67
DATA BASE MONITORING OF POWER SYSTEM USING POWER-GIS: A CASE STUDY OF UNIVERSITY OF BENIN UGBOWO CAMPUS (SITE A). A PROJECT PRESENTED BY AGBONAVBARE KELLY .I ENG/0701803 SUPERVISED BY: ENGR. DR. E. A. OGUJOR DEPARTMENT OF ELECTRICAL/ELECTRONIC ENGINEERING UNIVERSITY OF BENIN BENIN CITY

Data Base Monitoring of Power System Using Power 3

  • Upload
    kelly

  • View
    27

  • Download
    6

Embed Size (px)

DESCRIPTION

This research involves the conceptual design of using fault sensors together with GPS to detect location of faults in University of Benin electrical power distribution network. It also involved the creation of a GPS tracking server so that detection of fault location can be achieved.

Citation preview

Page 1: Data Base Monitoring of Power System Using Power 3

DATA BASE MONITORING OF POWER SYSTEM USING POWER-GIS: A CASE

STUDY OF UNIVERSITY OF BENIN UGBOWO CAMPUS (SITE A).

A PROJECT

PRESENTED BY

AGBONAVBARE KELLY .I

ENG/0701803

SUPERVISED BY:

ENGR. DR. E. A. OGUJOR

DEPARTMENT OF ELECTRICAL/ELECTRONIC ENGINEERING

UNIVERSITY OF BENIN

BENIN CITY

OCTOBER 2012

Page 2: Data Base Monitoring of Power System Using Power 3

CERTIFICATION

DATA BASE MONITORING OF POWER SYSTEM USING POWER-GIS: A CASE

STUDY OF UNIVERSITY OF BENIN UGBOWO CAMPUS (SITE A).

BY

AGBONAVBARE KELLY .I

ENG/0701803

This research project report has been read and approved by the undersigned as original and had

not been submitted in part or full for any other diploma or degree of this kind in any other

university for the award of Bachelor of Engineering (BEng) degree in the department of

Electrical Electronics Engineering, Faculty of Engineering, University of Benin, Benin City.

Accordingly; it is therefore hereby approved by

…………………………….. …………………………

ENGR. DR. E. A. OGUJOR Date

(SUPERVISED)

…………………………….. …………………………

ENGR. DR. SAM. IKE Date

(HOD)

…………………………….. …………………………

(External Examination) Date

Page 3: Data Base Monitoring of Power System Using Power 3

DEDICATION

This project is dedicated to almighty God.

Page 4: Data Base Monitoring of Power System Using Power 3

ACKNOWLEDGEMENT

There are three groups of people that make up life: Those that make things happen, those that see

things happen and those that resist things happen. ENGR. DR. E. A. OGUJOR of the department

of Electrical Electronics Engineering belongs to the first category of people. My unalloyed

appreciation goes to him for his constructive criticism that makes this work an acceptable

quality.

When I think of this personality, words are not enough to describe your unshaking love, care,

hope, etc for me. Even in times of hardest circumstance that seems impossible you always

remain steadyfast in me. You believe so much in my future and now the future is now. This

personality is no other person than my father, brother and mentor

Engr. Kennedy Osas Agbonavbare.

Also to my one and only Accountant Charles Iheneghbe Agbonavbare for your support, Tessy Esohe Agbonavbare (my baby), Jim Ihenegbe Agbonavbare, Bridget Agbonavbare, Jessica Agbonavbare, Tina Ihenegbe , Collins Ihenegbe Agbonavbare(CIA) etc to mention but a few. Thank you so much for all your love and care.

Page 5: Data Base Monitoring of Power System Using Power 3

CONTENTS

Title page i

Certification ii

Dedication iii

Acknowledgement iv

Contents v

Abstract vi

ITEMS PAGE NUMBER

CHAPTER ONE

1.0 Nomenclature 1

1.1 Introduction 2

1.2 Statement of problem.

1.3 Objective of research

1.4 Significance of the study

1.5 Scope of study

1.6 Research methodology

1.7 Research questions

1.8 Research hypotheses

CHAPTER TWO

2.0 Literature review

Page 6: Data Base Monitoring of Power System Using Power 3

ABSTRACT

This work involves the investigation of the location and database management of power system

for fault monitoring and other analysis of electric power using GIS and GPS-Tracking

development environment in University of Benin, Ugbowo Campus. The work carried out a

complete survey with the state- of- the – art instrument, Global Positioning System (GPS), in

order to capture the location and attribute data of University of Benin Electric Power System

(EPS). The location and attribute information of the various components of the power system in

digital format (GIS) is sine qua non for effective generation, transmission, distribution,

utilization and monitoring of electric power.

A phone with Global Positioning System (GPS) application was used to take geospatial

information of each component of the power system, and with the combination of old electrical

plan of the area and physical observations, attribute data of each component were collected for

technical and spatial analysis. This captured information was first plotted in Computer Aided

Design (CAD) software (AutoCAD 2010 software). The information gotten from Global

Positioning System (GPS) and satellite imagery of the area which was gotten from Google map

was used for this plot and the map of the power system was exported to GIS environment were

attribute data were entered. This data base map generated from GIS was exported to GPS

tracking software which have an interface with GPS for location monitoring.

Basic and advanced monitoring technique was carried out. At the end of the study, i was

able to have a database and the up-to-date map of the power system of University of Benin in

GIS environment including a GPS-Tracking map which can be interfaced with GPS using

satellite communication to located point on the map while the GPS is on site. The result got

made the power system in the study area to be automated for fault monitoring. Other analysis of

electric power show that GIS was effective in power system management. A New model for fault

monitoring was drawn out based on the data-base, this new model was compared to the old

model and we saw the need for implementing this technique in any power system.

Page 7: Data Base Monitoring of Power System Using Power 3

NOMENCLATURE

GIS Geo-spatial Information system

EPDI Electric Power Distribution Infrastructure

PHCN Power Holding Company of Nigeria

EPS Electric Power System

NEPA National Electric Power Authority

GPS Geo-graphic Positioning System

CAD Computer Aided Design

UNIBEN University of benin

KV Kilo Volts

KVA Kilo Volts Ampere

DAM DataBase Activity Monitoring

RCD Residual Current Device

Page 8: Data Base Monitoring of Power System Using Power 3

INTRODUCTION

Human civilized progress has historically been in proportion to the human ability to control

energy [C. A. Gross, 1979]. Today the inexorable geometric progression of population growth

has caughtwith us, making us acutely aware that our planet resources are indeed finite and the

simple ways of producing controllable energy are no longer reasonable[1]. One of the primary

contribution to the advancements and improvements in man's life-style over the years has been

the ability to use and control energy. Electrical energy is one of the form which this energy

assumes in nature. Therefore electrical energy generation and delivery system are and will

continue to be of fundamental importance to a technological society. The need also arises for a

means of monitoring, managing and controlling these generation and delivery system.

Complexity of electrical distribution power system is a good reason for introducing new

information technology - GIS (Geographic Information System) that carries out complex power

system analyses (e.g., fault analysis, optimization of networks, load forecasting) in acceptable

amount of time.

A situation where large amounts of power are generated at power plants and sent to a network of

high-voltage (400, 220 or 110 kV) transmission lines; These transmission lines supply power to

medium voltage (e.g. 10 or 20 kV) distribution networks (distribution primary system), which

supply power to still lower voltage (0.4 kV) distribution networks (distribution secondary

system); Both distribution network lines supply power to customers directly; Thus, the total

network is a complex grid of interconnected lines. This network has the function of transmitting

power from the points of generation to the points of consumption.

