18
IMPACT Workshop, January 11-14, 2009 Data Integration for MPA climate tools development Data Input/ Format Requirements Freely Accessible and web-shared Reproducible, and Tractable for Rapid Assessment Compatible for Multiple Downscaling Methods In Situ sensor, airborne, satellite monitoring, and modeled Shipboard Surveys and moored buoy monitoring Inputs Ingestibl e for diverse user groups Observations- Driven Guidance Driven Downscaling Requirements C-Man, CO-OPS (NOS) Inventories, Databases, Climatologies, Data Sources and Platforms -NWS/NBDC -NOS/CO- OPS - NESDIS -NASA -AVISO CNES -NMFS - OAR

Data Integration for MPA climate tools development

  • Upload
    rigg

  • View
    26

  • Download
    0

Embed Size (px)

DESCRIPTION

Data Integration for MPA climate tools development. Data Sources and Platforms. -NWS/NBDC -NOS/CO-OPS. -NESDIS -NASA. C-Man, CO-OPS (NOS). -AVISO CNES. -NMFS - OAR. In Situ sensor, airborne, satellite monitoring, and modeled. Shipboard Surveys and moored buoy monitoring. Inputs. - PowerPoint PPT Presentation

Citation preview

Page 1: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Data Integration for MPA climate tools development

Data Input/ Format Requirements

Freely Accessible and web-sharedReproducible, and Tractable for Rapid Assessment

Compatible for Multiple Downscaling Methods

In Situ sensor, airborne, satellite monitoring, and

modeled

Shipboard Surveys and moored buoy monitoring

Inputs

Ingestible for diverse user

groupsObservations- Driven

Guidance Driven

Downscaling Requirements

C-Man, CO-OPS (NOS)

Inventories, Databases, Climatologies,

Data Sources and Platforms -NWS/NBDC

-NOS/CO-OPS-NESDIS-NASA

-AVISO CNES

-NMFS- OAR

Page 2: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Integrated Uses of Satellite Ocean Climate Data for MPAshttp://ccma.nos.noaa.gov/ecosystems/sanctuaries/olympic_nms.html

Multi-Sourced image products-NOAA/NESDIS -NASA-AVISO -Remote Sensing Systems-GPCC

Archival data records

Image/gridded products-Sea Surface Temperature-Fronts-Ocean color (chlorophyll and turbidity)-Sea Surface Height Anomalies-Currents-Winds-Precipitation/Discharge

Oceanographic/Hydrologic variables

-Monthly median/mean/anomaly calculation - Quantile analysis-Time series analysis (Hovmöllers)-Non-parametric correlations-Edge detection

Climatological Summaries

As end users of sustained operational ocean climate products, our interests were to

• Develop and utilize an OCNMS satellite- derived ocean climate baseline for evaluating present oceanographic conditions and future trends.

• Utilize baseline information to provide an educational forum for describing seasonal cycles, features, and processes through satellites.

• Document a process for integrating satellite remote sensing into NOAA-supported MPA site characterizations and evaluations.

Page 3: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Atmospheric and Climate-Air Temperature-Barometric Pressure-Winds-Photosynthetic Active Radiation-Clouds-Precipitation-ENSO -SO-AMO

Data Integration for MPA climate tools developmentIn Situ sensor, airborne and satellite monitoring

Oceanographic-Sea Surface Temperature-Currents-Sea Surface Heights-Ocean color-Winds-Tides (water level)-Waves-pH-Salinity

Biologic and Health-Fish Surveys-Coral Reef-Benthos-Seagrass-Water Quality-Contaminants

Shipboard Surveys, C-MAN, NOS, and moored buoy monitoringData Climatologies

Explanatory Data Inputs and Variable Inter-relationships

Oceanographic Conditionsand Processes

Atmospheric/Hydrologic and Climatic Conditions

Large-scale Circulation

Precipitation, Discharge, Runoff

Interannual & Decadal Oscillations

Sea Heights, Currents,Coastal Upwelling,Sea Temperature,Algal Productivity,Eddies and Fronts

Ecosystem Status and Health

Regime Shifts,Resiliency, NaturalCommunity Structure and Function

Species Diversity,Larval Retention and Dispersal,Migration patterns,Growth rates,Mortality rates

Light, Temperature, Clouds, Winds, Deposition

Transport, Tides and Sea Level,Winds, Internal Waves

Light Availability/Turbidity, Nutrients, Dissolved Oxygen, Chlorophyll a, pH

Decreasing spatial and temporal scale

Page 4: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Integrated Ecosystem and Observational Outputs

