Q channel at the output is se-lected- to the lower connectors, both channels are se-lected, relative to the clock edge.

    Figure 9 : mode select

    Consumption adjustmentBefore any characterization, care should be takento adjust the Rpol (Raj1) and therefore Ipol valuein function of your sampling frequency.

    board notation

    connection internal voltage (V)

    external voltage (V)

    AV AVCC 2.5

    AG AGND 0

    RPI REFPI 0.89

  • TSA1204

    17/20

    Figure 10 : Printed circuit of evaluation board.

  • TSA1204

    18/20

    Figure 11 : TSA1204 Evaluation board schematic

    RI1

    50

    R2 1K

    R3

    50

    CI1

    33pF

    C2 330p

    F

    C3 470n

    F

    C4 10nF

    CI8

    330p

    F

    CI9

    10nF

    CI10

    470n

    FCI

    11

    330p

    F

    CI12

    10nF

    CI13

    470n

    F

    C14

    330p

    F

    C15

    10nF

    C16

    470n

    F

    Raj1

    47K

    C17

    330p

    F

    C18

    10nF

    C19

    470n

    F

    J4 CLK

    OEB

    1

    D0

    2D

    13

    D2

    4

    D3

    5D

    46

    D5

    7

    D6

    8D

    79

    GND

    10LE

    11

    Q019

    Q118

    Q217

    Q316

    Q415

    Q514

    Q613

    Q712

    VCC

    20

    U2

    74LC

    X57

    3

    OEB

    1D

    02

    D1

    3D

    24

    D3

    5D

    46

    D5

    7D

    68

    D7

    9GN

    D10

    LE11

    Q019

    Q118

    Q217

    Q316

    Q415

    Q514

    Q613

    Q712

    VCC

    20

    U3

    74LC

    X57

    3

    R11

    47K

    C25

    330p

    F

    C27

    10nF

    C28

    470n

    F

    +

    C29

    10F

    DO D7 D8 D9 D10

    D11

    CI30

    330p

    F

    CI31

    10nF

    CI32

    470n

    F

    +

    C34

    47F

    +

    C35

    47F

    AVCC

    VCCB

    2

    VCCB

    1

    C26

    330p

    F

    C39

    10nF

    C37

    470n

    F

    VCCB

    3

    C33

    330p

    F

    C40

    10nF

    C38

    470n

    F

    C41

    10F

    +C4

    247

    F

    CLK

    D1

    D2

    D3

    D4

    D5

    D6

    C20

    330p

    F

    C21

    10nF

    C22

    470n

    F

    C23

    10F

    +

    C36

    47F

    1

    43

    26TI

    2

    T2-AT

    1-1W

    T

    JI1B

    InIB

    R5 50

    J25

    CKD

    ATA

    12J2

    7

    CON2

    RI19

    50

    S4SW

    -SP

    STVCC

    B1

    GndB1

    VccB1

    GndB2

    VccB2

    GndB3

    VccB3

    J17

    BUFP

    OW

    D0

    GND

    D1

    GND

    D2

    GND

    D3

    GND

    D4

    GND

    D5

    GND

    D6

    GND

    D7

    GND

    D8

    GND

    D9

    GND

    D10

    GN

    D

    D11

    GN

    D

    CLK

    GN

    D

    AVCC

    C5

    100n

    F

    CI6

    NM

    VCCB

    2

    C51

    330p

    F

    C52

    10nF

    C53

    470n

    FRS

    I5 0 NC

    RSI6 0

    RSI7

    0

    RSI8

    0 RSI9

    0 NC

    NM

    : non s

    oud

    analo

    g inp

    utw

    ith tr

    ansf

    orm

    er (de

    fault)

    RS5

    RS

    6 RS

    7 RS

    8 RS

    9 C

    C

    C

    C C

    C C

    single

    inp

    utdif

    fere

    ntia

    l inpu

    t

    12

    J26

    CON2

    AGND

    1

    INI

    2AG

    ND3

    INBI

    4AG

    ND5

    IPOL

    6AV

    CC7

    AGND

    8IN

    Q9

    AGND

    10IN

    BQ11

    AGND

    12

    REFPQ

    13

    REFMQ

    14

    INCMQ

    15

    AGND

    16

    AVCC

    17

    DVCC

    18

    DGND

    19

    CLK

    20

    SELECT

    21

    DGND

    22

    DVCC

    23

    GNDBI

    24

    GNDB

    E25

    VCCB

    E26

    D11

    (MSB

    )27

    D10

    28D

    929

    D8

    30D

    731

    D6

    32D

    533

    D4

    34D

    335

    D2

    36

    D1

    37

    D0(LSB)