The distribution system is particularly important to an electrical utility for two reasons: its

proximity to the ultimate customer and its high investment cost. The objective of distribution

system planning is to ensure that the growing demand for electricity, with growing rates and

high load densities, can be satisfied in an optimum way, mainly to achieve minimum of total

cost of the distribution system expansion.

WHAT IS GIS: There is no unique definition for Geographic Information System (GIS)

but a commonly accepted one is that it is a system with computer hardware and software

functions for the spatial data input, storage, analysis, and output [T. Bernhardsen 1992]. Many

Page 9: Data Base Monitoring of Power System Using Power 3

textbook definitions go further and identify analysis as the one activity which differentiates GIS

from other computer-based systems for handling geographic data. Modern GIS, stores

information on the geometry, attributes and topology of geographic features in one relational

database management system

Database plays a central role in the operation of planning, where analysis programs form a part

of the system supported by a database management system which stores, retrieves, and modifies

various data on the distribution systems. The thing that distinguishes an electrical utility

information system from another information system - such as those used in banking, stock

control, or payroll systems - is needed to record geographical information in the database.

Electrical utility companies need two types of geographical information: details on the location

of facilities, and information on the spatial interrelations between them. The integration of

geographically referenced database, analytical tools and in-house developed software tools will

allow the system to be designed more economically and to be operated much closer to its limits

resulting in more efficient, low-cost power distribution systems. Additional benefits such as

improved material management, inventory control, preventive maintenance and system

performance can be accomplished in a systematic and cost-effective manner (Z.Sumic, et al,

1993). Before graphical workstations were developed, many electric utilities have built technical

information systems based on relational database management systems (E.Jorum, et al, 1993.).

Technical information system is designed to cover the requirements of power supply utilities

considering network expansion and operation planning, maintenance management and system

documentation.

STATEMENT OF PROBLEM.

There is persistent power outage in Nigeria power system resulting in unreliable power supply.

Sometimes, when fault occurs it takes time to notify field crew, detect the fault, and know the

exalt location where the fault is. This is because power system covers large geographic area. This

scenario makes the system unreliable, unorganized, unprotected for continuity of service, etc.

Page 10: Data Base Monitoring of Power System Using Power 3

OBJECTIVE OF RESEARCH

• To create an up-to-date digital map of the power system network in University of Benin

Ugbowo campus in AutoCAD development environment.

• To create an up-to-date comprehensive data-base digital map of the power system

network in University of Benin Ugbowo campus in GIS development environment.

• To create an up-to-date GPS Tracking digital map of the power system network in

University of Benin Ugbowo campus in GpsMapping development environment.

• To use the result of GIS to analyse the power system of the study area.

• To provide a reliable means of monitoring power system network for fault occurrence in

the study area using GpsMapping development environment.

• To create awareness of the need to deploy GIS and GPS application in design and

management of power system.

1.3 SIGNIFICANCE OF THE STUDY

• A well organised power system with database that will be developed in the study

area can be use for technical power system analysis for better reliability of service and customer

satisfaction.

• This study can be applied in any other location where there is power system and

the same analysis done for better reliability and customer satisfaction

• The outcome of this analysis can be a recommended as an optimization tool for

Power Holding Company of Nigeria (PHCN).

• Distribution Automation (DA) can be realize for this power system if a fault

sensor is use to trigger a GPS device on so that the GPS Map can detect the location of where

fault occurred. This is an additional hardware that will be located in each component of the

system.

1.4 SCOPE OF STUDY

This work delves into data base monitoring of power system using GIS/GPS in typical

Nigerian environment. Site A in University of Benin Ugbowo campus, Edo State was the case

Page 11: Data Base Monitoring of Power System Using Power 3

study area selected for this monitoring. The existing infrastructure of the power system in the

study area was monitored in GIS/GPS environment. All the components of the power system in

the study area was captured and analysed.

1.6 RESEARCH METHODOLOGY

The research methodology includes

• Desk studies: Literature review; Review of best practice in development; preparation for

Pro-forma (Field instruments) for field data collection; Existing Power distribution

network data acquisition/review, examining mathematical models for the power

distribution network infrastructure, generation transmission and maintenance.

• Field data acquisition: The Geo-spatial data of University of Benin Ugbowo campus

electric power distribution network were acquired using the Global Positioning System

(GPS) while the attribute data were also captured using the name plate on each componets

of the power system.

• Data processing The GPS readings of the electric power distribution network of the study

area captured in geographic coordinates were converted to plane rectangular coordinates.

• Model formulation: The modeling of the electric power distribution networks in the

study area was carried out with Computer Aided Design software (AutoCAD) , GIS and

GpsMapping.

• Integrating electric power distribution models and GIS; designing and creation of

spatial database system: The Electric Power distribution infrastructure (EPDI) models

for the study area was integrated with Power GIS software. Spatial database systems for

the water distribution infrastructure were designed and created.

• Data Analysis and Management in GIS Environment: The Electric power distribution

infrastructure (EPDI) model for the study area was integrated with GIS software for

spatial data analysis and management. Several spatial queries and analyses were

performed on the GIS data.

Page 12: Data Base Monitoring of Power System Using Power 3

• Data Analysis and Management in GPSMAPPING Environment: The Electric power

distribution infrastructure (EPDI) model for the study area was integrated with GPS-

mapping software for Automated fault monitoring and detection of locations

1.7 RESEARCH QUESTIONS

• Why is there no constant and reliable supply of electric power in Nigeria? Or Is it that

OHM’S LAW is failing in Nigeria?

• Why does it take to much time for maintenance team of a power system to solve a fault

problem?

1.8 RESEARCH HYPOTHESES

• There is no constant supply of electric power in Nigeria.

• Electric power system in Nigeria is not reliable; this makes consumers to invest in their

own MINI-GENERATING STATION which is not environmental friendly.

• When fault occurs in power system it takes too much time for customers to get PHCN

authorities and it takes another time for them to find the fault and bring the network back

to life.

Page 13: Data Base Monitoring of Power System Using Power 3

CHAPTER TWO

LITERATURE REVIEW

2. 0 INTRODUCTION

In the year 2001, the Federal Government of Nigeria (FGN), worked very hard to see to

the realization of steady power supply by the end of 2001 in the country. The President

made this clear when he gave a mandate to the then National Electric Power Authority

(NEPA) to ensure uninterrupted power supply to the nation by 31st December 2001. It

was noted that NEPA has raised electricity output from as low as 1,600 megawatts to

4,000 megawatts and over one billion dollars spent in order to meet up with the mandate

(This Day Newspaper, 2002). Yet, erratic power supply and outages remain a major

problem confronting the nation today.

According to Pickering et al 1993, any organization that expects to run an efficient day-

to-day operation and to manage and develop its services effectively must know what

asset it has, where they are, their condition, how they are performing, and how much it

costs to provide the service. Emengini (2004) noted that knowledge about physical assets

of the enterprise is necessary to make strategic and operation decisions. Thus, to take

wise decisions vital to the operations, growth and management of electricity distribution

facilities, information must be collected and analysed to its full extent, such information

contributes not only to efficient services, but also to the operation and maintenance of

assets, and to the sensible planning of extensions and new works.

Literature is available about the case studies of GIS in management of Electricity

Distribution Network.