Governing Processes

Climate DriversBaseline Atlas

Decision Support and Education Tools

Parameter Deviations

Regional Patterns

Heuristic Programming Expert ConsensusGap Analysis

Accuracy Assessment

Climate Impact Assessment Ecological forecasts Climate Observing Network

Scenario Analyses

Field Evaluation

Data Integration for MPA climate tools development

Seasonal Cycles

Explanatory Data Inputs and Variable Inter-relationships

Oceanographic Conditionsand Processes

Atmospheric/Hydrologic and Climatic Conditions

Large-scale Circulation

Precipitation, Discharge, Runoff

Interannual & Decadal Oscillations

Sea Heights, Currents,Coastal Upwelling,Sea Temperature,Algal Productivity,Eddies and Fronts

Ecosystem Status and Health

Regime Shifts,Resiliency, NaturalCommunity Structure and Function

Species Diversity,Larval Retention and Dispersal,Migration patterns,Growth rates,Mortality rates

Light, Temperature, Clouds, Winds, Deposition

Transport, Tides and Sea Level,Winds, Internal Waves

Light Availability/Turbidity, Nutrients, Dissolved Oxygen, Chlorophyll a, pH

Decreasing spatial and temporal scale

Page 5: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Questions:

1)Given vast data sources, and platforms- What are the general data source requirements given project time frame?

• Data sources should have no restrictions on access, usage, or dissemination• Originators data and derived data should be easily accessible, reproducible, and

tractable • Data can be housed in separate offices, but web-sharing should be considered• Compatible for multiple downscaling methods

2)Given diverse data types- What are the general data guidelines to build a comprehensive site characterization of regional to local climate and impacts, given project time frame?

• Spatial considerations (depends on downscaling method) • Temporal considerations (base intervals, temporal coverage)

3)Many tailored products and tools available- What are the general output requirements given project time frame?

• Comparable to future• Ingestible for diverse end user groups• Timely for Rapid Assessment and Forecasting

Data Integration for MPA climate tools development

Page 6: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

NCCOS Interests

MPA site evaluations:

•Climatological baselines of merged satellite information, in situ data, and derived model outputs should be a requirement for any MPA site characterization/evaluation:

•Goal is to keep integrated approaches intact for the MPA climate agenda, through “descriptive downscaling”, and improved understanding of the linkages between climate drivers, ocean responses, and ecosystem shifts.

•NCCOS can serve as one of the science links to ONMS for this project.

Page 7: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

NOS/NCCOS Mission Statement in Climate and Marine Ecosystems- To provide local and national coastal managers with reliable climate tools for understanding human-climate interactions, and impacts on processes, species, and habitats.

• Requires collaborative involvement with operational data centers, and coastal management offices, and a familiarity with operational product lines and services.

• Requires the development of tailored products, including data climatologies and other interpretive tools.

• Requires knowledge and expertise in multiple disciplines, working to integrate all data types of interest.

Page 8: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

…more on Data sources…more on OCNMS ocean climate methods and results

Page 9: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Characterization of Satellite Ocean Climate Data for the Olympic Coast National Marine Sanctuary- To provide critical marine elements for the OCNMS Management Plan Review. http://ccma.nos.noaa.gov/ecosystems/sanctuaries/olympic_nms.html

As end users of sustained climate products, interests were to

• Develop and utilize an OCNMS satellite- derived ocean climate baseline for evaluating present oceanographic conditions and future trends.

• Utilize baseline information to provide an educational forum for describing seasonal cycles, features, and processes through satellites.

• Document a process for integrating satellite remote sensing into NOAA-supported MPA site characterizations and evaluations.

Currents (cm/sec)F 0.1 - 3.6 F 3.6 - 11.8 F >11.8

Winds (m/sec)

# 3.8 - 8.0

#

8.0 - 10.4

#

10.4 - 18.4

Turbidity (Rrs670) Value (1/sr)

Sea Surface Height Anomaly (cm)

Chlorophyll Concentration (µg/L)

Sea Surface Temperature (°C)

SeaWiFS Turbidity (Rrs670) Value ('97-'07)SeaWiFS Chlorophyll ('97-'07) and QuikSCAT winds ('99-'07)

Sea Surface Height Anomaly and Currents ('92-'07)Pathfinder (CoRTAD) Sea Surface Temperature ('85-'06)