    38

    VCCBE

    39

    GNDBE

    40

    VCCBI

    41

    VCCBI

    42

    OEB

    43

    AVCC

    44

    AVCC

    45

    INCMI

    46

    REFMI

    47

    REFPI

    48

    8-14

    bits

    ADC

    J9

    ADC

    DUA

    L12B C

    D3

    330p

    F

    CD2

    10nF

    CD1

    470n

    F

    1 Q

    RQ1

    50

    CQ1

    33pF

    CQ8

    330p

    F

    CQ9

    10nF

    CQ10

    470n

    F

    CQ11

    330p

    F

    CQ12

    10nF

    CQ13

    470n

    FCQ

    30

    330p

    F

    CQ31

    10nF

    CQ32

    470n

    F

    1

    43

    26TQ

    2

    T2-AT

    1-1W

    T

    JQ1B

    InQB

    RQ19

    50

    CQ6

    NM

    RSQ5 0 N

    CRS

    Q6 0RS

    Q70 RS

    Q80

    RSQ9

    0 NC

    AVCC

    C10

    330p

    F

    C11

    10nF

    C13

    470n

    F

    C31

    10F

    +

    C32

    47F

    DVC

    C

    DVC

    CDVc

    c

    R21

    0NM

    R22

    0NM

    R23

    0NM

    R24

    0NM

    REFP

    REFM

    INCM

    JI2

    VREF

    I

    REFP

    REFM

    INCM

    JQ2

    VREF

    Q

    GND

    VCC

    JA ANAL

    OGIC

    GND

    VCC

    JDDIG

    ITAL

    VCCB

    1

    SW1

    S5 SW-SP

    ST

    IN Vcc

    GND

    S1S2 D

    U1 STG7

    19

    VCCB

    2

    VCCB

    2

    R12

    47K

    C43

    10F

    +

    C44

    47F

    VCCB

    3

    VCCB

    2Sw

    itch

    S4 OE

    B M

    ode

    Open

    N

    orm

    al m

    ode

    Shor

    t Hi

    gh Im

    peda

    nce

    outp

    ut m

    ode

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

    J6

    Switc

    h S5

    Open

    N

    orm

    al m

    ode

    Short

    Te

    st m

    ode

  • TSA1204

    19/20

    Figure 12 : Printed circuit board - List of components Name Footprint Name Footprint Name Footprint Name Part Footprint

    TypeRSQ6 0 805 CD2 10nF 603 C26 330pF 603 CQ6 NC 805RSQ7 0 805 C40 10nF 603 C20 330pF 603 CI6 NC 805RSQ8 0 805 C39 10nF 603 C33 330pF 603 U2 74LCX573 TSSOP20RSI6 0 805 CQ12 10nF 603 C25 330pF 603 U3 74LCX573 TSSOP20RSI7 0 805 CQ9 10nF 603 CI1 33pF 603 U1 STG719 SOT23-6RSI8 0 805 C52 10nF 603 CQ1 33pF 603 JA ANALOGIC connectorR3 47 603 C18 10nF 603 C34 47F RB.1 J17 BUFPOW connectorR5 47 603 C21 10nF 603 C42 47F RB.1 J25 CKDATA SMARQ19 47 603 C4 10nF 603 C35 47F RB.1 J4 CLK SMARI1 47 603 C15 10nF 603 C44 47F RB.1 J27 CON2 SIP2RQ1 47 603 C27 10nF 603 C36 47F RB.1 J26 CON2 SIP2 RI19 47 603 C11 10nF 603 C32 47F RB.1 JD DIGITAL connectorRSI9 0NC 805 CI9 10nF 603 C37 470nF 805 JI1 InI SMARSQ5 0NC 805 CI12 10nF 603 CQ10 470nF 805 JI1B InIB SMARSQ9 0NC 805 CI31 10nF 603 C28 470nF 805 JQ1 InQ SMARSI5 0NC 805 CQ31 10nF 603 CI10 470nF 805 JQ1B InQB SMAR24 0NC 805 CQ30 330pF 603 CQ32 470nF 805 SW1 SWITCH connectorR23 0NC 805 CI11 330pF 603 CQ13 470nF 805 S5 SW-SPST connectorR21 0NC 805 C51 330pF 603 CI32 470nF 805 S4 SW-SPST connectorR22 0NC 805 C2 330pF 603 C13 470nF 805 TI2 T2-AT1-1WT ADTR2 1K 603 C17 330pF 603 C53 470nF 805 TQ2 T2-AT1-1WT ADTR12 47K 603 CD3 330pF 603 C16 470nF 805 JI2 VREFI connectorR11 47K 603 C10 330pF 603 C3 470nF 805 JQ2 VREFQ connectorRaj1 200K CQ8 330pF 603 C22 470nF 805 J6 32Pin

    CQ11 330pF 603 CI13 470nF 805C23 10F 1210 CI8 330pF 603 C38 470nF 805C41 10F 1210 C14 330pF 603 CD1 470nF 805 NC: non solderedC29 10F 1210 CI30 330pF 603 C19 470nF 805

    VR5 trimmer

    IDC-32 connector

    Part Type

    Part Type

    Part Type

  • TSA1204

    20/20

    Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for theconsequences of use of such information nor for any infringement of patents or other rights of third parties which may result fromits use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specificationsmentioned in this publication are subject to change without notice. This publication supersedes and replaces all informationpreviously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices orsystems without express written approval of STMicroelectronics.

    The ST logo is a registered trademark of STMicroelectronics

    2003 STMicroelectronics - Printed in Italy - All Rights ReservedSTMicroelectronics GROUP OF COMPANIES

    Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - MalaysiaMalta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

    http://www.st.com

    PACKAGE MECHANICAL DATA48 PINS - PLASTIC PACKAGE

    Dim.Millimeters Inches

    Min. Typ. Max. Min. Typ. Max.A 1.60 0.063A1 0.05 0.15 0.002 0.006A2 1.35 1.40 1.45 0.053 0.055 0.057B 0.17 0.22 0.27 0.007 0.009 0.011C 0.09 0.20 0.004 0.008D 9.00 0.354D1 7.00 0.276D3 5.50 0.216e 0.50 0.0197E 9.00 0.354E1 7.00 0.276E3 5.50 0.216L 0.45 0.60 0.75 0.018 0.024 0.030

    L1 1.00 0.039K 0 (min.), 7 (max.)

    48 37

    D3

    e

    13 24

    1

    12 25

    36

    c

    A1A2A

    D1D

    E3 E1 EL

    K

    L1

    0,25 mm.010 inchGAGE PLANE

    0,10 mm.004 inch

    SEATING PLANE

    B