An automated system was developed for the then National Electric Power Authority (NEPA),

Onitsha-North L. G. A., Anambra state, Nigeria. The developed system was put to test by

carrying out a number of GIS operation and analysis. Results obtained were displayed in

graphics and tables. From the results it has been ascertained that GIS is competent and

effective tool for managing electricity distribution network.

Page 14: Data Base Monitoring of Power System Using Power 3

Turkish largest electricity distribution system has GIS based system which carries out load

flow analysis, power loss analysis, short circuit analysis, switching analysis etc.

In many utilities in Canada, GIS based distribution systems exist due to which reliability and

maintenance of systems are quite good.

Thus GIS is a competent tool for managing utilities world wide. In future also it will emerge as an

effective data collection source, helping the utility to function efficiently.

ELECTRICITY

Generally, electricity could be accepted to mean supply of electric current. This involves

generation, transmission and distribution of the electric current to consumers. Electricity is an

aspect of the utility sector that is very essential to the smooth and meaningful development of a

society. It supports the economy and promotes the well-being of individuals. Efficient

functioning of this utility is of paramount importance for the sustenance of its growth and

consequential realization of its planning and managerial objectives.

WHAT IS ELECTRIC POWER SYSTEM (EPS)

An Electric Power System is a network of electrical components used to supply, transmit and

use electric power. An example of an electric power system is the network that supplies

University of Benin Ugbowo campus with Electric power, this power system can be divided into

the generators that supply the power, the transmission system that carries the power from the

generating centres to the load centres and the distribution system that feeds the power to nearby

homes and industries. Smaller power systems are also found in industry, hospitals, commercial

buildings and homes. The majority of these systems rely upon three-phase AC power - the

standard for large-scale power transmission and distribution across the modern world.

Specialised power systems that do not always rely upon three-phase AC power are found in

aircraft, electric rail systems, ocean liners and automobiles.

BRIEF HISTORY OF ELECTRIC POWER SYSTEM

Page 15: Data Base Monitoring of Power System Using Power 3

In 1881 two electricians built the world's first power system at Godalming in England. It

was powered by a power station consisting of two waterwheels that produced an alternating

current that in turn supplied seven Siemans arc lamps at 250 volts and 34 incandescent lamps at

40 volts. However supply to the lamps was intermittent and in 1882 Thomas Edison and his

company, The Edison Electric Light Company, developed the first steam powered electric power

station on Pearl Street in New York City. The Pearl Street Station initially powered around 3,000

lamps for 59 customers. The power station used direct current and operated at a single voltage.

Direct current power could not be easily transformed to the higher voltages necessary to

minimise power loss during long-distance transmission, so the maximum economic distance

between the generators and load was limited to around half-a-mile (800 m).

That same year in London Lucien Gaulard and John Dixon Gibbs demonstrated the first

transformer suitable for use in a real power system. The practical value of Gaulard and Gibbs'

transformer was demonstrated in 1884 at Turin where the transformer was used to light up forty

kilometres (25 miles) of railway from a single alternating current generator. Despite the success

of the system, the pair made some fundamental mistakes. Perhaps the most serious was

connecting the primaries of the transformers in series so that active lamps would affect the

brightness of other lamps further down the line. Following the demonstration George

Westinghouse, an American entrepreneur, imported a number of the transformers along with a

Siemens generator and set his engineers to experimenting with them in the hopes of improving

them for use in a commercial power system.

One of Westinghouse's engineers, William Stanley, recognised the problem with connecting

transformers in series as opposed to parallel and also realised that making the iron core of a

transformer a fully enclosed loop would improve the voltage regulation of the secondary

winding. Using this knowledge he built a much improved alternating current power system at

Great Barrington, Massachusetts in 1886.

By 1890 the electric power industry was flourishing, and power companies had built thousands

of power systems (both direct and alternating current) in the United States and Europe. These

networks were effectively dedicated to providing electric lighting. During this time a fierce

rivalry known as the "War of Currents" emerged between Edison and Nikola Tesla who was

employed by Westinghouse over which form of transmission (direct or alternating current) was

Page 16: Data Base Monitoring of Power System Using Power 3

superior. In 1891, Westinghouse installed the first major power system that was designed by

Tesla to drive an electric motor and not just provide electric lighting. The installation powered a

100 horsepower (75 kW) synchronous motor at Telluride, Colorado. On the other side of the

Atlantic, Oskar von Miller built a 20 kV 176 km three-phase transmission line from Lauffen am

Neckar to Frankfurt am Main for the Electrical Engineering Exhibition in Frankfurt.[8] In 1895,

after a protracted decision-making process, the Adams No. 1 generating station at Niagara Falls

began transferring three-phase alternating current power to Buffalo at 11 kV. Following

completion of the Niagara Falls project, new power systems increasingly chose alternating

current as opposed to direct current for electrical transmission.

Developments in power systems continued beyond the nineteenth century. In 1936 the first

experimental HVDC (high voltage direct current) line using mercury arc valves was built

between Schenectady and Mechanicville, New York. HVDC had previously been achieved by

series-connected direct current generators and motors (the Thury system) although this suffered

from serious reliability issues.[10] In 1957 Siemens demonstrated the first solid-state rectifier, but

it was not until the early 1970s that solid-state devices became the standard in HVDC.[11] In

recent times, many important developments have come from extending innovations in the

information technology and telecommunications field to the power engineering field. For

example, the development of computers meant load flow studies could be run more efficiently

allowing for much better planning of power systems. Advances in information technology and

telecommunication also allowed for remote control of a power system's switchgear and

generators.

COMPONENTS OF ELECTRIC POWER SYSTEMS

The majority of the world's power still comes from coal-fired power stations.

All power systems have one or more sources of power. For some power systems, the source of

power is external to the system but for others it is part of the system itself - it is these internal

power sources that are discussed in the remainder of this section. Direct current power can be

supplied by batteries, fuel cells or photovoltaic cells. Alternating current power is typically

supplied by a rotor that spins in a magnetic field in a device known as a turbo generator. There

Page 17: Data Base Monitoring of Power System Using Power 3

have been a wide range of techniques used to spin a turbine's rotor, from steam heated using

fossil fuel (including coal, gas and oil) or nuclear energy, falling water (hydroelectric power) and

wind (wind power).

Electricity grid systems connect multiple generators and loads operating at the same frequency

and number of phases, the commonest being three-phase at 50 or 60 Hz. However there are other

considerations. This range from the obvious: How much power should the generator be able to

supply? What is an acceptable length of time for starting the generator (some generators can take

hours to start)? Is the availability of the power source acceptable (some renewables are only

available when the sun is shining or the wind is blowing)? To the more technical: How should

the generator start (some turbines act like a motor to bring themselves up to speed in which case

they need an appropriate starting circuit)? What is the mechanical speed of operation for the

turbine and consequently what are the number of poles required? What type of generator is

suitable (synchronous or asynchronous) and what type of rotor (squirrel-cage rotor, wound rotor,

salient pole rotor or cylindrical rotor)?

A toaster is great example of a single-phase load that might appear in a residence. Toasters

typically draw 2 to 10 amps at 110 to 260 volts consuming around 600 to 1200 watts of power

Power systems deliver energy to loads that perform a function. These loads range from

household appliances to industrial machinery. Most loads expect a certain voltage and, for

alternating current devices, a certain frequency and number of phases. The appliances found in

your home, for example, will typically be single-phase operating at 50 or 60 Hz with a voltage

between 110 and 260 volts (depending on national standards). An exception exists for centralized

air conditioning systems as these are now typically three-phase because this allows them to

operate more efficiently. All devices in your house will also have a wattage, this specifies the

amount of power the device consumes. At any one time, the net amount of power consumed by

the loads on a power system must equal the net amount of power produced by the supplies less

the power lost in transmission.

