13
Daniel Weidinger 1 , Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1) National Research Council Postdoctoral Researcher (2) SRA International (3) Chemistry Division, Naval Research Laboratory, Washington, DC 1 of 11 OSU International Symposium on Molecular Spectroscopy June 23, 2011 Vibrational Dynamics of Tricyanomethanide

Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

Embed Size (px)

Citation preview

Page 1: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

Daniel Weidinger1, Cassidy Houchins2 and Jeffrey C. Owrutsky3

(1) National Research Council Postdoctoral Researcher

(2) SRA International

(3) Chemistry Division, Naval Research Laboratory, Washington, DC

1 of 11

OSU International Symposium on Molecular Spectroscopy June 23, 2011

Vibrational Dynamics of Tricyanomethanide

Page 2: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

2 of 11

Tricyanomethanide Infrared Spectroscopy

A. Why study tricyanomethanide (TCM)?• Ionic liquids for fuel cells, solar cells

• Similar to anion N(CN)2- (DCA)

low viscosity → high conductivity

B. Vibrational probes and solvation probes• Anion studies: NCO-, N3

-, N(CN)2-, NCS-

• TCM hydrophilic & strong IR absorber

C. Metal cyanides • Contrast with metal cyanides, e.g. Au(CN)2

-

• Prussian blue and CN adsorbates

D. New research• Steady state and dynamic spectra

• Ab initio calculations

Source: http://www.ensem.inpl-nancy.fr/

Source: http://www.chem.monash.edu.au

D. Weidinger et al., J. Chem. Phys. 134 (2011) 124510

Page 3: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

3 of 11

Tricyanomethanide Vibrations

• IR-active frequencies around 2170 cm-1

• Asymmetric CN-stretch (E’)• High Intensity (~50,000 M-1cm-2)

Raman Shift (cm-1)

2200 2220 2240 2260

Inte

nsity

(to

tal c

ount

s)

3.7e+5

3.8e+5

3.8e+5

3.9e+5

3.9e+5

4.0e+5

4.0e+5

TCM Raman Spectrum (solid KTCM)

TCM Vibrational Modes (D3h symmetry)

• Raman A’ band at 2222 cm-1; previous spectra:• Beaumont et al., Inorg. Chim. Acta 84 (1984) 141• Hipps et al., J. Phys. Chem. 89 (1985) 5459• Dixon et al., J. Am. Chem. Soc. 108 (1986) 2582

Page 4: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

4 of 11

Tricyanomethanide IR Spectra

Vibrational Band FrequenciesTCM Spectra

1 Dahl et al., J. Chem. Phys. 123 (2005) 0845042 Dixon et al., J. Am. Chem. Soc. 108 (1986) 2582

TCMCenter Freq.(cm-1)

DCA Center Freq.(cm-1)

NCS- Center Freq.(cm-1)

H2O 2172.0 2151.91 2164.01

D2O 2171.5 2149.41 2163.31

Methanol 2172.3 2147.81 2157.01

Formamide 2167.1 2141.91 2158.71

[BMIM][BF4] 2162.4 2131.01 2057.11

Solid 21622 -- --

DMSO 2161.7 2128.21 2055.81

Frequency (cm-1)

212021602200

No

rma

lize

d A

bso

rba

nce

(a

rb. u

nits

)

H2O

D2O

Methanol

DMSO

BMIM

Formamide

Page 5: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

5 of 11

IR Pump-Probe – Vibrational Relaxation

ν = 0

2

1

Transient Absorption

Transient Bleach

Frequency

Ab

sorp

tio

n

Pump-probe diagramUltrafast Pump-Probe IR setup:

•4 μJ, ~350 fs IR pulses

•5 cm-1 resolution

Ti:Sapphire Oscillator

Regenerative Amplifier

OPA

DFG Crystal

Sample

Monochromator

Delay Stage

IR Detector

To Lock-in,

Computer

Page 6: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

6 of 11

IR Pump-Probe – Vibrational Relaxation

Frequency (cm-1)

2120214021602180

Abs

orba

nce

Cha

nge

(mO

D)

-40

-20

0

20

40

• Strong transient absorption (as much as 40 mOD with 1 uJ pump)

• Concentrations of ~0.1 M

• Similar widths, decay times from adsorption, bleach features

• FWHM = 10 cm-1

• Anharmonicities of ~16 cm-1

Transient Spectrum:

TCM in DMSO, 1 ps Delay

Page 7: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

Time (ps)

0 20 40 60 80

Ab

sorb

an

ce C

ha

nge

(m

OD

)

0.0

0.2

0.4

0.6

0.8

1.0

H2O FA BMIM

7 of 11

IR Pump-Probe – Vibrational Relaxation

• Slower vibrational relaxation than DCA, N3

-

• Relaxation in MeOH slower than H2O, opposite of frequency trend

TCM TA Lifetime

(ps)