Jan JulJulJan

# #######

#### ## #

###

# ##

#

# #

# #

# # #

# #

# #

# ### # #

### ## ## ## ###

# ##

# #

## ###

# #### ## #######

#

# #

#

# ## #

# #### # ########

##

#

# # #

# ##### #

# ## #

##

####

# #

#

# # #

# #

### #

# # ## #

#########

## #

# # #

# ## # ##### #

# # #

## ### #### ## #

#

# # #

# #######

# # # #

# ######

## # #

## ## ## ####

# # #

# # #

# # #

# #

# ####

#

# # #

## ## #

# ## ##### #

### #

# # #

# #

## ## ## # #

# # #

#####

# # #

# # #

# ## #

# #

##

#

# #

###

### ### # #

#

# # #

#

#

##

# #

# # # #

# # # #

#

#

## #

#

# #

# # ##

# # #

# #

# #

#

# ##

# #

# #

# #

# ##

48

°N4

6°N

######

#

#### ########

#

## ###########

# # ## #

#

##############

####### # ## # # # # # # ## # # # # # # ## # # # # # # #

####################################

###### # # # ## # # # # # # # # ## # # # # ## #

#

######################

###

### #

# #### # # # # # ## # # # ###

##

####

## #

# # # # # #

# # # # # # # #

# ##

# # #

#

##

#####

## #

### #

# ## #

# # ##

##

## #

#

##

## #

#

##

##

#

# #

##

#

##

##

##

##

## #

###

#

#

#

#

# # ##

#

#

#

#

#

#

##

#

#

#

#

# #

# #

#

#

#

#

#

#

##

# ## #

# #

#

#

#

# #

# #

# #

# # ##

#

#

# #

# #

#

# #

#

# #

# #

JulJan

E

EE

E

EE

E

EEE

EE

E

E

E

E E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

EE

EE E

E

E

EE

E

E

E

E

E E

E

E

E

E

E

E

EE

E

E

EE

E

E

E

E

E

E

E

E

E

EE

EE

E

EE E

E

EE

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E E

E

E

E

E

E

EE

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E EE

E

E

E

E

E

E

E

E

E

EE

E

E

E

E

E

EE

E

E

E

E

E

E

E

E E

E

E

E

E

E

E

E

E

E

E

E

EE

E

E

E

EE

E

E

EE

E

E

E

E

E

E

EE

E

E

E

E

E

E

E

EE

E

124°W126°W

FFF

F

F

F

F

FF

F

F

F

F

F

FFF

F

F

FF

F

F

FF

FF

F

F

FF

F

F

F

F

F

FF

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

124°W126°WJulJan

124°W126°W

48

°N4

6°N

124°W126°W

Page 10: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Data Synthesis

Sea Surface Height Anomaly and Currents ('92-'07)Pathfinder (CoRTAD) Sea Surface Temperature ('85-'06)JulJan

E

EE

E

EE

E

EEE

EE

E

E

E

E E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

EE

EE E

E

E

EE

E

E

E

E

E E

E

E

E

E

E

E

EE

E

E

EE

E

E

E

E

E

E

E

E

E

EE

EE

E

EE E

E

EE

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E E

E

E

E

E

E

EE

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E EE

E

E

E

E

E

E

E

E

E

EE

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E E

E

E

E

E

E

E

E

EE

E

E

EE

E

E

E

EE

E

E

EE

E

E

E

E

E

E

EE

E

E

E

E

E

E

E

EE

E

124°W126°W

FFF

F

FF

F

FF

FF

FF

F

FFF

F

F

F

F

F

F

FF

FF

F

F

FF

F

F

FF

F

FF

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

FF

F

F

F

FF

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

124°W126°WJulJan

124°W126°W

48

°N4

6°N

124°W126°W

-0.75 0-0.25-0.50 +0.25 +0.50 +0.75-0.75 0-0.25-0.50 +0.25 +0.50 +0.75

Monthly climatologies SST SSHA

Time series plots (Hovmoller Diagrams)

+0.5-1.5 -0.5 0 +1.5 > +3< -313 1511 16<7 >1814128 109 17

Monotone Relationships

Rho (Correlation) Maps

Page 11: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Results

Currents (cm/sec)F 0.1 - 3.6 F 3.6 - 11.8 F >11.8

Winds (m/sec)# 3.8 - 8.0

#

8.0 - 10.4

#

10.4 - 18.4

Turbidity (Rrs670) Value (1/sr)

Sea Surface Height Anomaly (cm)

Chlorophyll Concentration (µg/L)

Sea Surface Temperature (°C)

SeaWiFS Turbidity (Rrs670) Value ('97-'07)SeaWiFS Chlorophyll ('97-'07) and QuikSCAT winds ('99-'07)

Sea Surface Height Anomaly and Currents ('92-'07)Pathfinder (CoRTAD) Sea Surface Temperature ('85-'06)