Making sure that the voltage, frequency and amount of power supplied to the loads is in line with

expectations is one of the great challenges of power system engineering. However it is not the

only challenge, in addition to the power used by a load to do useful work (termed real power)

many alternating current devices also use an additional amount of power because they cause the

Page 18: Data Base Monitoring of Power System Using Power 3

alternating voltage and alternating current to become slightly out-of-sync (termed reactive

power). The reactive power like the real power must balance (that is the reactive power produced

on a system must equal the reactive power consumed) and can be supplied from the generators,

however it is often more economical to supply such power from capacitors (see "Capacitors and

reactors" below for more details).

A final consideration with loads is to do with power quality. In addition to sustained

overvoltages and undervoltages (voltage regulation issues) as well as sustained deviations from

the system frequency (frequency regulation issues), power system loads can be adversely

affected by a range temporal issues. These include voltage sags, dips and swells, transient

overvoltages, flicker, high frequency noise, phase imbalance and poor power factor.[20] Power

quality issues occur when the power supply to a load deviates from the ideal: For an AC supply,

the ideal is the current and voltage in-sync fluctuating as a perfect sine wave at a prescribed

frequency with the voltage at a prescribed amplitude. For DC supply, the ideal is the voltage not

varying from a prescribed level. Power quality issues can be especially important when it comes

to specialist industrial machinary or hospital equipment.

CONDUCTORS

Conductors carry power from the generators to the load. In a grid, conductors may be classified

as belonging to the transmission system, which carries large amounts of power at high voltages

(typically more than 50 kV) from the generating centres to the load centres, or the distribution

system, which feeds smaller amounts of power at lower voltages (typically less than 50 kV) from

the load centres to nearby homes and industry.

Choice of conductors is based upon considerations such as cost, transmission losses and other

desirable characteristics of the metal like tensile strength. Copper, with lower resistivity than

aluminium, was the conductor of choice for most power systems. However, aluminum has lower

cost for the same current carrying capacity and is the primary metal used for transmission line

conductors. Overhead line conductors may be reinforced with steel or aluminum alloys.

Conductors in exterior power systems may be placed overhead or underground. Overhead

conductors are usually air insulated and supported on porcelain, glass or polymer insulators.

Cables used for underground transmission or building wiring are insulated with cross-linked

polyethylene or other flexible insulation. Large conductors are stranded for ease of handling;

Page 19: Data Base Monitoring of Power System Using Power 3

small conductors used for building wiring are often solid, especially in light commercial or

residential construction.

Conductors are typically rated for the maximum current that they can carry at a given

temperature rise over ambient conditions. As current flow increases through a conductor it heats

up. For insulated conductors, the rating is determined by the insulation.[24] For overhead

conductors, the rating is determined by the point at which the sag of the conductors would

become unacceptable.

CAPACITORS AND REACTORS

The majority of the load in a typical AC power system, is inductive; the current lags behind the

voltage. Since the voltage and current are out-of-sync, this leads to the emergence of a "useless"

form of power known as reactive power. Reactive power does no measurable work but is

transmitted back and forth between the reactive power source and load every cycle. This reactive

power can be provided by the generators themselves but it is often cheaper to provide it through

capacitors, hence capacitors are often placed near inductive loads to reduce current demand on

the power system. Power factor correction may be applied at a central substation or adjacent to

large loads.

Reactors consume reactive power and are used to regulate voltage on long transmission lines. In

light load conditions, where the loading on transmission lines is well below the surge impedance

loading, the efficiency of the power system may actually be improved by switching in reactors.

Reactors installed in series in a power system also limit rushes of current flow, small reactors are

therefore almost always installed in series with capacitors to limit the current rush associated

with switching in a capacitor. Series reactors can also be used to limit fault currents.

Capacitors and reactors are switched by circuit breakers, which results in moderately large steps

in reactive power. A solution comes in the form of static VAR compensators and static

synchronous compensators. Briefly, static VAR compensators work by switching in capacitors

using thyristors as opposed to circuit breakers allowing capacitors to be switched-in and

switched-out within a single cycle. This provides a far more refined response than circuit breaker

switched capacitors. Static synchronous compensators take it a step further by achieving reactive

power adjustments using only power electronics.

Page 20: Data Base Monitoring of Power System Using Power 3

PROTECTIVE DEVICES

Power systems contain protective devices to prevent injury or damage during failures. The

quintessential protective device is the fuse. When the current through a fuse exceeds a certain

threshold, the fuse element melts, producing an arc across the resulting gap that is then

extinguished, interrupting the circuit. Given that fuses can be built as the weak point of a system,

fuses are ideal for protecting circuitry from damage. Fuses however have two problems: First,

after they have functioned, fuses must be replaced as they cannot be reset. This can prove

inconvenient if the fuse is at a remote site or a spare fuse is not on hand. And second, fuses are

typically inadequate as the sole safety device in most power systems as they allow current flows

well in excess of that that would prove lethal to a human or animal.

The first problem is resolved by the use of circuit breakers - devices that can be reset after they

have broken current flow. In modern systems that use less than about 10 kW, miniature circuit

breakers are typically used. These devices combine the mechanism that initiates the trip (by

sensing excess current) as well as the mechanism that breaks the current flow in a single unit.

Some miniature circuit breakers operate solely on the basis of electromagnetism. In these

miniature circuit breakers, the current is run through a solenoid, and, in the event of excess

current flow, the magnetic pull of the solenoid is sufficient to force open the circuit breaker's

contacts (often indirectly through a tripping mechanism). A better design however arises by

inserting a bimetallic strip before the solenoid - this means that instead of always producing a

magnetic force, the solenoid only produces a magnetic force when the current is strong enough to

deform the bimetallic strip and complete the solenoid's circuit.

In higher powered applications, the protective relays that detect a fault and initiate a trip are

separate from the circuit breaker. Early relays worked based upon electromagnetic principles

similar to those mentioned in the previous paragraph, modern relays are application-specific

computers that determine whether to trip based upon readings from the power system. Different

relays will initiate trips depending upon different protection schemes. For example, an

overcurrent relay might initiate a trip if the current on any phase exceeds a certain threshold

whereas a set of differential relays might initiate a trip if the sum of currents between them

indicates there may be current leaking to earth. The circuit breakers in higher powered

applications are different too. Air is typically no longer sufficient to quell the arc that forms

Page 21: Data Base Monitoring of Power System Using Power 3

when the contacts are forced open so a variety of techniques are used. The most popular

technique at the moment is to keep the chamber enclosing the contacts flooded with sulfur

hexafluoride (SF6) - a non-toxic gas that has superb arc-quelling properties. Other techniques are

discussed in the reference.

The second problem, the inadequacy of fuses to act as the sole safety device in most power

systems, is probably best resolved by the use of residual current devices (RCDs). In any properly

functioning electrical appliance the current flowing into the appliance on the active line should

equal the current flowing out of the appliance on the neutral line. A residual current device

works by monitoring the active and neutral lines and tripping the active line if it notices a

difference. Residual current devices require a separate neutral line for each phase and to be able

to trip within a time frame before harm occurs. This is typically not a problem in most residential

applications where standard wiring provides an active and neutral line for each appliance (that's

why your power plugs always have at least two tongs) and the voltages are relatively low

however these issues do limit the effectiveness of RCDs in other applications such as industry.