TCM TB Lifetime

(ps)

DCA T1

(ps)NCS- T1

(ps)

H2O 4.8 5.2 1.9 2.5

D2O 12.2 12.7 2.9 21.3

Methanol 12.0 17.8 4.7 22.6

Formamide 18.1 18.1 4.6 21.5

[BMIM][BF4] 27.5 33.0 8.4 63.1

DMSO 28.1 36.8 11.0 77.0

TCM TA Decay

• Decay lifetimes vary from 5 to 30 ps

• Solvent trend is similar to DCA & most small anions

Table of VER lifetimes

Page 8: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

8 of 11

Calculations of CN bands

Calculated TCM Frequencies

Model / Basis Set Symmetric Anti-Symmetric

νcnS

cm-1

IR Intensity

km / mole

νcnAS,1

cm-1

IR

Intensity

km / mole

MP2/aug-cc-pVDZ 2137.2 -- 2146.7 370

B3LYP/aug-cc-pVDZ 2282.5 -- 2230.9 481

B3LYP/aug-cc-pVTZ 2292.0 -- 2238.1 483

Experimental 2222 -- 2170 --

• Calculations performed using Gaussian 09

• Structures optimized within the C1 point group

• Frequencies calculated for all optimized structures to ensure minimum

Page 9: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

9 of 11

Calculations of CN bands

Experimental and Calculated TCM and DCA Frequencies

Model DCA1 TCM

νcnS

cm-1

νcnAS,1

cm-1

νcnS

cm-1

νcnAS,1

cm-1

MP2 2183 2199 2137 2147

B3LYP 2209 2186 2282 2238

Experiment 2232 2179 2292 2170

• MP2 calculations for DCA and TCM have same reversed energy order

• Order is correct in B3LYP calculations

1 Georgieva et al.., J. Mol. Struct. 752 (2005) 14

Page 10: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

10 of 11

Calculations of Thermochemistry

• Electron affinities:

• Structures optimized at

MP2/aug-cc-pVDZ and

B3LYP/aug-cc-pVXZ (x=2,3)

• Proton Affinity calculated from

MP2 and B3LYP optimized

structures

• Pertinent to transport properties &

electrolytic applications1,2

Model VDE

(eV)

ADE

(eV)

PA

(eV)

MP2/aug-cc-pVDZ 3.8 4.3 13.3

B3LYP/aug-cc-pVDZ 4.0 4.0 13.0

B3LYP/aug-cc-pVTZ 4.0 4.0 13.1

Calculated electron detachment energies and proton affinities (TCM)

1 S. Y. Kim et al., Nature Communications 1 (2010)2 Q. Dai et al., Comptes Rendus Chimie 9 (2006) 6013 B. Jagoda-Cwiklik et al., J. Phys. Chem. A 111 (2007) 7719

• Observed3 DCA electron affinity

(ADE) = 4.135 eV

• Calculated DCA ADE (by MP2) is

4.1 eV

Page 11: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

11 of 11

Conclusions

• IR Spectroscopy and IR Pump-Probe Studies of TCM

• “New” IR solvent probe

• High frequency

• Strong CN stretch

• Good solubility

• Shift-lifetime trend similar to DCA

• Long decay time for CN-containing anion

• MeOH is anomalous solvent

• Computations

• IR and Raman frequencies

• Electron Affinities

• Proton Affinities and transport properties

Page 12: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

Acknowledgements

• Scientists• Jeffrey C. Owrutsky (NRL)• Cassidy Houchins (SRA International)• Code 6111

• Funding:

Office of Naval Research

• Sponsorship:

National Research Council

12 of 11

Page 13: Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry

Extras

TCM TA Lifetime

(ps)

TCM TB Lifetime

(ps)

DCA T1

(ps)NCS- T1

(ps)

H2O 4.8 ± 0.4

5.2 ± 0.4

D2O 12.2 ± 0.6

12.7 ± 0.4

Methanol 12.0 ± 1.9

17.8 ± 1.7 4.7 ± 0.5

22.6 ± 2.1

Formamide

18.1 ± 2.9

18.1 ± 0.4

[BMIM][BF4]

27.5 ± 4.0

33.0 ± 9.5 8.4 ± 0.7

63.1 ± 3.1

DMSO 28.1 ± 2.9

36.8 ± 4.6 11.0 ± 4.9

77.0 ± 5.6

Model / Basis Set

Symmetric Anti-symmetric

νcnS

cm-1

IR Intensity

km / mole

νcnA

S,1

cm-1

IR

Intensity

km / mole

νcnAS,

2

cm-1

IR

Intensity

km / mole

MP2/aug-cc-pVDZ

2137.2

-- 2146.7

370 2146.8

370

B3LYP/aug-cc-pVDZ

2282.5

-- 2230.9

481 2231.0

481

B3LYP/aug-cc-pVTZ

2292.0

-- 2238.1

483 2238.1

483