Jan JulJulJan

# #######

#### ## #

###

# ##

#

# #

# #

# # #

# #

# #

# ### # #

### ## ## ## ###

# ##

# #

## ###

# #### ## #######

#

# #

#

# ## #

# #### # ########

##

#

# # #

# ##### #

# ## #

##

####

# #

#

# # #

# #

### #

# # ## #

#########

## #

# # #

# ## # ##### #

# # #

## ### #### ## #

#

# # #

# #######

# # # #

# ######

## # #

## ## ## ####

# # #

# # #

# # #

# #

# ####

#

# # #

## ## #

# ## ##### #

### #

# # #

# #

## ## ## # #

# # #

#####

# # #

# # #

# ## #

# #

##

#

# #

###

### ### # #

#

# # #

#

#

##

# #

# # # #

# # # #

#

#

## #

#

# #

# # ##

# # #

# #

# #

#

# ##

# #

# #

# #

# ##

48

°N4

6°N

######

#

#### ########

#

## ###########

# # ## #

#

##############

####### # ## # # # # # # ## # # # # # # ## # # # # # # #

#############

#######################

###### # # # ## # # # # # # # # ## # # # # ## #

#

####

##################

###

### #

# #### # # # # # ## # # # ###

##

####

## #

# # # # # #

# # # # # # # #

# ##

# # #

#

##

#####

## #

### #

# ## #

# # ##

##

## #

#

##

## #

#

##

##

#

# #

##

#

##

##

##

##

## #

###

#

#

#

#

# # ##

#

#

#

#

#

#

##

#

#

#

#

# #

# #

#

#

#

#

#

#

##

# ## #

# #

#

#

#

# #

# #

# #

# # ##

#

#

# #

# #

#

# #

#

# #

# #

JulJan

E

EE

E

EE

E

EEE

EE

E

E

E

E E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

EE

EE E

E

E

EE

E

E

E

E

E E

E

E

E

E

E

E

EE

E

E

EE

E

E

E

E

E

E

E

E

E

EE

EE

E

EE E

E

EE

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E E

E

E

E

E

E

EE

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E EE

E

E

E

E

E

E

E

E

E

EE

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E E

E

E

E

E

E

E

E

E

E

E

E

EE

E

E

E

EE

E

E

EE

E

E

E

E

E

E

EE

E

E

E

E

E

E

E

EE

E

124°W126°W

FFF

F

F

F

F

FF

F

F

F

F

F

FFF

F

F

F

F

F

F

FF

FF

F

F

FF

F

F

F

F

F

FF

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

124°W126°WJulJan

124°W126°W

48

°N4

6°N

124°W126°W

Seasonal Patterns:

•Downwelling peak- December/January- onshore mean flow- Elevated SSHA- lowest Chl/Highest Turbidity

• Upwelling peak - July/September- offshore mean flow- Decreased SSHA- highest Chlorophyll (September)- Lowest coastal SST versus off-shelf SST (September)

Page 12: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Key Technical Findings

Typical Conditions:Sea Surface Temperature-Seasonal warming/cooling-Upwelling-Juan de Fuca Outflow and eddy circulation-Transport

Sea Surface Height Anomalies-Seasonal warming/cooling-Upwelling-Juan de Fuca Outflow and eddy circulation-Wind Effects

Currents-Transition periods

Ocean Color-Juan de Fuca outflow, eddy circulation and transport-Ekman-induced Pulses-Winter pulse?-Coastal precipitation vs. Columbia River plume

Winds-Transition periods-Coincident with mid-shelf chlorophyll drop in Fall

Seasonal Cycles

Win

ter

do

wn

wel

lin

gFalltransition

Spring/early summer upwelling period

Late summer/ early fall transport and

upwelling period

Win

ter

do

wn

wel

lin

g

Springtransition

DecNovOctSepAugJulJunMayAprMarFebJanMonth

0.00020.0005

0.001

0.003

.01

.03

.08

1/sr

0.050.1

0.5

1

5

10

20

µg/L

10

>15

>15

0

cm

5

5

10

15

>7

>18

12

9

°C

5 m /s

N

FallTransition

Spring Transition

FallTransition

Spring Transition

Summer warming

Juan de Fuca Strait

Winterpulse

Wind effects Density driven effects

Coastal runoff

Columbia River plume influence

JDF induced blooms

Ekman Induced Pulses

Page 13: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Ocean Climate Summary for OCNMS

Seasonal Cycles:

• Winter Downwelling

• Spring Transition

•Spring/early Summer Bloom period

• Spring/early Summer Bloom period

• Spring/early Summer Bloom period

5 cm /s

N

0.05 0.1 0.5 1 5 10 200.05 0.1 0.5 1 5 10 20

5 m /s

N

Page 14: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Key Technical Findings Cont.SST Fronts and Chlorophyll Variability