Even with the installation of an RCD, exposure to electricity can still prove lethal.

POWER SYSTEMS IN PRACTICE

Despite their common components, power systems vary widely both with respect to their design

and how they operate. This section introduces some common power system types and briefly

explains their operation.

RESIDENTIAL POWER SYSTEMS

Residential dwellings almost always take supply from the low voltage distribution lines or cables

that run past the dwelling. These operate at voltages of between 110 and 260 volts (phase-to-

earth) depending upon national standards. A few decades ago small dwellings would be fed a

single phase using a dedicated two-core service cable (one core for the active phase and one core

for the neutral return). The active line would then be run through a main isolating switch in the

fuse box and then split into one or more circuits to feed lighting and appliances inside the house.

By convention, the lighting and appliance circuits would be kept separate so the failure of an

Page 22: Data Base Monitoring of Power System Using Power 3

appliance would not leave the dwelling's occupants in the dark. All circuits would be fused with

an appropriate fuse based upon the wire size used for that circuit. Circuits would have both an

active and neutral wire with both the lighting and power sockets being connected in parallel.

Sockets would also be provided with a protective earth. This would be made available to

appliances to connect to any metallic casing. If this casing were to become live, the theory is the

connection to earth would cause an RCD or fuse to trip - thus preventing the future electrocution

of an occupant handling the appliance. Earthing systems vary between regions, but in countries

such as the United Kingdom and Australia both the protective earth and neutral line would be

earthed together near the fuse box before the main isolating switch and the neutral earthed once

again back at the distribution transformer.[32]

There have been a number of minor changes over the year to practice of residential wiring. Some

of the most significant ways modern residential power systems tend to vary from older ones

include:

• For convenience, miniature circuit breakers are now almost always used in the fuse box

instead of fuses as these can easily be reset by occupants.

• For safety reasons, RCDs are now installed on appliance circuits and, increasingly, even

on lighting circuits.

• Dwellings are typically connected to all three-phases of the distribution system with the

phases being arbitrarily allocated to the house's single-phase circuits.

• Whereas air conditioners of the past might have been fed from a dedicated circuit

attached to a single phase, centralised air conditioners that require three-phase power are

now becoming common.

• Protective earths are now run with lighting circuits to allow for metallic lamp holders to

be earthed.

• Increasingly residential power systems are incorporating microgenerators, most notably,

photovoltaic cells.

Page 23: Data Base Monitoring of Power System Using Power 3

COMMERCIAL POWER SYSTEMS

Commercial power systems such as shopping centers or high-rise buildings are larger in scale

than residential systems. Electrical designs for larger commercial systems are usually studied for

load flow, short-circuit fault levels, and voltage drop for steady-state loads and during starting of

large motors. The objectives of the studies are to assure proper equipment and conductor sizing,

and to coordinate protective devices so that minimal disruption is cause when a fault is cleared.

Large commercial installations will have an orderly system of sub-panels, separate from the main

distribution board to allow for better system protection and more efficient electrical installation.

Typically one of the largest appliances connected to a commercial power system is the HVAC

unit, and ensuring this unit is adequately supplied is an important consideration in commercial

power systems. Regulations for commercial establishments place other requirements on

commercial systems that are not placed on residential systems. For example, in Australia,

commercial systems must comply with AS 2293, the standard for emergency lighting, which

requires emergency lighting be maintained for at least 90 minutes in the event of loss of mains

supply.[33] In the United States, the National Electrical Code requires commercial systems to be

built with at least one 20A sign outlet in order to light outdoor signage.[34] Building code

regulations may place special requirements on the electrical system for emergency lighting,

evacuation, emergency power, smoke control and fire protection.

ELECTRICAL FAULTS ON POWER SYSTEM

Electrical power system has a dynamic and complex behavior. Different types of faults can

interrupt the healthy operation of the power system. Some of the major Electrical faults are phase

faults include phase to phase faults and phase to ground faults and three phase faults. Other

Electrical faults are of not major significance but still are considered, Open circuit faults occurs

due to the parting of the overheadline or failure operation of the circuit breaker, Interturn fault

occurs due to the overvoltage or insulation breakdown, Electrical Faults results in the overloads

is due to the passing the current throught the conductor which is above the permissible value and

Page 24: Data Base Monitoring of Power System Using Power 3

faults due to real power deficit occurs due to mismatch in the power generated and consumed

and results in the frequency deviation and collapse of grid.

Phase Faults:

Electrical Phase faults are characterised as:

• Phase to Ground Fault

• Phase to Phase Fault

• Phase - Phase to Ground Fault

• Three Phase Fault

Phase to Ground Fault:

In this type of Electrical fault all the three sequence components (positive, negative and zero

sequence components ) are present and are equal to each other. In case of isolated neutral

connection to the generator, there will be no return path for the current. So for such fault, fault

current is zero.

Phase to Phase fault:

These are unsymmetrical faults as these faults give rise to unsymmetrical currents (Current differ

in magnitude and phase in the three phases of power system).In case of Phase to Phase fault

positive and negative sequence component of current are present, they are equal in magnitude

but opposition in phase. zero sequence components are absent.

Phase - Phase to Ground Fault:

These faults are of unsymmetrical nature. In this type of faults negative and zero sequence faults

are in opposition with positve sequence cmponents.

Three Phase Fault:

This type of faults are called symmetrical fault. This type of faults occur very rarely but more

severe compared to other faults. In this faults negative and zero sequence component currents are

absent and positive sequence currents are present.

To summarize:

Page 25: Data Base Monitoring of Power System Using Power 3

• positive sequence currents are present in all types of faults

• Negative Sequence currents are present in all unsymmetrical faults

• Zero sequence currents are present when the neutral of the system is grounded and the

fault also involves the ground, and magnitude of the neutral currents is equal to 3Io

Open Circuit Faults:

Open circuit faults occur either by overhead line parting or pole of the circuii breaker not fully

closing. This results in load imbalance on generators and motors lead to negative phase sequence

commponents in the stator current. This negative phase sequence component current s rotate at

twice the supply frequency in the opposite direction in relation to the rotor and causes additional

eddy current losses, results in temperature raise in the rotor.

Interturn faults:

Interturn faults occurs in machines i.e, Transformers, Motors and Generators. An Interturn fault

occurs due to the insulation breakdown between the turns of the same phase or between the

parallel windings belonging to the same phase of the machine. The cause of the interturn fault is

usually an overvoltge or mechanical damage of the insulation.

Interturn Faults are more severe on large alternators (generators), High voltage motors and power

transformers. Interturn fault is most ofen experienced in rotating machines where multiple

windings are present in the same groove. For large generators generally single winding rod per

groove is designed in such cases interturn fault can occur only in the winding head region.

Interturn Fault can occur at both stator and rotor for rotating machines like generators and

motors.

When an interturn fault occurs on stator of a rotating machine there is a high probability that

such fault can lead in to the ground fault.

When Interturn faults occur on the rotor winding following symptoms are observed:

• When such fault occur high excitation current is required and this is compensated by the

voltage regulator.

• Machine runs less smoothly, because of the asymmetry of the excitation curve

• magnetization of the shaft due to asymmetrical flux

Page 26: Data Base Monitoring of Power System Using Power 3

• Bearing damage due to current flowing in the bearings

Interturn faults on power transformers can be occured due to the overvoltages accompnying

ground faults or deterioration of the insulation due to chemical influence of the transformer oil.

Interturn fault current depends on the number of the turms shorted and fault currents will be

several times higher than the rated current of the windings and thus damages the windings.

Overload:

Faults due to overload will occur due to exceeding the maximum permissible load current

throught the windings, cables, or transmission lines or due to reduction in the cooling offered to

the windings.

Electrical conductor is designed in such a manner that the conductor allows permissible amount

of current without getting over heated. In this manner the current carrying rating of the conductor

is decided. When the current passed through the conductor is above permissible level, no

immediate damage occurs but over a period of time conductor insulation will be damaged due to

the excess heat generated.

In large generators and power transformers of large MW ratings, the heat generated is enarmous,

so forced fooling is provided in such cases. For large generators hydrogen cooling is provided

and for large transformers forced cooling is provided. This part is nicely presented in

Transformer Cooling Methods. When this cooling methods fail then the damage to the

equipment is certainly fast compared to the other case.

Real Power Deficit:

Under normal operation the power generated by the generators is equal to the load connected and

the losses in the power system. real power is the part of the power which does useful work i.e,

the power absorbed by the loads of the power system.

Real power deficit occur when the supply is less than the demand or loss of generating unit in the

grid.

When real power deficit occurs frequency levels in the grid starts falling down. The rate of

falling of the frequency depends on the magnitude of the deficit in the real power. In this case

primary frequency control is carried by the generators connected to the grid. Governer

mechanism connected to the turbine will try to drive the turbine with rated speed by accepting

Page 27: Data Base Monitoring of Power System Using Power 3

more fuel. In this manner little frequency deviations (Real Power Deficit) are managed. In case

of still frequency falling down scenario spinning reserves available at the plant will start

delivering power to the grid with in few seconds of frequency collapse (mainly Gas turbine

plants and hydel palnts). If still the demand and supply gap is not taken care, then load shedding

will be followed in the grid by shedding the load of the one part of the power system to

mainatain the relation between the supply and demand of real power.

WHAT IS DATABASE

A database is an organized collection of data, today typically in digital form. The data are

typically organized to model relevant aspects of reality (for example, the availability of rooms in

hotels), in a way that supports processes requiring this information (for example, finding a hotel

with vacancies).

The term database is correctly applied to the data and their supporting data structures, and not to

the database management system (DBMS). The database data collection with DBMS is called a

database system.

The term database system implies that the data is managed to some level of quality (measured in

terms of accuracy, availability, usability, and resilience) and this in turn often implies the use of

a general-purpose database management system (DBMS).[1] A general-purpose DBMS is

typically a complex software system that meets many usage requirements, and the databases that

it maintains are often large and complex. The utilization of databases is now so widespread that

virtually every technology and product relies on databases and DBMSs for its development and

commercialization, or even may have such software embedded in it. Also, organizations and

companies, from small to large, depend heavily on databases for their operations.

Well known DBMSs include Oracle, IBM DB2, Microsoft SQL Server, Microsoft Access,

PostgreSQL, MySQL, and SQLite. A database is not generally portable across different DBMS,

but different DBMSs can inter-operate to some degree by using standards like SQL and ODBC

together to support a single application. A DBMS also needs to provide effective run-time

execution to properly support (e.g., in terms of performance, availability, and security) as many

end-users as needed.

Page 28: Data Base Monitoring of Power System Using Power 3

DATABASE ACTIVITY MONITORING

Database activity monitoring (DAM) is a database security technology for monitoring and

analyzing database activity that operates independently of the database management system

(DBMS) and does not rely on any form of native (DBMS-resident) auditing or native logs such

as trace or transaction logs. DAM is typically performed continuously and in real-time.

Database activity monitoring and prevention (DAMP) is an extension to DAM that goes beyond

monitoring and alerting to also block unauthorized activities.

According to Gartner, “DAM provides privileged user and application access monitoring that is

independent of native database logging and audit functions. It can function as a compensating

control for privileged user separation-of-duties issues by monitoring administrator activity. The

technology also improves database security by detecting unusual database read and update

activity from the application layer. Database event aggregation, correlation and reporting provide

a database audit capability without the need to enable native database audit functions (which

become resource-intensive as the level of auditing is increased).”[1]

FAULT INDICATOR

This device provides visual or remote indication of a fault on the electric power system. Also

called a faulted circuit indicator (FCI), the device is used in electric power distribution networks

as a means of automatically detecting and identifying faults to reduce outage time.

Overhead indicators are used to visualize the occurrence of an electrical fault on an overhead

electrical system. Underground indicators locate faults on an underground system. Often these

devices are located in an underground vault. Some fault indicators communicate back to a central

location using radio or cellular signals.

Basic principles

During an electrical fault on a grounded system, additional current flows through a conductor,

which is picked up by the fault indicator causing a state change on the mechanical target flag,

LED, or remote indication device. Ground fault indicators for ungrounded systems sense the

Page 29: Data Base Monitoring of Power System Using Power 3

vector sum of the current and look for an imbalance indicating a fault on one or more of the three

phases.High-voltage fuses commonly drop down after operating, making it obvious where the

fault is.

History

The first fault indicators came onto the market from Horstmann (Germany) in 1946. The E.O.

Schweitzer Manufacturing Company (now a division of Schweitzer Engineering Laboratories,

Inc.) introduced a product in the U.S.A in 1948. The first fault indicators were manual reset

devices. Later fault indicators automatically reset on system restoration or after a set period of

time. More recent fault indicators communicate their status (tripped or reset) via cell signal or

radio to a central station, handheld device, or pole-mounted receiver.

Recent developments include a remotely-programmable overhead line indicator, fault indication

for paper-insulated lead cable, and an overhead fault indicator for mesh networks.

Page 30: Data Base Monitoring of Power System Using Power 3

CHAPTER THREE

METHODOLOGY

SITE DESCRIPTION:

The study area consists of an existing power system. The map that was available for the power system is shown below

Fig** source ELECTRICAL DEPARTMENT, ESTATE AND WORKS, UNIBEN

This is an analogue map which can not be use for distribution Automation (DA). It helped me to have an ideal of where the components of the power system are. With this figure about only some electrical analysis can be carried out like load flow-analysis.

Information relating to the power system in the area was only gotten from the staff of electrical department in estate and works Uniben. This information gotten was not sophisticated enough for many electrical power analyses.

When fault occurs in the network, it is difficult for the field crew members to know whether fault has occurred especially if the fault is an open circuit fault.

Page 31: Data Base Monitoring of Power System Using Power 3

But in the case of a short circuit fault, the circuit breaker in the OCB control switch at the substation will react and the attention of the field crew is drawn to that circuit.

THE OLD MODEL OF FAULT FINDINGS IN THE POWER SYSTEM OF THE STUDY AREA IS

EXPLAINED BELOW

In the event of a fault the procedure to follow is shown below

1. The consumer will report the fault to appropriate authority (estate and works

department in UNIBEN).