Chorophyll and SST along front directions

0.05 0.1 0.5 1 5 10 200.05 0.1 0.5 1 5 10 200.05 0.1 0.5 1 5 10 200.05 0.1 0.5 1 5 10 200.05 0.1 0.5 1 5 10 200.05 0.1 0.5 1 5 10 200.05 0.1 0.5 1 5 10 200.05 0.1 0.5 1 5 10 20

SAlong-front Direction

Center of Circulation

Features:

SST frontal persistence estimates-Edge Detection methods-Frontal characteristics (upwelling, eddy, shelf slope) -Increased convergence at surface?-Increased biological activity?-eddy circulation and movement

Chlorophyll variability estimates-Quantiles (75th – 25th) -Co-located with SST fronts (at times)-Increased activity outside OCNMS?-Persistent vs. ephemeral chlorophyll enhancements (what’s more important?)

Shelf and Slope Fronts

Eddy-induced Fronts

GOES Frontal Probabilities (%)

20 40 8020 40 80

0.46 0.92 1.38 1.840.46 0.92 1.38 1.840.46 0.92 1.38 1.840.46 0.92 1.38 1.84

Shelf and Slope Fronts

Eddy-induced Fronts

Page 15: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

-

-0.75 0-0.25-0.50 +0.25 +0.50 +0.75-0.75 0-0.25-0.50 +0.25 +0.50 +0.75-0.75 0-0.25-0.50 +0.25 +0.50 +0.75-0.75 0-0.25-0.50 +0.25 +0.50 +0.75

-0.75 0-0.25-0.50 +0.25 +0.50 +0.75-0.75 0-0.25-0.50 +0.25 +0.50 +0.75 -0.75 0-0.25-0.50 +0.25 +0.50 +0.75-0.75 0-0.25-0.50 +0.25 +0.50 +0.75

SST vs. chlorophyll relationshipMay July

Turbidity vs. Columbia R. discharge (left) and Precipitation (right) January January

Variable Inter-relationships: Rank Correlations (Spearman’s)

SST/Chlorophyll --Negative relationship in Spring (May)-Positive relationship in Summer (July)-Hints at upwelling, enhanced vertical mixing in summer, and light/temperature

Turbidity (Rrs670)/Columbia R. Discharge--Negative relationship inside Sanctuary -Mid-shelf influence apparent

Turbidity (Rrs670)/Precipitation--Positive relationship inside sanctuary -coastal precipitation is dominant influence on Turbidity signals

Key Technical Findings Cont.

Page 16: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Ocean Summary

January

July September

May

Downwelling

Downwellng AND Coastal influence

AND Columbia River

Columbia R. Plume

Upwelling ANDJuan de Fuca outflow/eddy

Light ANDTransport

Light AND upwellingAND Juan de Fuca

outflow/eddy

Light AND transportAND coastal/estuarine

Columbia River plume

veers north because ofCoriolis and wind.

Wind

Wind

Wind

Upwelling

Wind

Columbia River plume

TransportProcesses

Light AND upwellingAND Juan de Fuca

outflow/eddy

Light AND Upwelling AND coastal/estuarine

Columbia River plume

Spatially and temporally resolved natural ocean zones:

-highly dynamic and complex information

-Highly analytical/semi-objective

-How can we apply these natural ocean zones to OCNMS educational forums, monitoring strategies, or management plans

Page 17: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Effects of climate and variable response within sanctuary:

-Warm ENSO has positive effect on SST, SSHA and negative effect on chlorophyll

-Many other forcing factors involved (large-scale wave propagation, pressure gradients, density gradients)

-Regional versus local scale forcing

SST 1985 2006

Ocean Summary

Page 18: Data Integration for MPA climate tools development

IMPACT Workshop, January 11-14, 2009

Acknowledgements

-OCNMS Project Team (Ed Bowlby, Nancy Wright, John Barimo, and others…thanks) and Remote sensing representatives from regional IOOS, NMFS, and Academia

-NOAA Internal Review Team- CCMA (Tracy Gill, Matt Kendall, John Christensen, Rick Stumpf), NOS (Pam Rubin, Gini Kennedy), NESDIS/NODC (Ken Casey), NOAA/OCRM/ORR (Bill Lehr)

-External Review Team- Cooperative Institute for Oceanographic Satellite Studies at OSU (Ted Strub, Maria Kavanaugh, Roberto Venegas), U. of Washington School of Oceanography (Barbara Hickey), U. of Maine School of Marine Sciences (Andrew Thomas)