2. This report goes through the organization structure and finally gets to technical crew

(field crew). That is from Estate and works to Electrical department to the field crew

3. The field crew is dispatched to locate the fault by visual inspection.

4. The field crew members disconnect the faulted section and prepare the network for

repair. THE CONSUMER

ESTATE AND WORKS DEPARTMENT IN UNIBEN

REPORTS THE FAULT TO APPROPRIATE AUTHORITY

ELECTRICAL DEPARTMRNT

FIELD CREW

THE FIELD CREW IS DISPATCHED TO LOCATE THE FAULT BY VISUAL

INSPECTION

THE FIELD CREW MEMBERS DISCONNECT THE FAULTED SECTION AND PREPARE THE NETWORK FOR

REPAIR

Page 32: Data Base Monitoring of Power System Using Power 3

An estimated average time of 72 Hrs. (three 3 days) is used to get to the point where

the faulted section is disconnected. (source: Electrical department Estate and works).

It takes another logistics to prepare the network for repair. For the study area, the

procedure is as follows:

1. The chief technician prepares the budget for repair.

2. This budget passes through the organization structure from Electrical department to

the top (vice chancellor) for approval.

If approved, repair work begins and it is completed and the electricity network will

be active again. Another time lag is required for the repair works to be completed

according to the complex nature of the fault.

See the flow chart for the old model in the study area

CHIEF TECHNICIAN

BUDGET

PREPARES THE BUDGET FOR REPAIR

ELECTRICAL DEPARTMENT

VICE CHANCELOR

APPROVAL NO

PROCEED TO REPAIR

CANCEAL REPAIR

YES

Page 33: Data Base Monitoring of Power System Using Power 3

DATA COLLECTION AND ANALYSIS

A phone with GPS application was used to read the coordinate of the location of the components of the power system in the study area. An accuracy of ten metres (10m) was used. The table below shows the coordinates of the various points taken in latitude and longitude.

DESCRIPTION LATITUDE (N) LONGITUDE €RMU in front of chemical building (3 units)

6.4026 5.6160

Transformer in front of chemical building

6.4027 5.6161

Feeder pillar in front of chemical building

6.4027 5.6161

Generator in front of chemical building

6.4028 5.6162

Generator serving engineering 6.4025 5.6160Generator close to geology 6.4003 5.6162Inside control room in front of geology

6.4005 5.6153

A point along the cable in front of 500lt

6.4005 5.6150

A point along the cable in front of optometry building

6.3998 5.6148

RMU in front of optometry building (3uits)

6.3997 5.6150

Control room in front of optometry building

6.3997 5.6150

Inside generator for sciences 6.3995 5.6148Switch gear in front of sciences

6.3993 5.6149

Step up transformer in front of optometry, close to generator.

6.3994 5.6148

RMU in front of chemistry (3unit)

6.3992 5.6148

Transformer I front of chemistry

6.3992 5.6149

A point inside control room 6.3992 5.6149

Page 34: Data Base Monitoring of Power System Using Power 3

for chemistryControl room in front of zoology

6.3983 5.6144

Transformer in front of zoology

6.3984 5.6145

RMU I front of zoology (3 unit) 6.3984 5.6144RMU In front of bursary department (3 unit)

6.3977 5.6140

Feeder pillar in front of bursary dept.

6.3973 5.6140

Transformer In front of bursary

6.3973 5.6140

Change over switch from generator in front of bursaryGenerator at borehole In basement

6.3964 5.6139

Switch gear for generator 6.3965 5.6140Feeder pillar (siemens) at transformer In bore hole close to basement

6.3963 5.6139

Transformer at borehole In basement

6.3962 5.6139

RMU at borehole In basement (3 unit)

6.3963 5.6140

Generator at hall 1,2 &3 (control for gen and feeder for transformer

6.3972 5.6193

Transformer for hall 1,2 &3 6.3972 5.6193RMU in front of hostel h1,2&3 (3-units

6.3980 5.6185

Street light transformer unit in front of Access Bank

6.3964 5.6181

RMU front of Access bank (4-units) long&Crawford

6.3965 5.6180

RMU front of Access Bank old one (5-unit)

6.3963 5.6180

Transformer and feeder pillar back of library

6.3969 5.6165

Feeder going to library 6.3967 5.6169Transformer for library 1 6.3968 5.6170Transformer for library 2 6.3966 5.6169Generator at back of library 6.3967 5.6169RMU in front of education (4- 6.4005 5.6194

Page 35: Data Base Monitoring of Power System Using Power 3

units)Transformer in front of education including feeder pillar(pillar is Austin lazarus)

6.4006 5.6195

Transformer at back of computer science with Lucy feeder pillar

6.4009 5.6181

RMU in front of Social Science (5-units) 11 & 13 RMU

6.4037 5.6204

Transformer at back of social science for social science

6.4033 5.6216

Control room for social science

6.4035 5.6216

New transformer for new LTs between Education and social science

6.4030 5.6210

Feeder pillar for new LTs (ABB)

6.4027 5.6210

Generator for faculty of social science

6.4031 5.6217

Street light unit in front of social science at bus stop connected to RMU in front of social science

6.4048 5.6213

Transformer adjacent to USS, next street, feeding A-quarters including feeder pillar

6.4044 5.6184

RMU feeding transformer above (3-unit)

6.4041 5.6183

A local transformer on switch board C

6.4038 5.6173

Street light unit inside a-quarters off kashim Ibrahim street

6.4052 5.6134

Point on 11KV line to borehole

6.4053 5.6126

RMU infront of engineering admin block(2units looped to form 3 unit)

6.4036 5.6146

Transformer for civil lab including feeder pillar

6.4034 5.6167

RMU in front of Engr. 6.4024 5.6159

Page 36: Data Base Monitoring of Power System Using Power 3

Workshop(4 unit)RMU adjacent to 500LT controlling physical science connected to engr.(3 units)

6.4007 5.6153

RMU front of Geology dept.(3 unit)

6.4005 5.6152

Transformer for 500lt and geology dept.

6.4005 5.6152

RMU in front of physics dept. (3unit)

6.3997 5.6150

A point on cable 6 at the other side of the road

6.3965 5.6217

A point on the other side of the road

6.3963 5.6218

RMU numb. 1 on cable 6 in front of (near pharmacy building

6.3960 5.6219

RMU at T-junction close to medical hostel

6.3956 5.6179

A point along the the cable in front of basement

6.3948 5.6149

RMU in biochemistry close to pharmacy transformer and feeder pillar

6.3946 5.6134

RMU in front of Bursary dept. (4unit)

6.3980 5.6130

RMU in front of VCO (4 unit) 6.4008 5.6128Transformer inside Borehole with Lucy Oxford feeder pillar

6.4066 5.6097

Generator at borehole 6.4072 5.6104Dead generator at borehole 6.4073 5.6109A point on 11kv lin to borehole close to RMU

6.4044 5.6147

RMU at A-quarters serving borehole etc . road opposite fac of engineering (4 unit)

6.4043 5.6148

0.415/11Kv transformer at CEPS (1st)

6.3967 5.6226

0.415/11Kv transformer at CEPS (2nd)

6.3966 5.6225

Switch gear at CEPS 6.3968 5.6223A point close to T-junction at CEPS of 11Kv from PHCN

6.3966 5.6221

Page 37: Data Base Monitoring of Power System Using Power 3

33/11KV transformer 1 at PHCN substation in Ugbowo

6.3884 5.6119

33/11KV transformer 2 at PHCN substation in Ugbowo

6.3884 5.6120

Meter (33KV) middle of the transformers inside substation

6.3885 5.6119

A point on the transmission line to Uniben (11KV)

6.3885 5.6114

A point on the transmission line to Uniben close to Substation (11KV)

6.3887 5.6120

A point on the transmission line to Uniben opposite UBA (11KV)

6.3884 5.6106

A point on the transmission line to Uniben side of UBA close to UBTH (11KV)

6.3891 5.6100

T-junction along UBA Road close to UBA

6.3884 5.6101

A point at the gate of UBTH 6.3899 5.6099A point at the side of conoil 6.3940 5.6098A point at the side of student affair inside sport complex

6.3951 5.6120

RMU feeding hall 4 a point at CEPS

6.3968 5.6224

A point along hall 4 road close to CEPS

6.3970 5.6222

RMU close to CEPS in front of Hall 4( 3 unit) I front of sanu new building

6.3979 5.6223

Fuse box close to RMU close to CEPS in front of Hall 4

6.3780 5.6224

Change over switch close to RMU close to CEPS in front of Hall 4

6.3780 5.6224

RMU 2 in front of Agric (3 unit)

6.3996 5.6227

RMU3 in front of twin LT 6.4014 5.6231RMU 4 along hall 4 road close to health centre

6.4048 5.6237

A point in front of switch board C

6.4038 5.6174

Page 38: Data Base Monitoring of Power System Using Power 3

RMU close to USS 6.4041 5.6183OCB 12 a point in switch board A

6.3967 5.6225

A point on the line to capitol 6.3966 5.6222RMU 1 front of hall 6 6.3971 5.6249RMU 2 front of Dentistry Quarters

6.3975 5.6271

A point inside switch board B 6.3982 5.6299Transformer for agric and unit3 in hall 4 including lucy feeder pillar

6.3997 5.6231

Agric generator including breakers switch gear, control room. (unit 3 in hall 4)

6.3995 5.6231

T-junction to transformer in front of law

6.4007 5.6229

Transformer for law including change over switch for Gen &PHCN

6.4008 5.6227

RMU in front of twin LT (3 unit) serving law

6.4014 5.6230

RMU beside health centre (3 unit)

6.4048 5.6237

Transformer for health centre including Lucy oxford feeder pillar

6.4044 5.6242

Generator for health centre 6.4041 5.6243Rmu serving B-Quarters transformer (3 unit) at road opposite health centre

6.4061 5.6243

Transformer for B-quarters including Lucy Oxford feeder pillar

6.4060 5.6242

RMU at B-quarters close to guest house (4 unit)

6.4055 5.6276

Street light unit close to guest house

6.4049 5.6275

RMU at the junction of block of blocks of flat(3 unit 1 for reserve)

6.4034 5.6297

RMU at block of flat road (3 unit)

6.4044 5.6299

Transformer for block of flat 6.4042 5.6306

Page 39: Data Base Monitoring of Power System Using Power 3

after building 1 with Lucy Oxford feeder pillarDead generator house for Guest House

6.4062 5.6281

Transformer for guest house 6.4062 5.6280Transformer inside VC lodge with 3 unit RMU and Lucy Oxford feeder pillar

6.4026 5.6296

Transformer local at capitol with Lucy Oxford feeder pillar

6.3982 5.6300

RMU front of intercontinental hostel (7 unit suppose to be 6)

6.3971 5.6248

Street light unit in front of hall 6

6.3972 5.6251

Reserved transformer in front of hall6

6.3971 5.6252

New transformer in front of energy commission of Nigeria with feeder pillar

6.3970 5.6255

Transformer for dentistry including Lucy Oxford feeder pillar

6.3965 5.6245

Dead generator and control room for dentistry

6.3966 5.6243

Dead mikano generator and control room for ship house in medicine

6.3958 5.6241

Transformer for ship house in medicine

6.3957 5.6242

Transformer for hall 5 inside hall 5 including Lucy Oxford feeder pillar

6.3974 5.6243

Local transformer at CEPS 6.3968 5.6223

Table ** FIELD DATA COLLECTED USING HANDHELD GPS FOR THE STUDY AREA

DATA ANALYSIS AND PLOTING

Two types of data was collected

1. Spatial data

Page 40: Data Base Monitoring of Power System Using Power 3

2. Attribute data

The spatial data was plotted in AutoCAD 2010 development environment and the result of is shown below.

Figure ** schematic diagram of EPS for UNIBEN

Satellite image of the area was superimposed to the background with appropriate geo-referencing and the result is shown below. The satellite image was gotten fro Google map.

Page 41: Data Base Monitoring of Power System Using Power 3

Figure ** Satellite image of the area superimposed on the background with appropriate geo-referencing

ATTRIBUTE DATA COLLECTIONAttribute data were collected for every component of the power system and this data was used to create a database for the power system in GIS development environment.These data were collected by reading the name-plate of each of the component. The result is shown below:

Figure** ATTRIBUTE DATA OF ONE STREET LIGHT UNIT

PROPOSED MODEL FOR DATA BASE MONITORING OF EPS FOR THE STUDY AREA

The model is made up of components of electrical power system which is already in existence. Additional components were added to the network so that distribution automation can be realized.

The new components to be installed include:

1. Fault indicators2. GPS device3. GPS network interface4. Server

Page 42: Data Base Monitoring of Power System Using Power 3

5. Database and map of the study area

1. Fault indicators

This component consist of fault sensor, the different type of fault that can occur on the network is sensed by this unit.

Figure ** A network with short circuit indicators Transformer stationShort circuit indicators trippedShort circuit indicators not tripped

2. GPS DEVICE:

THE GPS device is to interface with the fault sensor. If the fault indicator acts, it will trigger the GPS device on and GPS device is used to know the location of fault in the network when it is interfaced with a database and a map through the GPS network.

Both the fault indicator and the GPS device are made to be a single unit and it is what is in contact with the component of the power system to be monitored.

Page 43: Data Base Monitoring of Power System Using Power 3

Figure**

3. GPS NETWORK INTERFACE

This is usually satellite communication where the GPS installed on the component to be monitored communicated through the satellite in space to the location where the database and server is which is in a remote location. This remote location is the control room where you have the geospatial map and attribute data of the components in a server.

Figure**

4. Server

The server was created using the GPSmapping software. This is a GPS tracking software that communicates with a GPS in a remote location. This software accepted the result gotten from GIS software which is the geospatial map of the study area and the database.

Figure**

Page 44: Data Base Monitoring of Power System Using Power 3

5. DATABASE

The data base of the area was created in arcviewGIS3.2a development environment. Data that was entered included spatial data which was generated from AutoCAD environment and attribute data which was gotten from the name plate of each component of the power system

AutoCAD was used to plot the geospatial map of the area through the use of spatial data collected from the field using a GPS and satellite imagery of the area from Google map.

Figure** BLOCK DIAGRAM OF THE PROPOSED MODEL FOR DATABASE MONITORING OF ELECTRICAL POWER SYSTEM FOR FAULT DETECTION.

FAULT SENSOR

FAULT SIGNAL CONDITIONING

GPS DEVICE

SATELLITE COMMUNICATION INTERFACE

SATELLITE COMMUNICATION INTERFACE GPS

TRACKING SERVER

DATABASE OF EPS &

MAP

FAULTED PORTION ALARMED

Page 45: Data Base Monitoring of Power System Using Power 3

d

REFERENCES

[6] http://www.gisdevelopment.net/application/utility/power/utility.

GIS in Management of Electricity Distribution network: A case study of

Onitsha-North L.G.A., Anambra state, Nigeria. (Igbokwe, J.I. and

Emengini, E.J.)

Page 46: Data Base Monitoring of Power System Using Power 3

Existing model for fault analysis in the study area

The model use to detect fault in the power system is the use of